

ulm university universität **UUU**

Paper: Thom Frühwirth Presentation: **Daniel Gall** October 10, 2017 Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms

Constraint Handling Rules with Justifications

Justifications

- Mark derived information explicitly
- Track origin of information
- Logical Retraction
 - Conclusions can be withdrawn by retracting their premises

Constraint Handling Rules with Justifications

Justifications

- Mark derived information explicitly
- Track origin of information
- Logical Retraction
 - Conclusions can be withdrawn by retracting their premises

Goal

- Extend Constraint Handling Rules (CHR) with justifications (CHR^J)
 - Operational equivalence of rule applications
- Logical retraction
 - Correctness and confluence of retraction
- Proof-of-concept implementation

Minimum

 $\min(N) \setminus \min(M) \iff N \le M \mid true.$

Example

 $min(1)^{\{f_1\}}, min(0)^{\{f_2\}}, min(2)^{\{f_3\}}$

• c^F : F is set of justifications for constraint c

Minimum

 $\min(N) \setminus \min(M) \iff N \le M \mid true.$

Example

 $\begin{array}{l} \min(1)^{\{f_1\}}, \min(0)^{\{f_2\}}, \min(2)^{\{f_3\}} \\ \mapsto rem(\min(1)^{\{f_1\}})^{\{f_1, f_2\}}, \min(2)^{\{f_3\}}, \min(0)^{\{f_2\}} \end{array}$

• c^F : F is set of justifications for constraint c

Minimum

 $\min(N) \setminus \min(M) \iff N \le M \mid true.$

Example

$$\begin{split} & \min(1)^{\{f_1\}}, \min(0)^{\{f_2\}}, \min(2)^{\{f_3\}} \\ & \mapsto \ rem(\min(1)^{\{f_1\}})^{\{f_1, f_2\}}, \min(2)^{\{f_3\}}, \min(0)^{\{f_2\}} \\ & \mapsto \ rem(\min(1)^{\{f_1\}})^{\{f_1, f_2\}}, rem(\min(2)^{\{f_3\}})^{\{f_2, f_3\}}, \min(0)^{\{f_2\}} \end{split}$$

• c^F : F is set of justifications for constraint c

Minimum

 $\min(N) \setminus \min(M) \iff N \le M \mid true.$

Example

$$\begin{split} & \min(1)^{\{f_1\}}, \min(0)^{\{f_2\}}, \min(2)^{\{f_3\}} \\ & \mapsto \ rem(\min(1)^{\{f_1\}})^{\{f_1, f_2\}}, \min(2)^{\{f_3\}}, \min(0)^{\{f_2\}} \\ & \mapsto \ rem(\min(1)^{\{f_1\}})^{\{f_1, f_2\}}, rem(\min(2)^{\{f_3\}})^{\{f_2, f_3\}}, \min(0)^{\{f_2\}} \end{split}$$

- c^F : F is set of justifications for constraint c
- Constraint min(0) remained
- Constraints min(1) and min(2) have been removed
- Constraint with justification f₂ reason for removal

Constraint Handling Rules (CHR)

Constraints: first-order logic predicates

Constraint Handling Rules (CHR)

Constraints: first-order logic predicates

Rules

 $H_k \setminus H_r \Leftrightarrow G \mid B.$

- H_r removed heads (only user-defined constraints)
- H_k: kept heads (only user-defined constraints)
- G: guard (only built-in constraints)
- B: body (user-defined and built-in constraints)
- Constraints that match head and satisfy guard are removed/kept
- Body is added

CHR with Justifications (CHR $^{\mathcal{J}}$)

Original Rule

$$r: \bigwedge_{i=1}^{l} K_i \setminus \bigwedge_{j=1}^{m} R_j \Leftrightarrow C \mid \bigwedge_{k=1}^{n} B_k$$

Translated Rule $rf: \bigwedge_{i=1}^{l} K_{i}^{F_{i}} \setminus \bigwedge_{j=1}^{m} R_{j}^{F_{j}} \Leftrightarrow C \mid \bigwedge_{j=1}^{m} rem(R_{j}^{F_{j}})^{F} \wedge \bigwedge_{k=1}^{n} B_{k}^{F}$ where $F = \bigcup_{i=1}^{l} F_{i} \cup \bigcup_{j=1}^{m} F_{j}$.

- F_i and F_i fresh variables that match justification sets
- Each CHR constraint in body annotated with union of all justifications

CHR with Justifications (CHR $^{\mathcal{J}}$)

Original Rule - Short Hand Notation

 $r: H_1 \setminus H_2 \Leftrightarrow C \mid B.$

Translated Rule – Short Hand Notation

$$\mathit{rf}: \mathit{H}_1^{\mathcal{J}} \setminus \mathit{H}_2^{\mathcal{J}} \Leftrightarrow \mathit{C} \mid \mathit{rem}(\mathit{H}_2)^{\mathcal{J}} \land \mathit{B}^{\mathcal{J}}$$

CHR with Justifications (CHR $^{\mathcal{J}}$)

Original Rule - Short Hand Notation

 $r: H_1 \setminus H_2 \Leftrightarrow C \mid B.$

Translated Rule – Short Hand Notation

$$\mathit{rf}: \mathit{H}_1^\mathcal{J} \setminus \mathit{H}_2^\mathcal{J} \Leftrightarrow \mathit{C} \mid \mathit{rem}(\mathit{H}_2)^\mathcal{J} \wedge \mathit{B}^\mathcal{J}.$$

Lemma (Equivalence of Program Rules)

The following two propositions are equivalent:

- There is a computation step with simpagation rule $r: S \mapsto_r T$.
- There is a computation step with justifications $S^{\mathcal{J}} \mapsto_{rf} T^{\mathcal{J}}$ with corresponding rule with justifications rf.

Logical Retraction

Idea

- Remove CHR constraint from computation without recomputation from scratch
- All consequences due to rule applications using this constraint are undone
- Remove CHR constraints added by those rules
- Re-add CHR constraints removed by those rules

Logical Retraction

Rules for Retraction

For each constraint c/n:

kill :
$$kill(f) \setminus G^F \Leftrightarrow f \in F \mid true$$

$$\mathsf{revive}: \textit{kill}(f) \setminus \textit{rem}(G^{F_c})^F \Leftrightarrow f \in F \mid G^{F_c},$$

where

- $G = c(X_1, \ldots, X_n),$
- X_1, \ldots, X_n are different variables.
- Constraint may be revived and subsequently killed:
 - if F_c and F contain justification f

Confluence

Confluence

Confluence

Confluence in CHR

Decidable criterion for terminating programs

Confluence in CHR

- Decidable criterion for terminating programs
- Two rules: r₁ and r₂

Confluence in CHR

- Decidable criterion for terminating programs
- Two rules: r₁ and r₂

Overlap states: Overlap heads and guard of rules

Confluence in CHR

- Decidable criterion for terminating programs
- Two rules: r₁ and r₂

- Overlap states: Overlap heads and guard of rules
- Critical pairs: Apply rules to overlap state

Confluence in CHR

- Decidable criterion for terminating programs
- Two rules: r₁ and r₂

- Overlap states: Overlap heads and guard of rules
- Critical pairs: Apply rules to overlap state
- If all critical pairs joinable, the program is confluent

Idea

- Intuitively: Rules for retraction do not interefere with each other
- Additional rules do not break potential confluence of a program
- It does not make a difference if a justification is retracted immediately or if other rules are applied first

Idea

- Intuitively: Rules for retraction do not interefere with each other
- Additional rules do not break potential confluence of a program
- It does not make a difference if a justification is retracted immediately or if other rules are applied first

Theorem (Confluence of Logical Retraction)

- CHR program translated to rules with justifications together with kill and revive rules
- At most one kill(f) constraint for each justification f in any state
- Critical pairs between kill and revive joinable
- Critical pairs of those rules with any translated rule with justifications joinable

Proof Idea: kill and translated rules

 $\begin{aligned} \text{kill} : \textit{kill}(f) \setminus G^{\mathsf{F}} \Leftrightarrow f \in \mathsf{F} \mid \textit{true.} \end{aligned}$ $rf : \mathcal{K}^{\mathcal{J}} \setminus \mathcal{R}^{\mathcal{J}} \Leftrightarrow \mathcal{C} \mid \textit{rem}(\mathcal{R})^{\mathcal{J}} \land \mathcal{B}^{\mathcal{J}}. \end{aligned}$

 $kill(f) \wedge K^{\mathcal{J}} \wedge R^{\mathcal{J}} \wedge E$

Proof Idea: kill and translated rules

 $\begin{aligned} & \text{kill}: \textit{kill}(f) \setminus G^{\mathsf{F}} \Leftrightarrow f \in \mathsf{F} \mid \textit{true.} \end{aligned}$ $& \text{rf}: \mathsf{K}^{\mathcal{J}} \setminus \mathsf{R}^{\mathcal{J}} \Leftrightarrow \mathsf{C} \mid \textit{rem}(\mathsf{R})^{\mathcal{J}} \land \mathsf{B}^{\mathcal{J}}. \end{aligned}$

Proof Idea: kill and translated rules

$$\mathsf{kill}: \mathsf{kill}(f) \setminus G^{\mathsf{F}} \Leftrightarrow f \in \mathsf{F} \mid \mathsf{true}.$$

 $\mathit{rf}: \mathcal{K}^{\mathcal{J}} \setminus \mathcal{R}^{\mathcal{J}} \Leftrightarrow \mathcal{C} \mid \mathit{rem}(\mathcal{R})^{\mathcal{J}} \land \mathcal{B}^{\mathcal{J}}.$

Proof Idea: kill and translated rules

$$\mathsf{kill}: \mathsf{kill}(f) \setminus G^{\mathsf{F}} \Leftrightarrow f \in \mathsf{F} \mid \mathsf{true}.$$

 $\mathit{rf}: \mathcal{K}^{\mathcal{J}} \setminus \mathcal{R}^{\mathcal{J}} \Leftrightarrow \mathcal{C} \mid \mathit{rem}(\mathcal{R})^{\mathcal{J}} \wedge \mathcal{B}^{\mathcal{J}}.$

Idea

 Result of computation after retraction the same as without adding killed constraint in the first place

Idea

 Result of computation after retraction the same as without adding killed constraint in the first place

Theorem (Correctness of Logical Retraction)

• Given computation where f does not occur in $A^{\mathcal{J}}$: $A^{\mathcal{J}} \wedge G^{\{f\}} \wedge kill(f)$

Idea

 Result of computation after retraction the same as without adding killed constraint in the first place

Theorem (Correctness of Logical Retraction)

• Given computation where f does not occur in $A^{\mathcal{J}}$:

 $A^{\mathcal{J}} \wedge G^{\{f\}} \wedge \textit{kill}(f) \mapsto^* B^{\mathcal{J}} \wedge \textit{rem}(R)^{\mathcal{J}} \wedge \textit{kill}(f)$

Idea

 Result of computation after retraction the same as without adding killed constraint in the first place

Theorem (Correctness of Logical Retraction)

• Given computation where f does not occur in $A^{\mathcal{J}}$:

 $\mathcal{A}^{\mathcal{J}} \land \mathcal{G}^{\{f\}} \land \textit{kill}(f) \, \mapsto^{*} \, \mathcal{B}^{\mathcal{J}} \land \textit{rem}(\mathcal{R})^{\mathcal{J}} \land \textit{kill}(f) \not \mapsto_{\textit{kill,revive}}$

Idea

 Result of computation after retraction the same as without adding killed constraint in the first place

Theorem (Correctness of Logical Retraction)

- ► Given computation where f does not occur in $A^{\mathcal{J}}$: $A^{\mathcal{J}} \land G^{\{f\}} \land kill(f) \mapsto^* B^{\mathcal{J}} \land rem(R)^{\mathcal{J}} \land kill(f) \not\mapsto_{kill revive}$
- Then there is computation without $G^{\{f\}}$:

 $A^{\mathcal{J}} \mapsto^* B^{\mathcal{J}} \wedge \mathit{rem}(R)^{\mathcal{J}}$

Proof Idea.

- Mapping between computations with a constraint G^{f} and without
 - Strip away constraints that contain justification f except for rem
- For all rules:
 - show that stripped transition of rule application is equivalent to rule application without G^{f}

Implementation

Basic Idea

- Apply translation scheme
- Represent justifications as unbound variables
- ► C ## [F1, F2, ...]: constraint C with justifications F1, F2, ...
- Built-in constraint union computes union of justification sets
- ▶ For kill and revive: guard f ∈ F via member (F, Fs)

Optimization

Thom Frühwirth: Implementation of Logical Retraction in Constraint

Handling Rules with Justifications

Proceedings of the 21st International Conference on Applications of Declarative Programming and Knowledge Management (INAP) September 2017

Minimum Example

Translated Minimum Rule

```
min(A) ##B \ min(C) ##D <=> A<C |
```

```
union([B,D],E), rem(min(C) ##D)##E.
```

Example

```
?- min(1)##[A], min(0)##[B], min(2)##[C].
rem(min(1)##[A])##[A,B], rem(min(2)##[C])##[B,C],
min(0)##[B].
```

- Constraint min(0) remained
- Constraints min (1) and min (2) have been removed
- 0 is minimum
- Constraint with justification B reason for removal

Minimum Example

Translated Minimum Rule

```
min(A) ##B \ min(C) ##D <=> A<C |</pre>
```

```
union([B,D],E), rem(min(C) ##D) ##E.
```

Example

```
?- min(1) ##[A], min(0) ##[B], min(2) ##[C],
```

killc(min(0)).

rem(min(2)##[C])##[A,C], min(1)##[A].

- Logically retract current minimum min(0)
- Constraint min(0) is removed by binding justification B.
- The rem constraints for min(1) and min(2) involve B as well
- The two constraints are re-introduced and react with each other
- min(2) is now removed by min(1)

Conclusion

- Source-to-source transformation for CHR with justifications (CHR^J)
- Logical retraction of constraints
- Correctness theorem: If constraint is retracted, computation continues as if constraint was never there
- Confluence theorem: Implementation of retraction with two-rule scheme is confluent
- Online translator:

http://pmx.informatik.uni-ulm.de/chr/translator/

Future Work

- Investigate behavior of logical and classical algorithms with justifications
- Programs not required to be confluent, but use with non-confluent programs may lead to unwanted orders of rule applications
- Improve implementation further, optimizations, benchmarks
- Extend rule scheme to support debugging by explanation
- For error diagnosis: detection and repair of inconsistencies

Page 20 Justifications in Constraint Handling Rules for Logical Retraction in Dynamic Algorithms | T. Frühwirth, D. Gall | October 10, 2017

Thank you for your attention! Questions?