Context Generation from Formal Specifications
for C Analysis Tools

Michele Alberti' Julien Signoles?

I TrustInSoft

2CEA LIST, Software Reliability and Security Laboratory

LOPSTR 2017, Namur, Belgium

Code Analysis Tools

Effective enough for real-world code;
Based on different approaches:

e Abstract interpretation;
e Symbolic execution;
e Testing.

Work best on whole programs;
Start from the main entry point of the program.

Single Function Analysis

Common scenario: Analysis of single functions.
e Third-party software (e.g. libraries);

e Core/Critical functions only.

Q: How to analyze single functions?

int foo (int *a, size_t size) {
/* some interesting computation =/

}

Single Function Analysis

Common scenario: Analysis of single functions.
e Third-party software (e.g. libraries);

e Core/Critical functions only.

Q: How to analyze single functions?

int foo (int *a, size_t size) {
/* some interesting computation =/

}

A: Set the function in question as the entry point (here, foo).

Single Function Analysis

Common scenario: Analysis of single functions.
e Third-party software (e.g. libraries);

e Core/Critical functions only.

Q: How to analyze single functions?

int foo (int *a, size_t size) {
/* some interesting computation =/

}

A: Set the function in question as the entry point (here, foo).

Outcome
Mostly imprecise and useless analysis results.

Function Context

Bottom Line

Analyzing single functions requires an appropriate context.

Function context:
e Initialization of function parameters and globals;

e Actual entry point to start the analysis from.

Function Context

Bottom Line

Analyzing single functions requires an appropriate context.

Function context:
e Initialization of function parameters and globals;
e Actual entry point to start the analysis from.
Common approaches:

e Write the context by-hand: Error-prone;

Function Context

Bottom Line

Analyzing single functions requires an appropriate context.

Function context:
e Initialization of function parameters and globals;
e Actual entry point to start the analysis from.
Common approaches:
e Write the context by-hand: Error-prone;

e Make analysis tools support a specification language:
Arduous (if ever possible) and to be done for every tool.

This Work

Idea

Automatic contexts generation from formal specifications. J

Contributions:
e System of inference rules for computing symbolic ranges;
e Precise and sound formalization;

e Prototype implementation as Frama-C plug-in.

Background: Frama-C and ACSL
Simplifying ACSL Preconditions

Generating C Function Contexts

Frama-C

Suite of tools for the source code analysis of C programs;

Extensible and collaborative platform:

e Modular plug-in architecture based on a common kernel,
e Combination of analysis to provide more precise results.

Main available analysis:

e Variable variation domains via abstract interpretation;
e Deductive verification via weakest precondition calculus.

Frama-C is open source software.

ACSL: ANSI/ISO C Specification Language

e Behavioral specification language for C programs;
e Specifications via code annotations of the form /@
e Function contracts given by pre- and postconditions:

/*Q@ requires \valid(a);
@ requires 0 <= size <= 32;
@ requires size % 16 == 0;
@ ensures \forall integer i;
0 <= 1 < size ==> x(a+i) == 0;
*/

int foo (int <*a, size_t size) { ... }

*x/;

ACSL: ANSI/ISO C Specification Language

e Behavioral specification language for C programs;

e Specifications via code annotations of the form /@

e Function contracts given by pre- and postconditions:

/@
@
@
@

*/
int

requires \valid(a);
requires 0 <= size <= 32;
requires size % 16 == 0;
ensures \forall integer i;
0 <= 1 < size ==> x(a+i) == 0;

foo (int *a, size_t size) { ... }

e This work considers preconditions only (i.e. requires).

*x/;

Core Specification Language

P:= T{=<,<}T term comparison
| defined(M) M is defined
| PAP|PVP|-P logic formula
T:= z integer constant (z € Z)
| M memory value
| T{+ -,%,/,%} T arithmetic operation
M:@= L left value
| M++ T displacement
L:= x C variable

| M dereference

Background: Frama-C and ACSL
Simplifying ACSL Preconditions

Generating C Function Contexts

10

11

How to turn a precondition into a context?

/*@ requires
@ requires
@ requires
@ requires
int bar (int

defined (buf + (0..size-1));
4 <= size <= 16;

size $ 2 == 0;

* (buf + n) == 0xC0000001;
+*pbuf, int size, int n)

*/

11

How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

First attempt: Directly implement predicates one-by-one.
e Declare and properly initialize each left value involved;

e Turn term comparisons into conditionals.

int size;

make_int (&size, 1);

intx buf = (int*) malloc(size x sizeof (int));
make_int (buf, size);

if (4 <= size) && (size <= 16) {

11

How to t

/%@
@
@
@

urn a precondition into a context?

requires defined(buf + (0..size-1));
requires 4 <= size <= 16;

requires size % 2 == 0;

requires x (buf + n) == 0xC0000001; =/

int bar (int *buf, int size, int n)

First at

tempt: Directly implement predicates one-by-one.

e Declare and properly initialize each left value involved;

e Tu

rn term comparisons into conditionals.

int size;

make_int (&size, 1);

intx buf = (int*) malloc(size x sizeof (int));
make_int (buf, size);

if (4 <= size) && (size <= 16) {

}

Shortcoming: Erratic dependencies among left values.

12

How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

Revision: Pre-compute dependency graph among left values.

int size, n;

make_int (&size, 1);

make_int (&n, 1);

if (4 <= size) && (size <= 16) {

if (size % 2 == 0) {
int+ buf = (int+) malloc(size * sizeof (int));
make_int (buf, size);
* (buf + n) = 0xC0000001;

bar (buf, size, n);

12

How to turn a precondition into a context?

/*@ requires defined (buf + (0..size-1));
@ requires 4 <= size <= 16;
@ requires size % 2 == 0;
@ requires * (buf + n) == 0xC0000001; =/
int bar (int *buf, int size, int n)

Revision: Pre-compute dependency graph among left values.

int size, n;

make_int (&size, 1);

make_int (&n, 1);

if (4 <= size) && (size <= 16) {

if (size % 2 == 0) {
int+ buf = (int+) malloc(size * sizeof (int));
make_int (buf, size);
* (buf + n) = 0xC0000001;

bar (buf, size, n);
}

Shortcoming: Relation between size and n is overlooked.

13

Simplify Predicates into State Constraints
Each predicate is turned into:
e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).

13

Simplify Predicates into State Constraints
Each predicate is turned into:
e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)
@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

13

Simplify Predicates into State Constraints

Each predicate is turned into:
e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

e From (1): {buf — [0,size —1],size — [—00, +00|};

Simplify Predicates into State Constraints

Each predicate is turned into:
e Symbolic variation domain computed for every left value;

e Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

e From (1): {buf — [0,size —1],size — [—00, +00|};
e From (2): size — [—00,+00] M [4,16] = [4, 16];

13

Simplify Predicates into State Constraints

Each predicate is turned into:

e Symbolic variation domain computed for every left value;

Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

From (1): {buf — [0,size —1],size — [—00, +00|};
e From (2): size — [—00,+00] M [4,16] = [4, 16];
From (3): size > [4,16],0%2;

13

Simplify Predicates into State Constraints
Each predicate is turned into:

e Symbolic variation domain computed for every left value;

Side-condition to be checked at runtime (i.e. runtime check).

/+@ requires defined (buf + (0..size-1)); // (1)

@ requires 4 <= size <= 16; // (2)
@ requires size % 2 == 0; // (3)
@ requires x (buf + n) == 0xC0000001; /] (4) =/

int bar (int *buf, int size, int n)

e From (1): {buf — [0,size —1],size — [—00, +00|};
e From (2): size — [—00,+00] M [4,16] = [4, 16];

e From (3): size > [4,16],0%2;

e From (4):

n — [—o00, +0o0], * (buf+n) — [0xC0000001,0xC0000001],
buf — [0,size —1]U[0,n] = [0,max(size — 1,n)]

}

14

Some Details

State Constraints:

e Encode requirements on each left value L;
e Defined as a pair (R, X):
e R is the symbolic range of runtime values for L;
e X is a set of runtime checks to be verified as conditions on L.

Symbolic Range Domain (R, C):
e Usual range (or interval) domain, but on symbolic ranges R;

e Usual join (L) and meet (1) operators, and in particular:

[El, E2] L [E3, E4] = [mil’l(El, E3), maX(E2, E4)]
[El, Eg] 1 [E3, E4] = [max(El, E3), min(Ez, E4)]

15

Inferring State Constraints

Simplification judgments ¥ - P = ¥
e P is a predicate literal,

e Y, Y’ association maps from left values to state constraints.

Inference rules:
e Describe how to update X into ¥’ for the left values in P;
e Build dependency graph G among left values;

e Assume formulae in DNF, but no rule for disjunctions.

15

Inferring State Constraints

Simplification judgments ¥ - P = ¥
e P is a predicate literal,

e Y, Y’ association maps from left values to state constraints.

Inference rules:
e Describe how to update X into ¥’ for the left values in P;
e Build dependency graph G among left values;

e Assume formulae in DNF, but no rule for disjunctions.

Theorem (Soundness)
For all conjunctive C, either) - C = ¥ and X |= C, or it fails.

Background: Frama-C and ACSL
Simplifying ACSL Preconditions

Generating C Function Contexts

16

17

Generation Scheme
For each conjunctive clause C, consider its (X, G):

e Topologically iterate over left values of G;

e For every visited L, consider its state constraint (R, X):
e Initialize L with R by using make_range;
e Guard the rest of the code under conditionals implementing X.

e Repeat till last left value, then generate function call.

17

Generation Scheme
For each conjunctive clause C, consider its (X, G):

e Topologically iterate over left values of G;

e For every visited L, consider its state constraint (R, X):
e Initialize L with R by using make_range;
e Guard the rest of the code under conditionals implementing X.

e Repeat till last left value, then generate function call.
For precondition formulae \/}_; C;:

int clauses = make_range(1,n);
switch (clauses) {

case 1: { [C1]; break; }

case n : { [C,]; break; }
}

18

Formal specification:

/%@
d
@
@
int

requires defined (buf +
requires 4 <= size <= 16;

requires size
requires x (bu
bar (int xbuf

Analysis context:

© 0 N O o b~ WNR

T~ O v S
O h W N RO

int bar_contex
int n;

$ 2 ==

f + n)

’

t (void) {

(0..size-1));

0xC0000001; =/
, int size,

Frama_C_make_unknown (&n,

int n)

sizeof (int));

int size = Frama_C_int_interval (4, 16);

if (size % 2

== 0) {
int max = size > n ? size : n;
intx buf = (int*) malloc(max » sizeof (int));
if (buf != (intx) 0) {
Frama_C_make_unknown (buf, max % sizeof (int));
* (buf + n) 0xC0000001;
bar (buf, size, n);
}
}
return 0;

10

Conclusions

e Single function analysis requires a context to be useful;
e This talk has shown:

e Method to generate analysis contexts from formal specifications;
e Precise and sound formalization.

e Implemented as a Frama-C plug-in (used at TrustInSoft).

Thanks!

	Background: Frama-C and ACSL
	Simplifying ACSL Preconditions
	Generating C Function Contexts

