Inferring Energy Bounds via Static Program Analysis and Evolutionary Modeling of Basic Blocks

Umer Liqat^{1,3}

Zorana Banković ¹

Pedro López-García^{1,2}

Manuel Hermenegildo^{1,3}

¹IMDEA Software Institute ²Spanish Research Council (CSIC) ³Technical University of Madrid (UPM)

LOPSTR, Namur, Belgium, Oct 11, 2017

Motivation

- Energy consumption is a significant issue in systems ranging from:
 - small *Internet of Things (IoT)* devices, sensors, smart watches, smart phones and portable/implantable medical devices, to
 - large data centers and high-performance computing systems.
- A need for estimating the energy consumed by program executions.
 - Often dependent on run-time data sizes (string length, signal samples, recursions, etc.).
- Different types of energy estimations can be performed, depending on the application: probabilistic, average, safe bounds, ...
- For verification \rightarrow safe upper and lower bounds are required.
- Given an energy budget E_b and safe upper- and lower-bound estimations, E_u and E_l respectively:
 - $E_u \leq E_b \implies$ the given program can be safely executed within the existing energy budget.
 - (a) $E_l \leq E_b \leq E_u \implies$ it might be possible to execute the program, but we cannot claim it for certain.
 - ◎ $E_b < E_l \implies$ it is not possible to execute the program (the system will run out of batteries before program execution is completed).

Motivation

- Energy consumption is a significant issue in systems ranging from:
 - small *Internet of Things (IoT)* devices, sensors, smart watches, smart phones and portable/implantable medical devices, to
 - large data centers and high-performance computing systems.
- A need for estimating the energy consumed by program executions.
 - Often dependent on run-time data sizes (string length, signal samples, recursions, etc.).
- Different types of energy estimations can be performed, depending on the application: probabilistic, average, safe bounds, ...
- For verification \rightarrow safe upper and lower bounds are required.
- Given an energy budget E_b and safe upper- and lower-bound estimations, E_u and E_l respectively:
 - $E_u \leq E_b \implies$ the given program can be safely executed within the existing energy budget.
 - (a) $E_l \leq E_b \leq E_u \implies$ it might be possible to execute the program, but we cannot claim it for certain.
 - ◎ $E_b < E_l \implies$ it is not possible to execute the program (the system will run out of batteries before program execution is completed).

Motivation

- Energy consumption is a significant issue in systems ranging from:
 - small Internet of Things (IoT) devices, sensors, smart watches, smart phones and portable/implantable medical devices, to
 - large data centers and high-performance computing systems.
- A need for estimating the energy consumed by program executions.
 - Often dependent on run-time data sizes (string length, signal samples, recursions, etc.).
- Different types of energy estimations can be performed, depending on the application: probabilistic, average, safe bounds, ...
- For verification \rightarrow safe upper and lower bounds are required.
- Given an energy budget E_b and safe upper- and lower-bound estimations, E_u and E_l respectively:
 - $E_u \leq E_b \implies$ the given program can be safely executed within the existing energy budget.
 - **(a)** $E_l \leq E_b \leq E_u \implies$ it might be possible to execute the program, but we cannot claim it for certain.
 - E_b < E_l ⇒ it is not possible to execute the program (the system will run out of batteries before program execution is completed).

Using Upper and Lower Bounds for Energy Verification

- We face an interesting safety/accuracy trade-off.
- Challenge: finding a practical compromise.

Goal

Estimate tight *upper and lower bounds* on the energy consumption of a program *as functions on its input data sizes*

ightarrow that are practical for energy verification (and optimization).

Approach

A novel combination of static and dynamic (modeling) techniques.

Using Upper and Lower Bounds for Energy Verification

- We face an interesting safety/accuracy trade-off.
- Challenge: finding a practical compromise.

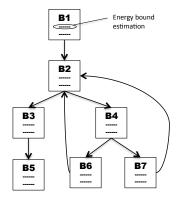
Goal

Estimate tight *upper and lower bounds* on the energy consumption of a program *as functions on its input data sizes*

 \rightarrow that are practical for energy verification (and optimization).

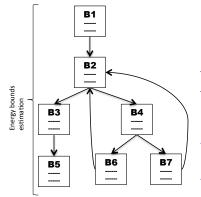
Approach

A novel combination of static and dynamic (modeling) techniques.



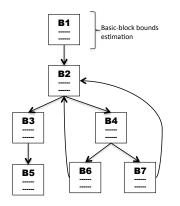
- Each instruction is profiled (using, e.g., an Evolutionary Algorithm – EA) to derive upper- and lower-bound energy estimates.
- These are combined using static analysis.
- + Very compositional.
- + Can infer functions of input data sizes.
 - Bounds obtained are *very conservative*.
- Dependence among instructions is not modeled (or very complex).

Modeling the Whole Program (Choice 2)



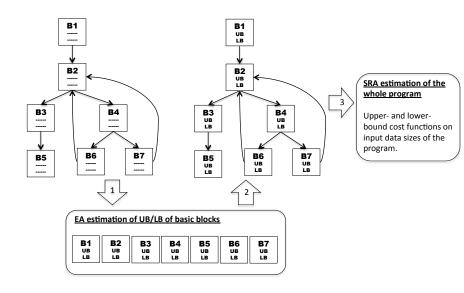
- The whole program is profiled using the EA to estimate upper/lower bounds (no static analysis performed).
- + Instruction dependence is captured.
 - Bounds can be very precise (if no data-dependent branching).
 - The EA infers just one fixed cost for a given fixed input.
- The EA becomes imprecise and impractical due to data-dependent branching.

Our Proposal: Modeling at Basic Block Level



- Each basic block is profiled using the EA and upper/lower bounds estimated for each block.
- Bounds over basic blocks are composed (by static analysis) to infer the bounds over the whole program.
- + Inter-instruction dependence is captured within the blocks: more precise bounds.
- The EA is precise and practical since no data-dependent branching within a block.
- + Infers functions of input data sizes.
- Inter-block dependence may be over- or under-estimated.

Overview of our Approach

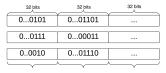


э

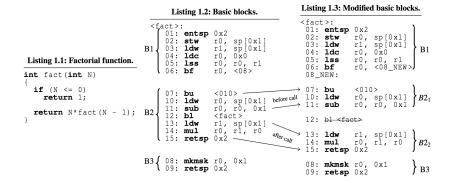
- A - E - N

A custom EA is used to estimate the maximum/minimum energy consumption of each basic block.

- An individual is constructed from a set of input arguments to a basic block.
- The initial population includes randomly created individuals plus any known corner cases that may maximize/minimize the energy of basic blocks.
- Example: mutation operation



Dividing the Program into Basic Blocks



- A basic block with k function call instructions is divided into k + 1 basic blocks without the function call instructions.
- A set of special instructions (e.g., entsp, retsp, bl, etc.) are measured separately.
- The memory accesses in each block are transformed into accesses to a fixed address in the local memory of the harness function.

• The set gen(B) characterizes the set of variables

$$gen(b) = \bigcup_{k=1}^{n} \{ v \mid v \in ref(k) \land \forall (j < k). v \notin def(j) \}$$

where ref(n) and def(n) denote the variables referred to and defined/updated at node n in block b respectively.

• Example:

 $\begin{array}{ll} gen(B1) = \{r0\}, & gen(B2_1) = \{sp[0x1]\}, \\ gen(B2_2) = \{sp[0x1], r0\}, & gen(B3) = \{\}. \end{array}$

An ISA (factorial) program (left) and its Horn clause representation (right)

```
<fact>:
  0x01: entsp 0x2
3
  0x02: stw
               r0. sp[0x1]
               r1, sp[0x1]
  0x03: 1dw
             r0. 0x0
5
  0x04: 1dc
  0x05; lss r0, r0, r1
  0x06: bf
              r0. <0x08>
11 0x07: bu
               <0x10>
12 0x0a: 1dw
               r0. sp[0x1]
             r0. r0. 0x1
13 0x0b: sub
14 0x0c: b1
               <fact>
15 0x0d: 1dw
             r1, sp[0x1]
16 0x0e: mul r0, r1, r0
17 0x0f: retsp 0x2
20 0x08: mkmsk r0, 0x1
21 0x09: retsp 0x2
```

```
fact(R0,R0 3):-
      entsp(0x2).
      stw(R0.Sp0x1).
      ldw(R1.Sp0x1).
      ldc(R0 1.0x0).
      lss(R0 2.R0 1.R1).
      fact aux(R0 2.Sp0x1.R0 3.R1 1).
10 fact aux(1,Sp0x1,R0 4,R1);-
      bu(0x10).
11
12
      ldw(R0_1,Sp0x1),
13
      sub(R0 2,R0 1,0x1).
14
      fact(R0_2,R0_3),
15
     ldw(R1,Sp0x1),
16
      mul(R0_4,R1,R0_3),
17
      retsp(0x2).
19 fact_aux(0,Sp0x1,R0,R1):-
20
      mkmsk(R0,0x1),
21
      retsp(0x2).
```

글 > - < 글 >

< 6 >

-

Energy Consumption of the Whole Program

- Static analysis combines the energy bounds estimations for each block in order to infer the energy bounds of the whole program.
- Let $B1_e^A$, $B2_e^A$ and $B3_e^A$ represent the energy bounds for the blocks B1, B2 and B3 respectively.
- The equation that characterizes the energy bounds of the whole program is:

$$fact_e^A(R0) = B1_e^A + fact_aux_e^A(0 \le R0, R0)$$

 $fact_aux_e^A(B, R0) = \begin{cases} B2_e^A + fact_e^A(R0 - 1) & \text{if } B \text{ is true} \\ B3_e^A & \text{if } B \text{ is false} \end{cases}$

where A is the kind of approximation (upper/lower bound).

• Closed-form solution for upper- and lower-bounds:

1

$$fact_e^{ub}(R0) = 5.1R0 + 4.2 \text{ nJ}$$

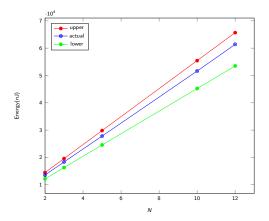
 $fact_e^{lb}(R0) = 4.1R0 + 3.8 \text{ nJ}$

Program	DDBr	Upper/Lower Bounds (nJ) $\times 10^3$	vs. HW
fact(N)		ub = 5.1 N + 4.2	+7%
	n	lb = 4.1 N + 3.8	-11.7%
fibonacci(N)	n	$ub = 5.2 \ lucas(N) + 6 \ fib(N) - 6.6$	+8.71%
		$lb = 4.5 \ lucas(N) + 5 \ fib(N) - 4.2$	-4.69%
reverse(A)	n	ub=3.7 $N+13.3$ (N $=$ length of array A)	+8%
		lb = 3 N + 12.5	-8.8%
findMax(A)	N	$ub=5N+6.9$ ($ extsf{N}=$ length of array A)	+8.7%
	У	lb = 3.3 N + 5.6	-9.1%
selectionSort(A)	у	$ub=30$ $N^2+41.4$ $N+10$ $(N=$ length of array A)	+8.7%
		$lb = 16.8 N^2 + 28.5 N + 8$	-9.1%
fir(N)	N	ub = 6 N + 26.4	+8.9%
	У	lb = 4.8 N + 22.9	-9.7%
biquad(N)	N	ub = 29.6 N + 10	+9.8%
	У	lb = 23.5 N + 9	-11.9%

- EA times vary depending upon the initialization parameters.
 - On average within 150-200 min.
- Static analysis times are relatively small \approx 4sec.

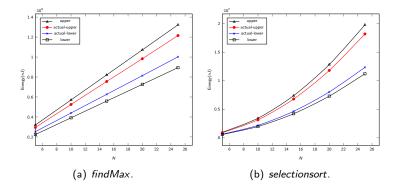
Experimental Results (Benchmark with no Data-Dependent Branching)

factorial(x): 7% over- and 11% under-approximation for random runs with different inputs.



Experimental Results (Benchmark with Data-Dependent Branching)

Over- and under-approximation from actual upper- and lower-bounds (ascending vs. descending sorted array).



Static Analysis vs. Energy Modelling (findMax)

N	Cost	Energy(nJ)×10 ³			D %	PrD %		
	Арр	Est	Prof	Obs	D /0	FID 70		
Actual- worst and best case array data								
5	lb	22.3	22.3	25.2	-12.2	-12.2		
	ub	31.9	31.9	29.4	8.1	8.1		
15	lb	55.9	55.9	62.6	-11.3	-11.3		
	ub	82.1	82.1	75.5	8.3	8.3		
25	lb	89.4	89.4	100.2	-11.4	-11.4		
	ub	132.2	132.2	121.5	8.4	8.4		

- The static analysis part is accurate (exact).
- All the inaccuracy comes from the EA.

- We have proposed an approach for inferring parametric upper and lower bounds on the energy consumption of a program
 - a combination of dynamic (evolutionary algorithms) and static techniques.
- We have used an EA to estimate the energy bounds of basic blocks:
 - Instructions dependence is captured within blocks.
 - The blocks have no branches, which make the EA more practical.
- We have used static analysis to compose the energy bounds of basic blocks in order to infer upper/lower bounds of the whole program.
 - Inter-block dependence is over- or under-approximated.
- Experimental results: the bounds inferred are safe and quite accurate.
- A practical technique for its application to energy verification (and optimization).
 - \rightarrow A practical compromise for safety/accuracy trade-off.

(4月) (日) (日)

- We have proposed an approach for inferring parametric upper and lower bounds on the energy consumption of a program
 - a combination of dynamic (evolutionary algorithms) and static techniques.
- We have used an EA to estimate the energy bounds of basic blocks:
 - Instructions dependence is captured within blocks.
 - The blocks have no branches, which make the EA more practical.
- We have used static analysis to compose the energy bounds of basic blocks in order to infer upper/lower bounds of the whole program.
 - Inter-block dependence is over- or under-approximated.
- Experimental results: the bounds inferred are safe and quite accurate.
- A practical technique for its application to energy verification (and optimization).
 - \rightarrow A practical compromise for safety/accuracy trade-off.

A (B) > A (B) > A (B)

- We have proposed an approach for inferring parametric upper and lower bounds on the energy consumption of a program
 - a combination of dynamic (evolutionary algorithms) and static techniques.
- We have used an EA to estimate the energy bounds of basic blocks:
 - Instructions dependence is captured within blocks.
 - The blocks have no branches, which make the EA more practical.
- We have used static analysis to compose the energy bounds of basic blocks in order to infer upper/lower bounds of the whole program.

• Inter-block dependence is over- or under-approximated.

- Experimental results: the bounds inferred are safe and quite accurate.
- A practical technique for its application to energy verification (and optimization).
 - \rightarrow A practical compromise for safety/accuracy trade-off.

・回り イラト イラト

- We have proposed an approach for inferring parametric upper and lower bounds on the energy consumption of a program
 - a combination of dynamic (evolutionary algorithms) and static techniques.
- We have used an EA to estimate the energy bounds of basic blocks:
 - Instructions dependence is captured within blocks.
 - The blocks have no branches, which make the EA more practical.
- We have used static analysis to compose the energy bounds of basic blocks in order to infer upper/lower bounds of the whole program.
 - Inter-block dependence is over- or under-approximated.
- Experimental results: the bounds inferred are safe and quite accurate.
- A practical technique for its application to energy verification (and optimization).
 - \rightarrow A practical compromise for safety/accuracy trade-off.