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Mode-based Transformation from Satisfiability of
Constrained Horn Clauses to Test-friendly Reachability

Problem (Extended Abstract)

1 Introduction

The satisfiability of constrained Horn clauses (CHCs) is an important problem, to which various verifica-
tion problems can be reduced. In this paper, we are interested in improving the efficiency of disproving
(the satisfiability of) CHCs. Quickly disproving CHCs is especially important in recent approaches to
temporal property verification [7, 8], where a verification problem is underapproximated by CHCs and
the approximation is repeatedly refined when the CHCs are found to be unsatisfiable.

Despite recent developments of CHC solvers, the efficiency of disproving CHCs is still not satisfac-
tory. For example, Property-Directed Reachability (PDR) [3, 5, 6] and their variants like Spacer [10]
often struggle to find a deep counterexample that requires a large number of iterations over transition
relations. To remedy this, Blicha et al. [2] proposed a method to exponentially reduce the number of ap-
proximations for disproving an instance compared with PDR and their variants. We think, however, there
is still room for improvement in disproving CHCs as we confirm later in our preliminary experiments.

We propose a reduction from CHC satisfiability checking problems to safety property problems of
“test-friendly” programs. By doing so, we can apply testing methods directly to the translated program,
and make most use of random testing methods, which have been extensively developed recently. One
may think that since CHCs are often used to prove safety property problems of programs, we can just
apply testing to the original programs. However, since some CHCs are generated from different problems
like temporal verification, accessing the original programs is not always possible.

In this paper, we first introduce a “naive” transformation for readers to understand the basic idea and
a main challenge of our approach for generating test-friendly programs. Then, we briefly introduce a
transformation guided by mode analyses to remedy the problem.

2 Preliminary

We use P as the metavariable for predicate variables, v for variables, and a for arithmetic expressions.
We define body formula ϕ as

ϕ ::= θ | P(ãi) | ϕ1 ∧ϕ2 | ϕ1 ∨ϕ2 | ∃x.ϕ | if θ then ϕ1 else ϕ2.

Though if θ then ϕ1 else ϕ2 can be expanded to (¬θ ∨ϕ1)∧ (θ ∨ϕ2), we explicitly add this notation
for simplicity. A definite clause is a triple of a predicate variable P, a sequence of variables v1, . . . ,vk
and a body formula, written as ϕ ⇒ P(ṽi). We assume that for each definite clause ϕ ⇒ P(v1, . . . ,vk),
fv(ϕ) ⊂ {v1, . . . ,vk }. We call a tuple of a goal formula ϕ ⇒ ⊥ and a sequence of definite clauses
D whose predicate variables are disjoint a CHC system. We also use a subset of OCaml as a target
language.
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3 A Naive Transformation

Our goal is to transform CHC systems to nondeterministic programs so that the systems are satisfiable
if and only if the transformed programs will not raise an uncaught exception. We first define a naive
transformation JϕK, a map from a body formula to an expression in the target language 1, inductively as

JθK = assert(¬θ)

Jϕ1 ∧ϕ2K = try Jϕ1K with Jϕ2K
Jϕ1 ∨ϕ2K = Jϕ1K⋆ Jϕ2K

J∃x.ϕK = let x = rand int () in JϕK
Jif θ then ϕ1 else ϕ2K = if θ then Jϕ1K else Jϕ2K

Jp(a1, . . . ,an)K = p(a1, . . . ,an).

Basically, JϕK is an expression that raises an exception when ϕ is true. For a constraint formula, JθK
raises an exception when θ holds. For a conjunction ϕ1 ∧ ϕ2, when both of Jϕ1K and Jϕ2K raise an
uncaught exception, Jϕ1 ∧ϕ2K also does. On the other hand, for a disjunction ϕ1 ∨ϕ2, we execute Jϕ1K
and Jϕ2K nondeterministically since it is enough to check if one of them raises an exception. Note that
since Jϕ1K or Jϕ2K may result in an infinite loop, to preserve the reachability to an invalid state, we do not
execute them sequentially but nondeterministically. We also randomly choose an integer when we handle
existential quantifiers. Using this map, we transform a definite clause ϕ ⇒ P(v1, . . . ,vk) to a recursive
function let rec p v1 · · ·vk = JϕK. For a goal formula ϕ ⇒⊥, we have let main = JϕK.

For the proof of this concept, we have implemented a preliminary transformer from linear CHCs to
programs based on the naive transformation, and evaluated the effectiveness of random testing against
the transformed programs by using unsatisfiable instances taken from the unsafe AE-VAL benchmarks in
CHC-COMP2. The timeout was set to 180 seconds in all the experiments. Our solver successfully proved
all 54 instances to be unsatisfiable while Golem [1] was able to solve only 30 instances, and Spacer
[10] could solve only 14 instances. One reason for this result is that the instances in the benchmark
are intended to have a deep counterexample which requires solvers to execute millions of iterations over
transition relations to reach an invalid state. Spacer [10] is not good at finding such long counterexamples,
and Golem [1] mitigated the situation but still it is not satisfactory.

However, if we apply this naive transformation to non-linear CHCs, we found that this procedure
easily diverged and failed to find a counterexample that Spacer or Golem can. This motivated us to
extend, formalize and implement our method further.

4 Motivating Example for Mode-Guided Translation

The main difficulty of the approach based on the naive transformation is the nondeterminism in CHCs,
especially in non-linear CHCs. Let us illustrate this difficulty by considering the following CHC system:

if n ≥ 100 then r = n−10 else (mc91(n+11,m)∧mc91(m,r))⇒ mc91(n,r) (1)

n ≤ 100∧ r ̸= 91∧mc91(n,r)⇒⊥ (2)

If we apply the naive transformation to the CHC system, we obtain the program in Figure 1.(a). Even

1try e1 with -> e2 is abbreviated to try e1 with e2 for simplicity.
2https://github.com/chc-comp/aeval-unsafe
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let rec mc91 n r =

if n >= 100 then assert(r <> n - 10)

else

let m = rand_int () in

try mc91 (n + 11) m with mc91 m r

let main =

let n = rand_int () in

let r = rand_int () in

try assert(n > 100 || r = 91)

with mc91 n r

(a) A reduced program from CHCs (1) – (2)

let rec mc91’ n =

if n >= 100 then n - 10

else

let m = mc91’ (n + 11) in

mc91’ m

let main =

let n = rand_int () in

let r = mc91’ n in

assert(n > 100 || r = 91)

(b) A program obtained by our translation

Figure 1: Comparison of the programs obtained by different transformations

though the reachability to an assertion failure is equivalent to the unsatisfiability of the given CHC prob-
lem, it is unlikely to find a counterexample using this transformed program just by random testing be-
cause every time mc91 is called with the argument n < 100, we have to precisely determine m.

The main goal of our mode-guided transformation is to eliminate such nondeterminism as much as
possible. For the above CHC system, the program in Figure 1.(b), which we wish to obtain by our mode-
guided transformation, still has the same reachability property as the original program, but it is much
easier to find a counterexample by random testing since we no longer have to choose m in the body of
the function mc91’. The point of this transformation is that for mc91 clause, we generate a function that
takes an integer and returns an integer, instead of a predicate that take two integers. Then, the temporary
variable m in the original program is eliminated in the body of mc91’ since m can be uniquely determined
by the returned value of mc91’(n + 11). Intuitively, given an arbitrary integer n, mc91’ returns an
integer r such that mc91(n,r) is true.

To achieve this transformation, we have to analyze which argument of a predicate can be an “output”,
and which cannot. For mc91 clause, we can regard n as an input and r as an output of the clause. We
can observe this by analyzing the clause (1). First, we can uniquely obtain such r just by n−10 for the
if-branch of (1). For the else-branch, since we assume the second argument of mc91 is an output, m can
be determined by mc91(n+11,m), and from mc91(m,r), we can obtain r as well.

We have formalized these analyses by introducing modes, which have been utilized in the logic pro-
gramming literature for analyzing input and output arguments of a predicate, for integers and predicates,
and proposed a mode-guided transformation. We have also proposed a mode inference algorithm to au-
tomate the procedure above. Note that the whole procedure is fully automated; users of our solver do not
have to write any annotations to the given CHCs nor the transformed programs.

We are currently working on the implementation and evaluation of our proposed method. As men-
tioned earlier, the transformed program is intended to be easily connected with testing frameworks such
as symbolic execution and random testing, but we have not evaluated how effective it is in practice.
Extending our transformation is another direction we are interested in. Our mode translation can be
naturally extended to higher-order logics like νHFL [9] or Higher-Order Constrained Horn Clauses [4].
We also plan to introduce polymorphic modes for clauses to make our translation more expressive and
effective.
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