Integration of Offline Partial Deduction and
Functional Conversion for miniKanren

Aleksandr Shefer Ekaterina Verbitskaia
Constructor University Constructor University
Bremen, Germany Bremen, Germany
JetBrains Research JetBrains Research
Germany Amsterdam, Netherlands
alex.shefer.31@gmail.com kajigor@gmail.com

In pure logic programming, a program is viewed as a relation that can be queried in different
directions to find solutions for multiple problems. For example, an interpreter can both evaluate and
synthesize programs. Unfortunately, the performance of the queries is a great concern, and sometimes
it is impossible to create a relation that executes in all directions in a reasonable time. Program
transformation techniques such as partial deduction and functional conversion have previously shown
their potential when the execution direction of a relation is known. In this extended abstract, we
present the integration of offline partial deduction with functional conversion, capable of greater
performance improvement compared to the transformations run individually.

1 Introduction

Logic programming facilitates a relational style in which programs do not distinguish between input
and output arguments [3]. Any program can solve many problems by being evaluated in different
directions, notably forward and backward. Employing a complete search strategy, such as the interleaving
search of KANRENEL and abstaining from using extra-logical constructs such as cuts allows producing
every solution to a query in any direction [5]. This approach, called relational programming, is capable
of producing solvers by running a relational interpreter backwards [6]]. For instance, a relational sorting
algorithm can generate permutations while a program interpreter can be inverted to become a synthesizer.

The main issue with the approach is its inefficiency. Relational interpreters are either generated by
relational conversion from a function or crafted by a person who has a specific, usually forward, direction
in mind. In both cases, the interpreter often shows reasonable performance in the forward direction, but
not necessarily when executed in any other direction. Besides, logic languages come with additional
overhead, such as expensive unification with occurs-check. Finally, being an embedded domain-specific
language, KANREN comes with an interpretation overhead which also affects performance.

In has been shown that partial deduction can alleviate some of the interpretation overhead [1} [7]].
Additionally, functional conversion is capable of improving the execution time of a program by translating
it into a functional language in the context of a given direction [2]]. While doing so, costly logical
operations are replaced with much cheaper functional counterparts. We believe that combining the two
approaches together can lead to even bigger speed-ups.

This extended abstract focuses on integrating an offline partial deduction algorithm with a functional
conversion for a MINIKANRENEI programming language. We illustrate the approach with an example and
provide the preliminary evaluation that demonstrates noticeable execution time improvement.

Kanren is a family of pure relational programming languages, website: http://minikanren.org
ZMINIK ANREN is a minimal language in the KANREN family

© A. Shefer, E. Verbitskaia
This work is licensed under the
Creative Commons Attribution License.

Submitted to:
HCVS 2024

https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
http://minikanren.org

2 Integration of Offline Partial Deduction and Functional Conversion for miniKanren

let rec sort’ x y =

=0l ANy=I[D V let sort’_0I x =

(fresh s, xs, xs; in (x=@© 21 ::2 [V
(smallest® x s xs A x=0 22 21 :: [V
sort? xs xs; A x=(1 ::2::0 2 []) V ...)

y=(s it xs1)))

(b) Result of the partial deduction of the call
(a) Implementation in MINIKANREN sortox (0 = 1 =2 2 = [)

Figure 1: Sorting relation

2 Combining Specialization Methods for Relational Programming

Knowing values of some arguments of a relation or its direction enables specialization—an automatic
program transformation aimed at improving the program’s execution time [4]. Previously, two approaches
were explored in the context of MINIKANREN: online partial deduction [7] and functional conversion [2].
The former symbolically executes a relation when the values or shape of some of its arguments are known
at specialization-time. The latter converts a relational program into a function which produces the same
results, but is devoid of costly operations inherent to a relational language, such as unification.

Consider the relation sort? which relates the list x with its sorted counterpart y. The implementation
follows directly from the definition of a sorted list: it is either empty or its head is the smallest element
of the list, and its tail is sorted. This is encoded as the disjunction (V) of two conjunctions (A) which
unify (=) the sorted list with the empty and non-empty list constructors correspondingly. The relation
smallest’ x s xs relates the list x, its smallest element s and the list of remaining elements xs.

If it is known that the relation sort? is always going to be executed on lists of a certain length, say
10, sort? will only be called a finite number of times (11, to be exact). Moreover, only one of the two
disjuncts will succeed on every call. A partial deduction algorithm will unfold a body of the relation
the appropriate number of times and partially evaluate it, thereby removing some of the unnecessary
computations. More sophisticated techniques, such as Conjunctive Partial Deduction [1]], include the
information about variable sharing or run additional analyses and use it in the transformations.

Functional conversion translates the relation into a function in the context of a specific direction.
While doing so, it replaces expensive unifications with much cheaper equality checks, variable bindings
or term construction operations—based on which role the unification serves in the given direction. For
example, if we know that sort? is run with the second argument known, then unifications of y may be
replaced with a pattern match. One peculiar thing about sort? is that it is impossible to write a single
program which behaves well in both directions. Depending on the order of calls to smallest® and sort®
it will quickly time out when sorting or when generating permutations. Using mode analysis, functional
conversion puts the calls in the order best suited for the particular direction.

Both transformations are capable of achieving significant results; combining them together is the next
logical step. But we first had to address a couple of shortcomings of the previous works. Online partial
deduction tends to produce extremely large programs due to making all the decisions at specialization-time
without running any analysis beforehand. Apart from that, partial deduction will benefit from knowing
the order of calls, which can be done by employing mode analysis implemented as a part of functional
conversion. As a result, we decided to switch to offline partial deduction that runs static analyses such as
binding time analysis, termination check and mode inference before partial evaluation.

A. Shefter, E. Verbitskaia 3

Translation with CPD Functional Conversion
Online Offline
sorto | [0;1;2;3](5 answers) 174.00 us 0.15us 26.90 us
sorto | [0;...;4]1(5 answers) || 20600.00ps | 0.19ps 183.00 ps
hanoi | [3 disks] (5 answers) || 125000.00ps || 1.67 us 153000.00 ps
hanoi | [4 disks] (5 answers) timeout 3.12us timeout

Figure 2: Evaluation results of relational sorting

The resulting specialization algorithm is done in five steps. First, the user annotates the relation with
its intended direction, namely which arguments are input and which are output. Then the relation is mode
analysed, which reorders the conjuncts for the direction and annotates the other calls in the program.
After that, a simple binding time analysis propagates the information about input arguments. It employs
termination check to annotate which of the relation calls need to be unfolded at specialization-time. Next,
partial deduction uses the results of the binding time analysis and mode analysis to partially evaluate the
program. Finally, the resulting program in MINIKANREN is converted into a function in HASKELL.

We provide the result of the partial deduction of sort’x (0 :: 1 :x 2 : []) in Figure[Ibl Our
approach successfully unfolds the program completely, resulting in the enumeration of all possible answers
to the query. Note that, depending on the relation, direction and the known values of the arguments, it is
not always possible.

3 Evaluation

At this point, we have only done a limited evaluation of our approach. Here we present the comparison
of the described transformation with functional conversion and the online partial deduction algorithm. For
that, we run the corresponding methods on two examples and compared the execution time.

The first benchmark is sort? specialized for the backwards direction in which it generates all
permutations of a given list. In this case, our approach results in a program which enumerates all possible
answers, while both online partial deduction and functional conversion fail to achieve this degree of
specialization. The number of permutations grows rapidly as the list’s length increases, so we only run the
function on the list of length up to five. Querying it for the first five answers demonstrates the performance
increase of 3 orders of magnitude compared with functional conversion and up to 5 orders of magnitude
compared with online partial deduction: see first two rows in Table 2]

The second benchmark is the classic Tower of Hanoi puzzle. It is a representative program for
verifier-to-solver approach. The program is given a sequence of disks’ moves and checks if the finish state
can be achieved from the start state by it. Initially, the program was written in a functional language and
translated into MINIKANREN, then it was specialized in the direction which generates the sequence of
steps, solving the puzzle. The result of querying for 5 possible answers is at least 5 orders of magnitude
faster than both functional conversion and online partial deduction: see the last two rows in Table

4 Conclusion and Future work

In this abstract, we described the integration of offline partial deduction with functional conversion for
MINIKANREN. Our preliminary evaluation showed solid performance improvement. We believe that it is
a promising direction which is worth further investigation.

Integration of Offline Partial Deduction and Functional Conversion for miniKanren

References

(1]

(2]

(3]

(4]

[5

—_

[6]

(7]

Danny De Schreye, Robert Gliick, Jesper Jgrgensen, Michael Leuschel, Bern Martens & Morten Heine Sgrensen
(1999): Conjunctive partial deduction: Foundations, control, algorithms, and experiments. The Journal of
Logic Programming 41(2-3), doi:10.1016/S0743-1066(99)00030-8.

Daniil Berezun Ekaterina Verbitskaia, Igor Engel (2024): A Case Study in Functional Conversion and Mode
Inference in miniKanren. PEPM 2024: Proceedings of the 2024 ACM SIGPLAN International Workshop on
Partial Evaluation and Program Manipulation, doi:i10.1145/3635800.3636966.

Daniel P. Friedman, William E. Byrd & Oleg Kiselyov (2005): The Reasoned Schemer. The MIT Press,
doii10.755 1/mitpress/5801.001.0001.

John P. Gallagher (1993): Tutorial on Specialisation of Logic Programs. In: Proceedings of the 1993 ACM
SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation, PEPM *93, New
York, NY, USA, pp. 88-98, doi:10.1145/154630.154640.

Oleg Kiselyov, Chung-chieh Shan, Daniel P Friedman & Amr Sabry (2005): Backtracking, interleaving, and
terminating monad transformers: (functional pearl). ACM SIGPLAN Notices 40(9), pp. 192-203.

Petr Lozov, Ekaterina Verbitskaia & Dmitry Boulytchev (2019): Relational interpreters for search problems.
In: Relational Programming Workshop, p. 43.

Ekaterina Verbitskaia, Daniil Berezun & Dmitry Boulytchev (2021): An Empirical Study of Partial Deduction
for miniKanren. In Alexei Lisitsa & Andrei P. Nemytykh, editors: Proceedings of the 9th International
Workshop on Verification and Program Transformation, Luxembourg, Luxembourg, 27th and 28th of March
2021, Electronic Proceedings in Theoretical Computer Science 341, Open Publishing Association, pp. 73-94,
doi:10.4204/EPTCS.341.5.

https://doi.org/10.1016/S0743-1066(99)00030-8
https://doi.org/10.1145/3635800.3636966
https://doi.org/10.7551/mitpress/5801.001.0001
https://doi.org/10.1145/154630.154640
https://doi.org/10.4204/EPTCS.341.5

	Introduction
	Combining Specialization Methods for Relational Programming
	Evaluation
	Conclusion and Future work

