
To appear in EPTCS.

Using Horn Solvers to Generate Memory Access Permissions
for Deductive Verification – A Preliminary Report *

Lukas Armborst[0000−0001−7565−0954] Marieke Huisman[0000−0003−4467−072X]

University of Twente, The Netherlands

{l.armborst, m.huisman}@utwente.nl

Deductive verifiers for concurrent software often require the user to specify access permissions to
ensure memory safety whenever shared memory is used. There is existing work on automatically
generating specifications from source code, such as the TriCera model checker, which is based on
constrained Horn clauses. However, the existing approaches usually do not consider memory access
permissions. We present our ongoing work to extend the heap memory model in the Princess SMT
solver underneath TriCera, where we add permissions and use the existing generation framework to
also obtain access permissions.

1 Introduction

In deductive software verification, the developer annotates the source code with the intended behaviour,
and the verifier automatically checks that the code complies with that. This approach requires significant
effort from the developer to provide the annotations. This burden increases even more if the program is
using concurrency: To exclude for example data races, verifiers like VerCors [BDHO17] require that the
developer specifies memory access permissions whenever the program tries to access shared memory.

For deductive software verification to be accepted in practise, this effort needs to be reduced, i.e.
the tool should be able to derive most annotations from as few lines of user-provided specifications as
possible. Several approaches exist to help in this, but they usually do not consider the complexity coming
with concurrent memory accesses.

We are therefore extending the approach by Alshnakat et al. [AGLR20] to also infer memory access
permissions. They encode the verification problem with constrained Horn clauses, and use the solution
from the Horn solver to infer annotations such as method preconditions. We extended the underlying
memory model to use access permissions, and leverage the existing Horn inference mechanism to pro-
duce the respective source code annotations. In this extended abstract, after providing a brief overview
of the background (Section 2), we present our first preliminary results (Section 3), and discuss how to
further improve the encoding (Section 4).

Related Work Apart from Alshnakat et al. [AGLR20], there are other attempts to generate functional
specifications, but without using Horn solvers, such as Beyer et al. [BSU22], who leverage the automatic
verifier CPAchecker, or Daikon [EPG+07], which uses templates. Others do use Horn solvers, like Ezud-
heen et al. [END+18] who use them as part of a teacher-learner framework for annotations. However,
none of them consider permissions. Dohrau [Doh22] does infer permissions, using various strategies in-
cluding a learning framework, but again not using Horn solvers. Our main work is in extending the heap
encoding. Iosif et al. [ISRS18] similarly extend the SMT encoding to support separation logic, but target
“pure” rather than permission-based separation logic, as input format for the SL-COMP competition.

*Work on this project is support by the NWO VICI 639.023.710 Mercedes project.

2 Using Horn Solvers to Generate Permissions

2 Background

Permission-Based Separation Logic Permission-based separation logic (PBSL) [AHHH15] is an ex-
tension of first-order logic. It has dedicated permission predicates to control access to the heap memory,
which is shared among threads and therefore susceptible to data races. Typically, one distinguishes be-
tween read permission and write permission: Either only one thread has write permission to a specific
heap location, disallowing any simultaneous access to that location by other threads, or multiple threads
can all have read permission simultaneously. Whenever a method wants to access a heap location, the
respective thread needs to have sufficient permission, which means that the permission predicates fre-
quently occur for instance in method contracts. The comments on Lines 8, 9 and 13 of Figure 1 show
examples how method contracts with such permission predicates might look like, with write permission
for change and read permission for check.

Generating ACSL via Horn Solvers Alshnakat et al. [AGLR20] use the Horn solver Eldarica [HR18]
to generate specifications for C programs in the ACSL format [BCJF+18], which can be checked for
instance with the verifier Frama-C. They take a C program that contains assert statements about prop-
erties of interest. First, the model checker TriCera [ER22b] transforms this into a set of constrained Horn
clauses. In this encoding, method preconditions occur as uninterpreted functions. Eldarica solves the
encoded problem using the satisfiability-modulo-theory (SMT) solver Princess [Rüm08]. The solution
also contains an interpretation for those functions, which TriCera transforms back to specifications on
the C level. While the generated conditions are always sound, their completeness highly depends on the
asserted properties in the input, and they can be overly tailored to the specific use case.

Heap Encoding The heap memory is a partial function, mapping (allocated) memory addresses to
the stored values. In the SMT solver Princess, this is modelled as a total function [ER22a], with a
dedicated ⊥ object stored at non-allocated addresses: Heap : Addr → HeapObject, where addresses are
internally represented by positive integers. Reading is a function read : Heap×Addr → HeapObject,
and writing returns an updated heap: write : Heap×Addr×HeapObject → Heap. The type HeapObject
is an algebraic data type (ADT), with multiple constructors: One for ⊥, and one wrapper for each type
of data to be stored in the heap, for example O_Int.

3 Generating Permission Annotations

Extending Heap Encoding with Permissions We use the existing heap encoding as described in Sec-
tion 2, but added permissions by replacing the HeapObject type with a new ADT PermHeapObject,
which can be either ⊥ or Field(target,perm). The parameter target is the data value stored at the lo-
cation (whose type is the HeapObject as defined in Section 2). The parameter perm is the permission
amount, currently modelled as integers from [0,100], with 0 representing no permission, 100 being write

and the rest indicating read (see also Section 4).
We defined wrapped functions such as wrappedRead : Heap×Addr → HeapObject,

(h,addr) 7→
{

t if read(h,addr) = Field(t, p) and p > 0
⊥ otherwise

This represents the expected behaviour of read with permission logic: The operation only returns a valid
value (i.e. not ⊥), if there is sufficient permission to access that heap location. Note that wrappedRead

L. Armborst, M. Huisman 3

1 void main() {
2 int *arr = (int *) malloc (sizeof (int)) ;
3 i f (arr == 0) return ;
4 change(arr) ; change(arr) ;
5 check(arr) ;
6 }
7
8 / / requires ptr!=NULL && Perm(ptr , write) ;
9 / / ensures Perm(ptr , write) && *ptr==5;

10 /*@ contract @*/
11 void change(int *ptr) { *ptr = 5; }
12
13 / / requires a!=NULL && Perm(a , read) && *a==5;
14 /*@ contract @*/
15 void check(int *a) { asser t (*a == 5); }

16
17
18 /* contract for change
19 requires ptr == 1
20 && read (@h, ptr) . getPerm == 100;
21 ensures @h == wrappedWrite (\ old (@h) , ptr , O_Int (5)) ;
22 / / == write(\old(@h), ptr, Field(O_Int(5), 100))
23 */
24
25 /* contract for check
26 requires a != nullAddr
27 && read (@h, a) . getPerm != 0
28 && read (@h, a) . getTarget . getInt == 5;
29 ensures \ true ;
30 */

Figure 1: A simple C program (left) and the generated contracts (right, simplified)

has the same signature as read in the original heap encoding in Section 2. All read operations in existing
SMT files should therefore now use wrappedRead instead. The same holds for write and alloc, which
have analogous wrapped versions. A program, which accesses the heap only through these three new
functions, never encounters insufficient permissions: wrappedAlloc initialises the permission with write,
and these functions never change the permission amount afterwards. We can therefore adapt Princess’
parser to interpret e.g. read(h,a) in an SMT file as meaning wrappedRead(h,a). That way, the per-
mission logic is completely transparent; old SMT files behave as before without requiring any changes,
the user reads and writes just as before, and they never have to interact with permissions, the ADT
PermHeapObject, et cetera.

However, we can also define new Princess functions that change the permission amount, for instance
when modelling thread forking (see Section 4). When using those functions, it is possible that for exam-
ple wrappedRead afterwards encounters insufficient permissions and enters its second case. To prevent
that, when TriCera translates a C file to SMT, it adds checks before each read and write operation to
ensure that there is enough permission. For instance, the C pointer operation ∗p = i also generates a
check that the perm at address p allows write access. These additional SMT assertions influence the
solver result of Princess, which in turn triggers the annotation generation on the TriCera level, such that
for example a generated method precondition should also require that there is write permission for p.

Preliminary Results Figure 1 shows on the left an example C program, with comments indicating
how manually written PBSL contracts might look like. On the right, there are the generated contracts for
two methods. These contracts are simplified here, for example removing duplicate clauses, and omitting
some type checks. They refer to the current heap as @h. Note that the write access in change caused the
generated contract to require a permission of 100 for ptr (Line 20), representing write. For check, read
is sufficient, represented by a non-zero permission amount (Line 27). The argument for check is required
to be a valid address (no null pointer, Line 26), while for change it is overfitted to be exactly the address
of this use case, i.e. 1 (Line 19). The postcondition of check is overapproximated to true, because there
are no further assertions or memory accesses in the main program. Meanwhile, change assures that the
only change to the current heap is the written value 5 at ptr (Line 21, with Line 22 showing its meaning
with the definition of wrappedWrite applied). While the generated contracts are mostly similar to the
manually written ones on the left, this postcondition is the most different: Manually, we would specify
the write permission and the new value. The generated contract combines them in the Field object. The

4 Using Horn Solvers to Generate Permissions

generated contract makes explicit that this is the only change, by performing a single write operation
on the old heap, i.e. the one before the method execution. In contrast, the manual contract leaves this
implicit: change never has permission to any other location, so the logic of PBSL guarantees that no
other location has been changed.

4 Next Steps

The work on this project is ongoing, and there are several improvements we plan to address in the short
term. First, we want to add support for resource predicates. They bundle permission predicates together,
including other resource predicates. This allows reasoning about unbounded data structures, such as
linked lists, by recursively containing the respective resource predicate for the tail of the list. Second,
permission-based separation logic targets concurrent programs, so we want to add support for example
for forking threads, and distributing permissions across them. Ideally, the solver can determine which
thread requires which permissions, similar to determining pre- and postconditions. However, some man-
ual guidance about how to split the heap may be required. Another important kind of concurrency con-
structs are locks. They are expected to work similar to resource predicates, so the implementation details
will become clear once the predicate implementation is finalised. Third, we are investigating how to best
represent various permission amounts. One frequently used model are fractional permissions [Boy03],
where write is represented by 1, and read by a fraction between 0 and 1. However, fractions are diffi-
cult to reason about, so counting permissions [BCOP05] or symbolic permissions [HM15] may be more
suitable. Lastly, Figure 1 shows that the generated annotations are still using low-level functions of the
heap encoding. For better usability, they should more closely resemble actual verifier syntax, similar to
the manually provided contracts in the figure.

5 Conclusion

We presented our ongoing work about using Horn solvers to generate memory access permissions for
permission-based separation logic, to support deductive verification efforts. In particular, we described
how we integrated permissions into the existing heap model of Princess, and used TriCera to generate
method contracts. We also mention some improvements that we are currently implementing.

References

[AGLR20] Anoud Alshnakat, Dilian Gurov, Christian Lidström & Philipp Rümmer (2020): Constraint-Based
Contract Inference for Deductive Verification, pp. 149–176. Lecture Notes in Computer Science
12345, Springer International Publishing, https://doi.org/10.1007/978-3-030-64354-6_6.

[AHHH15] A. Amighi, C. Haack, M. Huisman & C. Hurlin (2015): Permission-based separation logic for multi-
threaded Java programs. LMCS 11(1), https://doi.org/10.2168/LMCS-11(1:2)2015.

[BCJF+18] P. Baudin, P. Cuoq, J.C.-Filliâttre, C. Marché, B. Monate, Y. Moy & V. Prevosto (2018): ACSL: AN-
SI/ISO C Specification language, version 1.14. Available at https://frama-c.com/download/
acsl-1.14.pdf.

[BCOP05] Richard Bornat, Cristiano Calcagno, Peter O’Hearn & Matthew Parkinson (2005): Permission ac-
counting in separation logic. In: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium
on Principles of programming languages, pp. 259–270, https://doi.org/10.1145/1040305.
1040327.

https://doi.org/10.1007/978-3-030-64354-6_6
https://doi.org/10.2168/LMCS-11(1:2)2015
https://frama-c.com/download/acsl-1.14.pdf
https://frama-c.com/download/acsl-1.14.pdf
https://doi.org/10.1145/1040305.1040327
https://doi.org/10.1145/1040305.1040327

L. Armborst, M. Huisman 5

[BDHO17] S. Blom, S. Darabi, M. Huisman & W. Oortwijn (2017): The VerCors Tool Set: Verification of
Parallel and Concurrent Software. In Nadia Polikarpova & Steve Schneider, editors: integrated
Formal Methods 2017, LNCS 10510, Springer, pp. 102 – 110, https://doi.org/10.1007/
978-3-319-66845-1_7.

[Boy03] J. Boyland (2003): Checking Interference with Fractional Permissions. In Radhia Cousot, editor:
SAS, LNCS 2694, Springer, pp. 55–72, https://doi.org/10.1007/3-540-44898-5_4.

[BSU22] Dirk Beyer, Martin Spiessl & Sven Umbricht (2022): Cooperation Between Automatic and Interactive
Software Verifiers. In Bernd-Holger Schlingloff & Ming Chai, editors: Software Engineering and For-
mal Methods (SEFM), Lecture Notes in Computer Science 13550, Springer International Publishing,
pp. 111–128, https://doi.org/10.1007/978-3-031-17108-6_7.

[Doh22] Jérôme Dohrau (2022): Automatic Inference of Permission Specifications. Ph.D. thesis, ETH Zurich.
[END+18] P. Ezudheen, Daniel Neider, Deepak D’Souza, Pranav Garg & P. Madhusudan (2018): Horn-ICE

learning for synthesizing invariants and contracts. Proc. ACM Program. Lang. 2(OOPSLA), https:
//doi.org/10.1145/3276501.

[EPG+07] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz & Chen Xiao (2007): The Daikon system for dynamic detection of likely invariants. Sci-
ence of Computer Programming 69(1–3), pp. 35–45, https://doi.org/https://doi.org/10.
1016/j.scico.2007.01.015. Tool website: https://plse.cs.washington.edu/daikon/.

[ER22a] Zafer Esen & Philipp Rümmer (2022): An SMT-LIB Theory of Heaps. In David Déharbe & Antti
E. J. Hyvärinen, editors: Proceedings of the 20th International Workshop on Satisfiability Modulo
Theories, CEUR Workshop Proceedings 3185, CEUR-WS.org, pp. 38–53. Available at https://
ceur-ws.org/Vol-3185/paper1180.pdf.

[ER22b] Zafer Esen & Philipp Rümmer (2022): Tricera: Verifying C Programs Using the Theory of Heaps.
In Alberto Griggio & Neha Rungta, editors: 2022 Formal Methods in Computer-Aided Design (FM-
CAD), IEEE, pp. 380–391, https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_
45.

[HM15] Marieke Huisman & Wojciech Mostowski (2015): A Symbolic Approach to Permission Accounting for
Concurrent Reasoning. In Daniel Grosu, Hai Jin & George Papadopoulos, editors: 14th International
Symposium on Parallel and Distributed Computing, IEEE, pp. 165–174, https://doi.org/10.
1109/ISPDC.2015.26.

[HR18] Hossein Hojjat & Philipp Rümmer (2018): The ELDARICA Horn Solver. In Nikolaj Bjørner &
Arie Gurfinkel, editors: 2018 Formal Methods in Computer Aided Design (FMCAD), IEEE, pp. 1–7,
https://doi.org/10.23919/FMCAD.2018.8603013.

[ISRS18] Radu Iosif, Cristina Serban, Andrew Reynolds & Mihaela Sighireanu (2018): Encoding separation
logic in SMT-LIB v2.5. Available at https://sl-comp.github.io/docs/smtlib-sl.pdf.

[Rüm08] Philipp Rümmer (2008): A Constraint Sequent Calculus for First-Order Logic with Linear In-
teger Arithmetic. In: Proceedings, 15th International Conference on Logic for Programming,
Artificial Intelligence and Reasoning, LNCS 5330, Springer, pp. 274–289, https://doi.org/
978-3-540-89439-1_20.

https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/978-3-319-66845-1_7
https://doi.org/10.1007/3-540-44898-5_4
https://doi.org/10.1007/978-3-031-17108-6_7
https://doi.org/10.1145/3276501
https://doi.org/10.1145/3276501
https://doi.org/https://doi.org/10.1016/j.scico.2007.01.015
https://doi.org/https://doi.org/10.1016/j.scico.2007.01.015
https://plse.cs.washington.edu/daikon/
https://ceur-ws.org/Vol-3185/paper1180.pdf
https://ceur-ws.org/Vol-3185/paper1180.pdf
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_45
https://doi.org/10.1109/ISPDC.2015.26
https://doi.org/10.1109/ISPDC.2015.26
https://doi.org/10.23919/FMCAD.2018.8603013
https://sl-comp.github.io/docs/smtlib-sl.pdf
https://doi.org/978-3-540-89439-1_20
https://doi.org/978-3-540-89439-1_20

	1 Introduction
	2 Background
	3 Generating Permission Annotations
	4 Next Steps
	5 Conclusion

