
Submitted to:
HCVS 2024

© S. Gambhir and V. Kunčak
This work is licensed under the
Creative Commons Attribution License.

CHC solvers in Stainless: Work in Progress

Sankalp Gambhir
EPFL

sankalp.gambhir@epfl.ch

Viktor Kunčak
EPFL

viktor.kuncak@epfl.ch

Stainless is a program verifier for Scala programs. Its solver component, Inox, uses fair unfolding
of functions and their contracts to find counterexamples and perform k-inductive proofs. When in-
variants are not k-inductive, solving verification conditions typically leads to infinite unfolding. In
practice, this results in a timeout or, when the underlying SMT solver is fast, stack overflow in Inox
due to many unfoldings. To overcome this limitation, this paper outlines how we started integrat-
ing into Inox (and, hence, into Stainless) Horn clause solvers, which are designed to infer inductive
invariants. Using Eldarica and z3’s Spacer, we present encouraging preliminary experiments with
successful proofs of integer-manipulating Scala programs whose verification previously diverged in
Stainless.

1 Introduction

Consider the program in Fig. 1 showing a recursive implementation of the function posTwice(x), com-
puting max(0,2x). We wish to ensure that the function cannot evaluate to −1 with a postcondition
(ensuring). Attempting to verify this program with the Stainless verifier [9] results in a stack overflow
caused by unbounded unfolding. Similar divergence of the underlying algorithm appears for other non-
inductive invariants, such as statements that the result is not equal to 1001.

1 def posTwice(x: BigInt): BigInt = {
2 if x <= 0 then BigInt (0)
3 else 2 + posTwice(x - 1)
4 } ensuring(_ != -1)

Figure 1: Scala implementation of posTwice(x), computing max(0,2x).

In this paper, we describe the preliminary support for the Horn solvers such as Eldarica [10] and
Spacer [8] in the Inox solver framework [4], which is used as the back end solver for the Stainless verifier
[9, 6] (historically, Stainless and Inox were derived by refactoring of the Leon verifier, first presented
in [12]). We briefly describe the encoding of programs and the interpretation of solver responses and
present examples showing successful invariant inference. We conclude by describing ongoing and future
work on further integrating CHC solvers and on checking and further automating high-level proofs about
programs.

2 Stainless and Inox

At its core, Inox relies on unrolling recursive function definitions, followed by a quantifier-free encoding
of the resulting program. This encoding is sent to an SMT solver for verification. If the SMT solver finds

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/


2 CHC solvers in Stainless: Work in Progress

a counterexample, or succeeds in proving the validity of the assertion, the result is returned to the user. If
neither occurs, the query is incrementally expanded by unrolling any remaining function calls and their
invariants in the query, ad infinitum. This unrolling procedure as implemented in Stainless and Inox
is complete for counterexample search [13], but as in this example, does not necessarily terminate for
valid assertions. The reason that SMT solvers use axiomatizations that, even if complete for quantifier-
free formulas, are not complete in the presence of recursive functions with respect to intended canonical
models, so inductive reasoning is required [11].

Looking again at the program in Fig. 1: in a manual proof attempt, one would attempt to show the
required property by instead noting the stronger and inductive invariant that the result of the function is
non-negative. The current verification procedure lacks the ability to infer and reason with such invariants.

This paper presents an approach to translate the correctness of the program to an SMT-LIB query
[1], interpreting the single-argument function posTwice(x) as a binary predicate posTwice(x,y), such
that posTwice(x,y) ⇐⇒ y = posTwice(x). We provide the query as input to a Horn clause solver
and interpret it so that models imply the existence of inductive invariants. Given the convention of
Inox, this means that a model is reported as unsatisfiability of the query that checks the existence of a
counterexample. Using this approach, we are able to prove examples such as above and many others.

The model returned by Eldarica exhibits the invariant we are looking for, with the result of posTwice
(here, B) being non-negative:

1 (define-fun posTwice ((A Int) (B Int)) Bool (>= B 0))

An equivalent model is also output by z3’s Spacer.
Adding this invariant to the original problem allows non-inductive modes of solvers such as z3 and

cvc5 to prove the result; storing such inferred invariants would be one way to speed-up future verification
attempts.

3 Problem Encoding

We encode the problem as a set of Horn clauses interpreting functions as predicates, such that a function
f (x1, . . . ,xn,y) is interpreted as a predicate F(x1, . . . ,xn,y′) ⇐⇒ y′ = f (x1, . . . ,xn). Finally, the safety
assertion is added to the query.

Note that in the Horn clause encoding, the satisfiability results are inverted compared to the usual
semantics Inox assumes for SMT solvers. For a predicate abstraction problem, a satisfiable result implies
the discovery of an invariant, while an unsatisfiable result implies the discovery of a counterexample,
presented as a proof of unsatisfiability [2].

The solver interface must intercept these results and reconstruct the violating trace from the unsat-
isfiability proof. In the case of a satisfiable result, the invariant can additionally be extracted and added
to the call-site in the original problem, which aids the solving of future queries. (Automatic mapping of
invariants to Scala source is not yet supported in the current implementation.)

4 Implementation

Stainless formally incorporates its unfolding solver, Inox [4], as a dependency. To support Horn clause
solvers, we extend the scala-smtlib [5] backend of Inox, which provides a common Scala interface to
solvers implementing the SMT-LIB standard. The implementation can be used either through the Stain-
less verifier, by pointing to the updated Inox implementation as a dependency, or through the Inox CLI,



S. Gambhir and V. Kunčak 3

with problems encoded in either the SMT-LIB or TIP [3] formats. The resulting implementation gen-
erates SMT-LIB files and can, in principle, be used with various Horn clause solvers. Our experience
comes from using it with the Spacer solver [8] inside z3, as well as with Eldarica [10].

5 Results

We implement preliminary support for Horn solvers extending the Inox solver framework, targeting the
scala-smtlib [5] backend, allowing portable interfacing with different solvers. We have experimented
with Eldarica and z3/Spacer.

The extension to Inox is available at:

https://github.com/sankalpgambhir/inox/tree/hcvs24

A version of Stainless with only the dependency pointing to the updated version of Inox for testing may
also be found at https://github.com/sankalpgambhir/stainless/tree/hcvs24. Both reposito-
ries contain a folder inductiveExamples/ containing the examples described in the paper and appendices
with the respective solver outputs.

The solvers, provided the recursive definitions of several integer programs annotated with non-
inductive properties to be verified, infer inductive invariants that lead to successive verification where
the standard SMT-backed verification of Inox diverges.

We provide several tested examples in Appendix B. Further examples and their outputs may be found
in the folder inductiveExamples/ in the above repository.

6 Conclusion and Future Work

In this work, we describe preliminary support for Horn solvers in the Inox component of the Stainless
program verifier. Horn solvers provide powerful reasoning capabilities for a subset of problems arising
from program verification, and it is not always feasible to adapt verification conditions to fit the input
language of the Horn solver.

We consider this to be the most promising avenue for invariant inference in Stainless. Currently,
Stainless performs only a very limited form of inference, as part of its termination checker. We expect
that Stainless users will continue to provide most of the subtle inductive invariants. That said, we hope
that Horn clause solvers will prove to be a robust technique that eliminates the need to state some very
simple invariants, as well as the need to repeat properties that are stated already in the source code, but
not in the place where Stainless uses them as inductive invariants.

We intend to improve the current state of the solver framework in two main ways. First, we will
use Horn solvers on smaller subproblems to infer invariants, and augment the original problem with
the results. This would allow further calls to the solver, as well as to other SMT solvers, to utilize the
discovered information to effectively reason about the problem.

Second, we will perform Horn solver validation by exporting the results of the Horn solver to our in-
teractive theorem prover, Lisa [7], also implemented in Scala, to allow the user to augment the reasoning
by providing high-level lemmas or hints about the Horn clauses, allowing for reuse of reasoning across
problems, and increasing the trust in results by providing proof certificates from the prover.

The combination of these two directions would allow us to improve the current verification pipeline
to establish the correctness of programs with proofs grounded in well-studied mathematical foundations,
while maintaining a high level of automation.

https://github.com/sankalpgambhir/inox/tree/hcvs24
https://github.com/sankalpgambhir/stainless/tree/hcvs24


4 CHC solvers in Stainless: Work in Progress

References
[1] Clark Barrett, Aaron Stump, Cesare Tinelli et al. (2010): The SMT-LIB standard: Version 2.0. In: Proceedings

of the 8th international workshop on satisfiability modulo theories (Edinburgh, UK), 13, p. 14.
[2] Nikolaj S. Bjørner, Arie Gurfinkel, Kenneth L. McMillan & Andrey Rybalchenko (2015): Horn Clause

Solvers for Program Verification. In Lev D. Beklemishev, Andreas Blass, Nachum Dershowitz, Bernd
Finkbeiner & Wolfram Schulte, editors: Fields of Logic and Computation II - Essays Dedicated to Yuri Gure-
vich on the Occasion of His 75th Birthday, Lecture Notes in Computer Science 9300, Springer, pp. 24–51,
doi:10.1007/978-3-319-23534-9_2. Available at https://doi.org/10.1007/978-3-319-23534-9_2.

[3] Koen Claessen, Moa Johansson, Dan Rosén & Nicholas Smallbone (2015): TIP: Tons of Inductive Problems.
In: International Conference on Intelligent Computer Mathematics, Springer, pp. 333–337.

[4] EPFL LARA: inox. https://github.com/epfl-lara/inox.
[5] EPFL LARA: scala-smtlib. https://github.com/epfl-lara/scala-smtlib.
[6] EPFL LARA: Stainless. https://github.com/epfl-lara/stainless.
[7] Simon Guilloud, Sankalp Gambhir & Viktor Kunčak (2023): LISA - A Modern Proof System. In Adam

Naumowicz & René Thiemann, editors: 14th International Conference on Interactive Theorem Proving (ITP
2023), Leibniz International Proceedings in Informatics (LIPIcs) 268, Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Dagstuhl, Germany, pp. 17:1–17:19, doi:10.4230/LIPIcs.ITP.2023.17. Available at https:
//drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.17.

[8] Arie Gurfinkel (2022): Program Verification with Constrained Horn Clauses (Invited Paper). In Sharon
Shoham & Yakir Vizel, editors: Computer Aided Verification, Springer International Publishing, Cham, pp.
19–29.

[9] Jad Hamza, Nicolas Voirol & Viktor Kunčak (2019): System FR: Formalized foundations for the Stainless
verifier. Proceedings of the ACM on Programming Languages 3(OOPSLA), pp. 1–30.

[10] Hossein Hojjat & Philipp Rümmer (2018): The ELDARICA Horn solver. In: 2018 Formal Methods in
Computer Aided Design (FMCAD), IEEE, pp. 1–7.

[11] Adithya Murali, Lucas Peña, Ranjit Jhala & P Madhusudan (2023): Complete First-Order Reasoning for
Properties of Functional Programs. Proceedings of the ACM on Programming Languages 7(OOPSLA2),
pp. 1063–1092.

[12] Philippe Suter, Ali Sinan Köksal & Viktor Kuncak (2011): Satisfiability Modulo Recursive Programs. In Eran
Yahav, editor: Static Analysis - 18th International Symposium, SAS 2011, Venice, Italy, September 14-16,
2011. Proceedings, Lecture Notes in Computer Science 6887, Springer, pp. 298–315, doi:10.1007/978-3-
642-23702-7_23.

[13] Nicolas Voirol, Etienne Kneuss & Viktor Kuncak (2015): Counter-example Complete Verification for Higher-
order Functions. In: Proceedings of the 6th ACM SIGPLAN Symposium on Scala, pp. 18–29.

https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-319-23534-9_2
https://github.com/epfl-lara/inox
https://github.com/epfl-lara/scala-smtlib
https://github.com/epfl-lara/stainless
https://doi.org/10.4230/LIPIcs.ITP.2023.17
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.17
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITP.2023.17
https://doi.org/10.1007/978-3-642-23702-7_23
https://doi.org/10.1007/978-3-642-23702-7_23


S. Gambhir and V. Kunčak 5

A posTwice SMT-LIB encoding

1 (set-logic UFLIA)
2

3 ; interpret function as predicate
4 (declare-fun posTwice (Int Int) Bool)
5

6 ; encoding of function definition
7

8 ; first branch: x <= 0
9 (assert

10 (forall ((x Int))
11 (=>
12 (<= x 0)
13 (posTwice x 0)
14 )
15 )
16 )
17

18 ; second branch: x > 0
19 (assert
20 (forall ((x Int) (y Int))
21 (=>
22 (and (posTwice (- x 1) y) (> x 0))
23 (posTwice x (+ y 2))
24 )
25 )
26 )
27

28 ; encoding of assertion
29

30 ; assertion => false
31 (assert
32 (forall ((x Int) (y Int))
33 (=>
34 (and (posTwice x y) (= y (- 1)))
35 false
36 )
37 )
38 )
39

40 (check-sat)

Figure 2: SMT-LIB encoding of the posTwice function.

Solver arguments and outputs for the query in Fig. 2, we run z3 with and without (set-logic HORN):

1 $ z3 posTwice.smt2 --model # without HORN
2 unknown
3 $ z3 posTwiceHorn.smt2 --model # with HORN



6 CHC solvers in Stainless: Work in Progress

4 sat
5 (
6 (define -fun posTwice ((x!0 Int) (x!1 Int)) Bool
7 (not (<= x!1 (- 1))))
8 )
9 $ cvc5 posTwice.smt2 --produce -models

10 unknown
11 $ eldarica posTwice.smt2 -hsmt -ssol
12 sat
13 (define -fun posTwice ((A Int) (B Int)) Bool (>= B 0))

B Examples of Invariants Inferred with Horn Clause Solvers

Here, we provide some small interesting examples and the outputs on attempting to verify their post-
conditions through both Eldarica and z3/Spacer. In each case, the invariants are slightly different, with
Eldarica generating smaller/visibly simpler invariants in our tests. More examples can be found on the
linked repository https://github.com/sankalpgambhir/inox/tree/hcvs24.

B.1 Fibonacci

Fibonacci with fib(x) != -1:

1 def fib(n: BigInt): BigInt = {
2 require(n >= 0)
3 decreases(n)
4 if n <= 1 then
5 BigInt (1)
6 else
7 fib(n - 1) + fib(n - 2)
8 } ensuring(_ != -1)

Eldarica:

1 sat
2 (define -fun fib ((A Int) (B Int)) Bool (>= B 1))

z3/Spacer:

1 sat
2 (
3 (define -fun fib ((x!0 Int) (x!1 Int)) Bool
4 (not (<= x!1 (- 1))))
5 )

Notably, the invariants here are different but both correct!

B.2 McCarthy’s 91

McCarthy’s 91 function with m(x) != 50:

1 def m(n: BigInt): BigInt = {
2 if (n > 100) n - 10
3 else m(m(n + 11))

https://github.com/sankalpgambhir/inox/tree/hcvs24


S. Gambhir and V. Kunčak 7

4 } ensuring(_ != 50)

Eldarica:

1 sat
2 (define -fun mccarthy ((A Int) (B Int)) Bool (>= B 91))

z3/Spacer:

1 sat
2 (
3 (define -fun mccarthy ((x!0 Int) (x!1 Int)) Bool
4 (not (<= x!1 50)))
5 )

Eldarica finds quite the interesting and precise invariant here!

B.3 Recursive Addition

(Natural) Addition function asserting add(x, y) > -10:

1 def add(x: BigInt , y: BigInt): BigInt = {
2 require(x >= 0 && y >= 0)
3 if x <= 0 then y else add(x - 1, y + 1)
4 } ensuring(_ > -10)

Eldarica:

1 sat
2 (define -fun add ((A Int) (B Int) (C Int)) Bool (and (and (>= A 0) (>= B

0)) (>= C 0)))

z3/Spacer:

1 sat
2 (
3 (define -fun add ((x!0 Int) (x!1 Int) (x!2 Int)) Bool
4 (or (and (not (<= x!2 (- 2)))
5 (>= x!0 0)
6 (>= x!1 0)
7 (>= x!0 1)
8 (>= x!1 (- 1))
9 (not (<= x!0 0)))

10 (not (<= x!2 (- 2)))
11 (and (>= x!0 0) (>= x!1 0) (<= x!0 0) (= x!2 x!1))))


	Introduction
	Stainless and Inox
	Problem Encoding
	Implementation
	Results
	Conclusion and Future Work
	posTwice SMT-LIB encoding
	Examples of Invariants Inferred with Horn Clause Solvers
	Fibonacci
	McCarthy's 91
	Recursive Addition


