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Code Analysis Tools

Effective enough for real-world code;
Based on different approaches:

e Abstract interpretation;
e Symbolic execution;
e Testing.

Work best on whole programs;
Start from the main entry point of the program.



Single Function Analysis

Common scenario: Analysis of single functions.
e Third-party software (e.g. libraries);

e Core/Critical functions only.

Q: How to analyze single functions?

int foo (int *a, size_t size) {
/* some interesting computation =/

}
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Common scenario: Analysis of single functions.
e Third-party software (e.g. libraries);

e Core/Critical functions only.

Q: How to analyze single functions?

int foo (int *a, size_t size) {
/* some interesting computation =/

}

A: Set the function in question as the entry point (here, foo).

Outcome
Mostly imprecise and useless analysis results.
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Function Context

Bottom Line

Analyzing single functions requires an appropriate context.

Function context:
e Initialization of function parameters and globals;
e Actual entry point to start the analysis from.
Common approaches:
e Write the context by-hand: Error-prone;

e Make analysis tools support a specification language:
Arduous (if ever possible) and to be done for every tool.



This Work

Idea

Automatic contexts generation from formal specifications. J

Contributions:
e System of inference rules for computing symbolic ranges;
e Precise and sound formalization;

e Prototype implementation as Frama-C plug-in.



Background: Frama-C and ACSL
Simplifying ACSL Preconditions

Generating C Function Contexts



Frama-C

Suite of tools for the source code analysis of C programs;

Extensible and collaborative platform:

e Modular plug-in architecture based on a common kernel,
e Combination of analysis to provide more precise results.

Main available analysis:

e Variable variation domains via abstract interpretation;
e Deductive verification via weakest precondition calculus.

Frama-C is open source software.



ACSL: ANSI/ISO C Specification Language

e Behavioral specification language for C programs;
e Specifications via code annotations of the form /@
e Function contracts given by pre- and postconditions:

/*Q@ requires \valid(a);
@ requires 0 <= size <= 32;
@ requires size % 16 == 0;
@ ensures \forall integer i;
0 <= 1 < size ==> x(a+i) == 0;
*/

int foo (int <*a, size_t size) { ... }

*x/;



ACSL: ANSI/ISO C Specification Language

e Behavioral specification language for C programs;

e Specifications via code annotations of the form /@

e Function contracts given by pre- and postconditions:

/@
@
@
@

*/
int

requires \valid(a);
requires 0 <= size <= 32;
requires size % 16 == 0;
ensures \forall integer i;
0 <= 1 < size ==> x(a+i) == 0;

foo (int *a, size_t size) { ... }

e This work considers preconditions only (i.e. requires).

*x/;



Core Specification Language

P:= T{=<,<}T term comparison
| defined(M) M is defined
| PAP|PVP|-P logic formula
T:= z integer constant (z € Z)
| M memory value
| T{+ -,%,/,%} T arithmetic operation
M:@= L left value
| M++ T displacement
L:= x C variable

| M dereference



Background: Frama-C and ACSL
Simplifying ACSL Preconditions

Generating C Function Contexts

10



11

How to turn a precondition into a context?

/*@ requires
@ requires
@ requires
@ requires
int bar (int

defined (buf + (0..size-1));
4 <= size <= 16;

size $ 2 == 0;

* (buf + n) == 0xC0000001;
+*pbuf, int size, int n)

*/
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How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

First attempt: Directly implement predicates one-by-one.
e Declare and properly initialize each left value involved;

e Turn term comparisons into conditionals.

int size;

make_int (&size, 1);

intx buf = (int*) malloc(size x sizeof (int));
make_int (buf, size);

if (4 <= size) && (size <= 16) {
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How to t

/%@
@
@
@

urn a precondition into a context?

requires defined(buf + (0..size-1));
requires 4 <= size <= 16;

requires size % 2 == 0;

requires x (buf + n) == 0xC0000001; =/

int bar (int *buf, int size, int n)

First at

tempt: Directly implement predicates one-by-one.

e Declare and properly initialize each left value involved;

e Tu

rn term comparisons into conditionals.

int size;

make_int (&size, 1);

intx buf = (int*) malloc(size x sizeof (int));
make_int (buf, size);

if (4 <= size) && (size <= 16) {

}

Shortcoming: Erratic dependencies among left values.
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How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

Revision: Pre-compute dependency graph among left values.

int size, n;

make_int (&size, 1);

make_int (&n, 1);

if (4 <= size) && (size <= 16) {

if (size % 2 == 0) {
int+ buf = (int+) malloc(size * sizeof (int));
make_int (buf, size);
* (buf + n) = 0xC0000001;

bar (buf, size, n);
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How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

Revision: Pre-compute dependency graph among left values.

int size, n;

make_int (&size, 1);

make_int (&n, 1);

if (4 <= size) && (size <= 16) {

if (size % 2 == 0) {
int+ buf = (int+) malloc(size * sizeof (int));
make_int (buf, size);
* (buf + n) = 0xC0000001;

bar (buf, size, n);
}

Shortcoming: Relation between size and n is overlooked.
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Simplify Predicates into State Constraints
Each predicate is turned into:
e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).
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e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/
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Simplify Predicates into State Constraints

Each predicate is turned into:

e Symbolic variation domain computed for every left value;

Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

From (1): {buf — [0,size —1],size — [—00, +00|};
e From (2): size — [—00,+00] M [4,16] = [4, 16];
From (3): size > [4,16],0%2;
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Simplify Predicates into State Constraints
Each predicate is turned into:

e Symbolic variation domain computed for every left value;

Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

e From (1): {buf — [0,size —1],size — [—00, +00|};
e From (2): size — [—00,+00] M [4,16] = [4, 16];

e From (3): size > [4,16],0%2;

e From (4):

n — [—o00, +0o0], * (buf+n) — [0xC0000001,0xC0000001],
buf — [0,size —1]U[0,n] = [0,max(size — 1,n)]

}
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Some Details

State Constraints:

e Encode requirements on each left value L;
e Defined as a pair (R, X):
e R is the symbolic range of runtime values for L;
e X is a set of runtime checks to be verified as conditions on L.

Symbolic Range Domain (R, C):
e Usual range (or interval) domain, but on symbolic ranges R;

e Usual join (L) and meet (1) operators, and in particular:

[El, E2] L [E3, E4] = [mil’l(El, E3), maX(E2, E4)]
[El, Eg] 1 [E3, E4] = [max(El, E3), min(Ez, E4)]
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Inferring State Constraints

Simplification judgments ¥ - P = ¥
e P is a predicate literal,

e Y, Y’ association maps from left values to state constraints.

Inference rules:
e Describe how to update X into ¥’ for the left values in P;
e Build dependency graph G among left values;

e Assume formulae in DNF, but no rule for disjunctions.
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Inferring State Constraints

Simplification judgments ¥ - P = ¥
e P is a predicate literal,

e Y, Y’ association maps from left values to state constraints.

Inference rules:
e Describe how to update X into ¥’ for the left values in P;
e Build dependency graph G among left values;

e Assume formulae in DNF, but no rule for disjunctions.

Theorem (Soundness)
For all conjunctive C, either ) - C = ¥ and X |= C, or it fails.
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Generation Scheme
For each conjunctive clause C, consider its (X, G):

e Topologically iterate over left values of G;

e For every visited L, consider its state constraint (R, X):
e Initialize L with R by using make_range;
e Guard the rest of the code under conditionals implementing X.

e Repeat till last left value, then generate function call.
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Generation Scheme
For each conjunctive clause C, consider its (X, G):

e Topologically iterate over left values of G;

e For every visited L, consider its state constraint (R, X):
e Initialize L with R by using make_range;
e Guard the rest of the code under conditionals implementing X.

e Repeat till last left value, then generate function call.
For precondition formulae \/}_; C;:

int clauses = make_range(1,n);
switch (clauses) {

case 1: { [C1]; break; }

case n : { [C,]; break; }
}
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Formal specification:

/%@
d
@
@
int

requires defined (buf +
requires 4 <= size <= 16;

requires size
requires x (bu
bar (int xbuf

Analysis context:

© 0 N O o b~ WNR

T~ O v S
O h W N RO

int bar_contex
int n;

$ 2 ==

f + n)

’

t (void) {

(0..size-1));

0xC0000001; =/
, int size,

Frama_C_make_unknown (&n,

int n)

sizeof (int));

int size = Frama_C_int_interval (4, 16);

if (size % 2

== 0) {
int max = size > n ? size : n;
intx buf = (int*) malloc(max » sizeof (int));
if (buf != (intx) 0) {
Frama_C_make_unknown (buf, max % sizeof (int));
* (buf + n) 0xC0000001;
bar (buf, size, n);
}
}
return 0;
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Conclusions

e Single function analysis requires a context to be useful;
e This talk has shown:

e Method to generate analysis contexts from formal specifications;
e Precise and sound formalization.

e Implemented as a Frama-C plug-in (used at TrustInSoft).



Thanks!
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