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Abstract. The Relational Hyper-Graph Neural Network (R-HyGNN)
was introduced in [1] to learn domain-specific knowledge from program
verification problems encoded in Constrained Horn Clauses (CHCs). It
exhibits high accuracy in predicting the occurrence of CHCs in coun-
terexamples. In this research, we present an R-HyGNN-based framework
called MUSHyperNet. The goal is to predict the Minimal Unsatisfiable
Subsets (MUSes) (i.e., unsat core) of a set of CHCs to guide an ab-
stract symbolic model checking algorithm. In MUSHyperNet, we can
predict the MUSes once and use them in different instances of the ab-
stract symbolic model checking algorithm. We demonstrate the efficacy
of MUSHyperNet using two instances of the abstract symbolic model-
checking algorithm: Counter-Example Guided Abstraction Refinement
(CEGAR) and symbolic model-checking-based (SymEx) algorithms. Our
framework enhances performance on a uniform selection of benchmarks
across all categories from CHC-COMP, solving more problems (6.1% in-
crease for SymEx, 4.1% for CEGAR) and reducing average solving time
(13.3% for SymEx, 7.1% for CEGAR).

Keywords: Automatic program verification · Constrained Horn clauses
· Graph Neural Networks.

1 Introduction

Constrained Horn Clauses (CHCs) [2] are logical formulas that can describe
program behaviors and specifications. Encoding program verification problems
in CHCs and solving them (checking CHCs’ satisfiability) has been an active
research area for a number of years [3,4]. If the encoded CHCs are satisfiable,
the corresponding program verification problem is safe; if not, it is unsafe.

Solving a set of CHCs means that we either find an interpretation for the
predicate (relation) symbols and variables that satisfies all the clauses, or prove

? Author names in alphabetical order. The theory presented in the paper was devel-
oped by Abdulla, Liang, and Rümmer, the implementation is by Liang and Rümmer,
evaluation was done by Liang.
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that no such interpretation exists. Various techniques, such as Counterexample
Guided Abstraction Refinement (CEGAR) [5] and IC3 [6], have been utilized
for this purpose. However, due to the undecidability of solving CHCs, we need
carefully designed or tuned heuristics for specific instances.

In this paper, we consider Minimal Unsatisfiable Subsets (MUSes) [7] of sets
of CHCs to support the solving process. Given an unsatisfiable set of CHCs,
each MUS is a subset that is again unsatisfiable, but removing any CHC from
an MUS makes it satisfiable. Understanding MUSes of a set of CHCs can guide
solvers to focus on error-prone clauses [8, Section 3.1]: for an unsatisfiable set of
CHCs, evaluating the satisfiability of MUSes first can quickly identify unsatisfi-
able CHCs, eliminating the need for a comprehensive check. In a satisfiable set
of CHCs, examining MUSes first can provide a better starting point for refining
potentially problematic constraints. This guidance can help the solver converge
towards a solution more efficiently. Manually designed heuristics to find MUSes
involves summarizing and generalizing the features of a set of CHCs from exam-
ples, which can be replaced by data-driven methods.

Various studies that apply deep learning to formal methods for verification
have been published in the recent past, e.g., [9,10,11,12]. Primarily, deep learning
serves as a feature extractor, which can automatically summarize and generalize
program features from examples, alleviating the need for manual crafting and
tuning of various heuristics. In addition, the idea of representing logic formulas
as graphs and using Graph Neural Networks (GNNs) [13] to guide solvers has
been employed in many successful studies [14,15,16,17].

However, we are not aware of any study that applies GNNs to guide CHC-
based symbolic model checking techniques. The main contribution of this paper
is to train a GNN model to predict MUSes of a set of CHCs. We train a GNN
using the CHC-R-HyGNN framework [1] to predict values between 0 and 1,
representing the probabilities of CHCs being elements of MUSes. For example, we
assume that a set C = {c1, c2, c3} of CHCs has one MUS {c1, c2}. The predicted
probabilities for c1, c2, and c3 being in the MUS could be 0.9, 0.8, and 0.1,
respectively. We propose several strategies that use the predicted probability
to guide an abstract symbolic model checking algorithm. The strategies can be
instantiated for different algorithms on CHCs, such as CEGAR- and symbolic
execution-based satisfiability checkers.

Figure 1 depicts an overview of our framework MUSHyperNet. Firstly, we
encode the program verification problem into a set of CHCs. Secondly, we use the
graph encoder in the CHC-R-HyGNN framework [1] to convert the set of CHCs
into a graph format. Then, we train a GNN model named Relational Hypergraph
Neural Network (R-HyGNN) to predict the probability of each CHC occurring
in MUSes. Finally, we employ the predicted probabilities to guide the abstract
symbolic model checking algorithm by determining the sequence for processing
each CHC in the set of CHCs.

We utilize the same benchmarks as in [1], comprising 17 130 Linear Inte-
ger Arithmetic (LIA) problems from the CHC-COMP 2021 repository [18] for
training and evaluating our approach. Further details about the benchmark can
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Fig. 1: The CHC-R-HyGNN framework [1] (represented by the round box) com-
prises a CHC graph encoder and a GNN known as the Relational Hypergraph
Neural Network (R-HyGNN), which is capable of handling hypergraphs. In our
previous work, we introduced the CHC-R-HyGNN framework that employs var-
ious proxy tasks to generalize valuable information for constructing heuristics
for CHC-encoded program verification problems.

be found in [19, Table 1]. The problems for evaluation are uniformly selected
from this benchmark and can be found in a public repository [20] The experi-
mental results show an improvement of up to 4.1% and 6.1% in the number of
solved problems for the CEGAR and SymEx algorithms, respectively. Addition-
ally, the average solving time demonstrates enhancements of 7.1% and 13.3% for
the CEGAR and SymEx algorithms, respectively. In other words, MUSHyperNet
can increase the number of solved problems and decrease the solving time for
problems similar to those in the CHC-COMP benchmark. To the best of our
knowledge, this is the first time unsat core learning has been used successfully
in the context of CHCs.

In summary, our contributions are as follows:

– We develop a GNN-based framework named MUSHyperNet, which trains a
GNN to predict the MUSes of CHCs and utilizes the predicted probabilities
to guide an abstract symbolic model checking algorithm.

– We explore GNN models trained on different datasets and methods for apply-
ing predicted MUSes to guide two instances of the model checking algorithm.

– We evaluate MUSHyperNet on 383 linear and 488 non-linear LIA problems,
uniformly sampled from the CHC-COMP benchmark [19]. The improve-
ments in the number of solved problems and average solving time are up
to 6.1% and 13.3% for the SymEx, and 4.1% and 7.1% for the CEGAR.

2 Preliminaries

We first introduce required notation for multi-sorted first-order logic, and define
Constrained Horn Clauses (CHCs) and the encoding of a program verification
problem as CHCs. Finally, we explain basic concepts of Graph Neural Network
(GNN) and introduce Relational Hyper Graph Neural Network (R-HyGNN).

2.1 Notations

We assume familiarity with standard multi-sorted first-order logic (e.g., see [21]).
A first-order language L is defined by a signature Σ = (S,R,F ,X ), where S is
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a non-empty set of sorts; R is a set of fixed-arity predicate (relation) symbols,
each of which is associated with a list of argument sorts; F is a set of fixed-
arity function symbols, each of which is associated with a list of argument sorts
and a result sort; and X =

⋃
s∈S Xs is a set of sorted variables, where Xs are

the variables of sort s. A term t is a variable from X , or an n-ary function
symbol f ∈ F applied to terms t1, . . . , tn of the right sorts. An atomic formula
(atom) of L is of the form p(t1, . . . , tn), where p ∈ R is an n-ary predicate symbol
and t1, . . . , tn are terms of the right sorts. A formula is a Boolean literal true,
false, an atom, or obtained by applying logical connectives ¬, ∧, ∨, → and
quantifiers ∀, ∃ to formulas. We write implications both left-to-right (ϕ → ψ)
and right-to-left (ψ ← ϕ). A formula is closed if all variables occurring in the
formula are bound by quantifiers.

A multi-sorted structure M = (U , I) for L consists of a set U =
⋃
s∈S Us,

being the union of non-empty domains Us of each sort s ∈ S, and an inter-
pretation I such that I(s) = Us for every sort s ∈ S; for each n-ary predicate
symbol p ∈ R with argument sorts s1, . . . , sn, I(p) ⊆ Us1 × · · · × Usn ; and for
each n-ary function symbol f ∈ F with argument sorts s1, . . . , sn and result
sort s, I(f ) ∈ Us1 × · · · × Usn → Us. A variable assignment β for the struc-
ture M = (U , I) is a function X → U that maps each variable x ∈ Xs to an
element of the corresponding domain Us. Given L, a structure M = (U , I),
and a variable assignment β, the evaluation of a term or formula is performed
by the function valM,β , defined by valM,β(x) = β(x) for a variable x ∈ X ;
valM,β(f(t1, . . . , tn)) = I(f)[valM,β(t1), . . . , valM,β(tn)] for a function f ∈ F ;
and valM,β(p(t1, . . . , tn)) = true iff (valM,β(t1), . . . , valM,β(tn)) ∈ I(p). The
evaluation of compound formulas is defined as is common. When M is clear
from the context, we also write valβ instead of valM,β .

We say that a formula ϕ is satisfied in M, β if valM,β(ϕ) = true, and that
it is satisfiable (SAT) if it is satisfied by someM, β. We say a set Γ of formulae
entails a formula ϕ, denoted Γ |= ϕ, if ϕ is satisfied whenever all formulas in Γ
are satisfied.

Example 1. We assume a language L consisting of a sort s, two constants a
and b, a unary function symbol f with argument and result of sort s; a binary
predicate symbol p with two arguments of sort s. A structure M = (Us, I) can
be defined by Us = Z, I(a) = 1, I(b) = 2, I(f )[x] = x+2, and I(p)[x, y] = x ≤ y.
The formula ϕ = p(a, b)→ p(x, f(a)) is satisfied in M by a variable assignment
β(x) = 1 since valβ(ϕ) = I(p)[valβ(a), valβ(b)]→ I(p)[valβ(x), I(f)[valβ(x)]] =
¬(1 ≤ 2) ∨ 1 ≤ (1 + 2) is true. The formula ϕ is satisfiable since valβ(ϕ) = true
for M and a variable assignment β(x) = 1.

2.2 Constraint Horn Clauses

To introduce the notion of constrained Horn clauses, we assume a fixed base
signature Σ = (S,R,F ,X ), as well as a unique structure M over this sig-
nature, forming the background theory. In this paper, we mainly consider the
background theory of Linear Integer Arithmetic (LIA), following the SMT-LIB
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standard [22]. We further assume a set RC of additional relation symbols that is
disjoint from R, which will be used to formulate the head and body of clauses.

Definition 1 (Constrained Horn clause). Given signature Σ and the set
RC , a Constrained Horn Clause (CHC) is a closed formula in the form

∀x̄. H ← p1(t̄1) ∧ · · · ∧ pn(t̄n) ∧ ϕ, (1)

where x̄ is a vector of variables; H is either false or an atom p(t1, . . . , tn) with
p ∈ RC ; the relation symbols p1, . . . , pn are elements of RC ; and t̄1, . . . , t̄n and
ϕ are vectors of terms and a formula over Σ, respectively. We call H the head
and p1(t̄1) ∧ · · · ∧ pn(t̄n) ∧ ϕ the body of the clause, respectively. We call the
formula ϕ in the body the constraint of the clause.

For convenience, in many places we leave out the quantifiers ∀x̄ when writing
clauses. A CHC without atoms in its body (the case n = 0) is called a fact. If the
body of a CHC contains zero or one atom, the CHC is called linear. Otherwise,
it is called non-linear.

Solving CHCs boils down to searching interpretations of the relation sym-
bols RC that satisfy the CHCs, assuming that all background symbols from Σ
are interpreted by the fixed structure M:

Definition 2 (Satisfiability of a CHC). A CHC h is satisfiable if there is
a structure MC = (U , IC) for the extended signature ΣC = (S,R ∪ RC ,F ,X )
such that (i) IC coincides with I on Σ, and (ii)MC satisfies h. A set C of CHCs
is satisfiable if there is an extended structure MC simultaneously satisfying all
clauses in C.

Encoding Program Verification Problems using CHCs. A program verification
problem involves checking whether a program adheres to its specified behavior.
One approach to verification is to transform the problem into determining the
satisfiability of a set of CHCs. This can be done, for instance, by encoding the
partial correctness of a procedural imperative program into a negated Existential
positive Least Fixed-point Logic (E+LFP) formula [4] using the weakest precon-
dition calculus. Generally, encodings are designed such that the set of CHCs is
satisfiable if and only if a program is safe. Various encoding schemes for different
programming languages have been introduced in the literature, e.g., [4].

2.3 Graph Neural Networks

A Graph Neural Network (GNN) [13] is a type of neural network that consists of
Multi-Layer Perceptrons (MLPs) [23]. GNNs operate on graph-structured data
with nodes and edges, making them suitable for logic formulas which can natu-
rally be represented as graphs. A GNN can take a set of typed nodes and edges as
input and output a set of feature representations (vectors of real numbers) asso-
ciated with the properties of the nodes. We refer to them as node representations
in the rest of the sections.
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The Message-Passing based GNN (MP-GNN) [24] is a type of GNN model. It
utilizes an iterative message-passing algorithm in which each node in the graph
aggregates messages from its neighboring nodes to update its own node repre-
sentation. This mechanism assists in identifying the inner connections within
substructures, such as terms and atoms, in graph represented logic formulae.

Formally, let G = (V,E) be a graph, where V is the set of nodes and E is the
set of edges. Let xv be the initial node representation (a vector of random real
numbers) for node v in the graph, and let Nv be the set of neighbors of node
v. An MP-GNN consists of a series of T message-passing steps. At each step t,
every node v in the graph updates its node representation as follows:

htv = φt(ρt({ht−1
u | u ∈ Nv}), ht−1

v ), (2)

where htv ∈ Rn is the updated node representation for node v after t iterations.
The initial node representation, h0

v, is usually derived from the node type and
given by xv. The node representation of u in the previous iteration t− 1 is ht−1

u ,
and node u is a neighbor of node v. ρt : (Rn)|Nv| → Rn is a aggregation function
with trainable parameters (e.g., a MLP followed by sum, min, or max) that
aggregates the node representations of v’s neighboring nodes at the t-th iteration.
φt : Rn → Rn is a function with trainable parameters (e.g., a MLP) that takes
the aggregated node representation from ρt and the node representation of v
in previous iteration as input, and outputs the updated node representation of
v at the t-th iteration. MP-GNN assumes a node can capture local structural
information from t-hop’s neighbors by updating the node representation using
aggregated representations of the neighbor nodes.

The final output of the MP-GNN could be the set of updated node represen-
tations for all nodes in the graph after T iterations. These node representations
can be used for a variety of downstream tasks, such as node classification or
graph classification.

Relational Hyper-Graph Neural Network (R-HyGNN) [1] is an extension of
one MP-GNN called Relational Graph Convolutional Networks (R-GCN) [25],
and it is specifically designed to handle labeled hypergraphs.

A labeled (typed) hypergraph is a hypergraph where each vertex (node) and
hyperedge is assigned a type from a predefined set of types. Formally, a labeled
hypergraph LHG is defined as a tuple LHG = (V,E, λV , LV , LE), where V is a
set of elements called vertices (or nodes), LE is a set of pair consisting of a label
(type) r and the number of nodes k under the label r, E ⊆ V ∗ × LE is a set of
hyperedges in which each hyperedge consists of a non-empty subsets of V and a
pair (r, k) ∈ LE . Here, λV : V → LV is a labeling function that assigns a type
from the set LV to each vertex in V . The LV is a set of possible types (labels)
for the vertices V .

The node representation updating rule of R-HyGNN for one node v at timestep
t is

htv = ReLU(
∑

(w1,...,wk,(r,k))
∈E

∑
i∈{1,...,k},
wi=v

W t
r,i · ‖(ht−1

w1
, . . . , ht−1

wi−1
, ht−1
wi+1

, . . . , ht−1
wk

)),

(3)



Boosting Constrained Horn Solving by Unsat Core Learning 7

where the pair (r, k) ∈ LE is the edge type (relation) and the number of node for
a edge (w1, . . . , wk, (r, k)) ∈ E, W t

r,i is a matrix of learnable parameters in time
step t for node v = wi in the edge with type r. There are |LE |×

∑
(r,k)∈LE

(k)× t
matrices of learnable parameters in total. Here, ‖(ht−1

w1
, . . . , ht−1

wi−1
, ht−1
wi+1

, . . . , ht−1
wk

)
means concatenate v’ neighbour node representations in time step t−1. The ini-
tial node representation h0

v is derived from the node types LV .
Intuitively, to update the representation of a node, R-HyGNN first concate-

nates the neighbor representations of node v for each edge from the previous time
step t−1. It then multiplies the concatenated neighbor representations by the cor-
responding matrix of trained parameters (i.e., W t

r,i) to derive a local representa-
tion of v. Next, it aggregates the local node representations (e.g., by addition). In
other words,

∑
(w1,...,wk,(r,k))

∈E

∑
i∈{1,...,k},
wi=v

W t
r,i·‖(ht−1

w1
, . . . , ht−1

wi−1
, ht−1
wi+1

, . . . , ht−1
wk

)

can be abstract to ρt(‖(ht−1
w1

, . . . , ht−1
wi−1

, ht−1
wi+1

, . . . , ht−1
wk

)) where ρt is an aggre-

gation function with trainable parameters in W t
r,i. Finally, it applies a ReLU

function [26] as the update function φt. This function takes the aggregated local
node representations as input and produces the final node representation htv.
This updating process for a single node recurs t times.

3 Abstract Symbolic Model Checking for CHCs

The goal of our work is to utilize GNNs to obtain improved state space explo-
ration methods for CHCs. To this end, in this section we introduce an abstract
formulation of CHC state space exploration, covering both the classical CEGAR
approach and exploration in the style of symbolic execution.

3.1 Satisfiability Checking for CHCs

Our Algorithm 1 checks the satisfiability of a given a set C of CHCs by con-
structing an abstract reachability hyper-graph (ARG). An ARG is an over-
approximation of the facts p(ā) that are logically entailed by C; by demonstrating
that the atom false does not follow from C, it can be shown that C is satisfiable.
Since each node of an ARG can represent a whole set of facts, a finite ARG can
be a representation even of infinite models of a set C.

We first give an abstract definition of ARGs that does not mandate any par-
ticular symbolic representation of sets of p(ā). We later introduce two instances
of this abstract framework.

Like in Section 2.2, we denote the set of relation symbols used in CHCs by
RC . For a k-ary relation symbol p ∈ RC with argument sorts s1, . . . , sk, we write
Rp = P(Us1 × · · · × Usk) for the set of possible relations represented by p.

Definition 3. An abstract reachability graph for a set C of CHCs is a hyper-
graph (V,E), where

– the set V of nodes is a set of pairs (p,R), with p being a relation symbol and
R ∈ Rp;
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– E ⊆ V ∗ × C × V is a set of hyper-edges labelled with clauses. For every
edge (v1, . . . , vn, h, v0) ∈ E, it is the case that:
• the head of a clause h is not false, i.e., h is of the form ∀x̄. p0(t̄0) ←
p1(t̄1) ∧ · · · ∧ pn(t̄n) ∧ ϕ;

• nodes v0, . . . , vn correspond to the head and the body of h, i.e., for i ∈
{0, . . . , n} it is the case that vi = (pi, Ri) for some Ri ∈ Rpi ;

• R0 over-approximates the facts implied by the clause h:

R0 ⊇
{

valβ(t̄0) | valβ(ϕ) = true and valβ(t̄i) ∈ Ri for i = {1, . . . , n}
for some variable assignment β

}
.

(4)

The algorithm starts with an empty ARG, and then adds nodes and edges to
it until the ARG is complete, which intuitively means that all possible non-trivial
edges are present in the graph. To define the notion of a complete ARG, we first
need to characterize what it means for a clause to correspond to a feasible edge
of the ARG:

Definition 4. A clause h ∈ C is feasible for nodes v1, . . . , vn ∈ V of an ARG
(V,E) if

– h is of the form ∀x̄. H ← p1(t̄1) ∧ · · · ∧ pn(t̄n) ∧ ϕ;
– nodes v1, . . . , vn correspond to the body of h, i.e., for i ∈ {1, . . . , n} it is the

case that vi = (pi, Ri) for some Ri ∈ Rpi ;
– the constraints imposed by ϕ and v1, . . . , vn are not contradictory, i.e., there

is a variable assignment β such that valβ(ϕ) = true and valβ(t̄i) ∈ Ri for i =
{1, . . . , n}.

Definition 5. An ARG (V,E) is complete for a set C of CHCs if

– for every CHC h ∈ C that has a head different from false, and that is feasible
for v1, . . . , vn ∈ V , there is some edge 〈(v1, . . . , vn), h, v0〉 ∈ E;

– there is no CHC h ∈ C with head false that is feasible for any v1, . . . , vn ∈ V .

We can finally observe that complete ARGs correspond to models of the
clause set C.

Lemma 1. A set C of CHCs has a complete ARG iff C is satisfiable.

Algorithm 1 describes how ARGs can be constructed for a given clause set C.
The algorithm starts with an empty ARG (V,E), and maintains a queue Q ⊆
C × V ∗ of feasible edges to be added to the graph next. The queue is initialized
with the clauses with empty body, representing the initial states of a program.
Once the queue runs empty, the constructed ARG is complete and the set C has
been shown to be satisfiable.

In each iteration, in lines 5–6 an element (h, v̄) is picked and removed from
the queue Q. If the head of h is false (line 7), the edge to be added might be part
of a witness of unsatisfiability of C. In this case, it has to be checked whether the
nodes v̄ are over-approximate (line 8); this can happen when the containment
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Input: A set C of CHCs
Output: Satisfiability of C
Initialise: V := ∅, E := ∅, Q := {(h, ()) | h ∈ C, h = ∀x̄. H ← ϕ}

1 while true do
2 if Q is empty then
3 return satisfiable
4 else
5 Pick (h, v̄) ∈ Q to be considered next (guided by GNNs)
6 Q := Q \ {(h, v̄)}
7 if the head in h is false then
8 if derivation of false is genuine then
9 return unsatisfiable

10 else
11 Refine over-approximations
12 Delete all affected nodes in (V,E)
13 Regenerate elements in Q

14 end

15 else
16 Assume h = ∀x̄. p0(t̄0)← p1(t̄1) ∧ · · · ∧ pn(t̄n) ∧ ϕ
17 Compute new node u = (p0, R0) for (h, v̄)
18 if u 6∈ V then
19 V := V ∪ {u}

20 Q := Q ∪
{

(d, (w1, . . . , wm)) | d ∈ C is feasible for w1, . . . , wm,
u ∈ {w1, . . . , wm} ⊆ V

}
21 end
22 E := E ∪ {(v̄, h, u)}
23 end

24 end

25 end

Algorithm 1: Abstract symbolic model checking algorithm for checking sat-
isfiability of CHCs

in (4) is sometimes strict in the constructed ARG, and occurs in particular
when instantiating the abstract algorithm as CEGAR (see Section 3.2). The
over-approximation can then be refined in lines 11–13.

If the head of h is not false, a further edge is added to the graph by computing
in line 17 some set R0 satisfying (4). If the resulting node u is new in the graph,
the queue Q is updated by adding possible outgoing edges for u (line 19–20).

In this paper, we apply the GNN-based guidance in line 5. Specifically, we
presume that the GNN can predict the probability of h being in MUSes for each
q = (h, v̄) ∈ Q. We then combine this probability with certain features of q, such
as the number of iterations q ∈ Q has been waiting, to calculate a priority of q.
When selecting an element q from Q, we consult this priority. We explain more
details in Section 4.
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3.2 CEGAR- and Symbolic Execution-Style Exploration

We now discuss two concrete instantiations of Algorithm 1. The first one, in this
paper called SymEx, resembles the symbolic execution [27] of a program, and
represents the relation R in an ARG node (p,R), for a k-ary relation symbol p,
as a formula over free variables z1, . . . , zk.

To obtain SymEx, in line 17 of Algorithm 1 the relation R0 is derived from
the nodes v̄ by simple symbolic manipulation. Assuming that vi = (pi, Ri) for
i ∈ {1, . . . , n}, and the relations Ri are all represented as formulas, we can define:

R0[z1, . . . , zk] = ∃x̄. z̄ = t̄0 ∧R1[t̄1] ∧ · · · ∧Rn[t̄n] ∧ ϕ

where the notation Ri[t̄i] expresses that the terms t̄i are substituted for the
free variables z̄. In our implementation on top of the CHC solver Eldarica [28],
the formula R0[z1, . . . , zk] is afterwards simplified by eliminating the quantifiers,
albeit only in a best-effort way by running the built-in formula simplifier of
Eldarica. In SymEx, since no over-approximation is applied, the test in line 8
always succeeds, and lines 11–13 are never executed.

Our second instantiation, called CEGAR, is designed following counterexample-
guided abstraction refinement [5,29] with Cartesian predicate abstraction [30].
In this version of the algorithm, we assume that a finite pre-defined set Πp of
predicates is available for every relation symbol p. If p is k-ary, then the elements
of Πp are formulas over free variables z1, . . . , zk. The relation R in a node (p,R)
is now represented as a subset of Πp.

In line 17, the set R0 is computed by determining the elements of Πp0 that
are entailed by the body of clause h:

R0 = {φ ∈ Πp0 | z̄ = t̄0 ∧
∧
R1[t̄1] ∧ · · · ∧

∧
Rn[t̄n] ∧ ϕ |= φ}

The notation
∧
Ri[t̄i] denotes the conjunction of the elements of Ri, with t̄i

substituted for the free variables z̄.
Over-approximation in CEGAR stems from the fact that a chosen set of pred-

icates Πp will oftentimes not be able to exactly represent a relation; the con-
structed ARG might then include facts p(ā) that are not actually entailed by
C. In line 8, the algorithm therefore has to verify that discovered derivations
of false are genuine. This is done by collecting the clauses that were used to
derive the nodes v̄ in the ARG and constructing a counterexample tree. If the
counterexample turns out to be spurious, further predicates are added to the
sets Πp, for instance using tree interpolation [31], in lines 11–13.

4 Guiding CHC Solvers using MUSes

In this section, we begin by defining the notion of Minimal Unsatisfiable Sets
(MUSes), then we detail the process of collecting three types of training labels
using the MUSes. Following that, we explain the various strategies of employing
the predicted probability of a CHC being in MUSes to guide Algorithm 1.
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4.1 Minimal Unsatisfiable Sets

Throughout the section, assume that C is an unsatisfiable set of CHCs.

Definition 6 (Minimal Unsatisfiable Set). A subset U ⊆ C is a Minimal
Unsatisfiable Set (MUS) if U is unsatisfiable and for all CHCs h ∈ U it is the
case that U\{h} is satisfiable.

Intuitively, MUSes of a set of CHCs encoding a program correspond to minimal
counterexamples (i.e., a subset of program statements) witnessing the incor-
rectness of the program. MUSes are therefore good candidates for guiding CHC
solvers towards the critical clauses, and we aim at predicting MUSes using GNNs.

The number of MUSes can, however, be exponential in the number of CHCs
in C. We therefore consider the union, intersection, and a particular single MUS
for C. Denoting the set of all MUSes of C by MUS(C), those are:

Cunion
MUSes =

⋃
MUS(C), Cintersection

MUSes =
⋂

MUS(C),

Csingle
MUSes = argmax

U∈MUS(C)
numAtom(U),

where numAtom(U) is the total number of atoms of the CHCs in U , and Csingle
MUSes

is some MUS that maximizes the total number of atoms. The three clause sets
can be computed using the OptiRica extension of the Eldarica Horn solver [32].

Intuitively, Cunion
MUSes includes all information about possible MUSes and en-

courages the algorithm to go through all possible error-prone areas. In contrast,
Cintersection

MUSes only takes the intersection of all MUSes which can guide the algo-

rithm to only focus on the most suspicious areas. Csingle
MUSes is one of MUSes and

corresponds to a long path in the ARG, given that a high number of atoms is
associated with a large number of nodes. We believe a long path contains in-
tricate information, which is challenging for human to parse, but easier for a
deep-learning-based model to find.

We form three types of Boolean clause labelings by using Cunion
MUSes, Cintersection

MUSes ,

and Csingle
MUSes, respectively. For instance, for Cunion

MUSes, we obtain the labels

lunion(c) =

{
1 if h ∈ Cunion

MUSes

0 if h ∈ C \ Cunion
MUSes

4.2 MUS-Based Guidance for CHC Solvers

Eldarica Heuristics The implementations of CEGAR and SymEx in the Horn
solver Eldarica [28] by default use fixed, hand-written selection heuristics in line 5
of Algorithm 1. Such heuristics are defined by a ranking function r : Q→ Z that
maps every element in the queue to an integer; in line 5, the element of Q is
picked that minimizes r. The standard implementation of r used for CEGAR is
defined by

EldCEGARRank(q) = numPredicate(q) + birthTime(q) + falseClause(q) ,
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where numPredicate((h, v̄)) =
∑

(p,R)∈v̄ |R| is the total number of predicates

occurring in the considered nodes of the ARG; birthTime(q) is the iteration (as
an integer) in which q was added to Q;3 and falseClause((h, v̄)) is 0 if the head of
h is not false, and some big integer otherwise. The rationale behind the ranking
function is that nodes with few predicates tend to subsume nodes with many
predicates, every clause should be picked eventually, and clauses with head false
will trigger either termination of the algorithm or abstraction refinement.

In SymEx, for a node (p,R), we define numConstraint(R) to be the num-
ber of conjuncts of R. For instance, for R = (x > 1 ∧ y < 0) we would get
numConstraint(R) = 2. The default Eldarica ranking function for SymEx is de-
fined by

EldSymExRank((h, v̄)) =
∑

(p,R)∈v̄

numConstraint(R) .

Similar to numPredicate, the intuition behind EldSymExRank is that nodes with
larger formulas (more restrictions) tend to be subsumed by nodes with smaller
formulas (fewer restrictions).

MUS-guided Heuristics We now introduce several new ranking functions
defined with the help of MUSes. For this, suppose that C is the set of CHCs
that a Horn solver is applied on. Under the assumption that C is unsatisfiable,
we obtain three labeling functions lunion, lintersection, lsingle that are able to point
out clauses to be prioritized in Algorithm 1.

In practice, of course, the status of C will initially be unknown. We therefore
use three GNNs to predict labels lunion(h), lintersection(h), lsingle(h), respectively,
given just the set C and some clause h ∈ C as input. We interpret the prediction
of a GNN as a probability P (h) of a clause h to be in the union, intersection,
or the single MUS set, and use those probabilities to define ranking functions.
Table 1 lists several candidate ranking functions in terms of this membership
probability P , where P stands for one of P union, P single, or P intersection.

We consider two ways to convert probabilities to integers that can be used
in the ranking function. In rankP (q), the elements q = (h, v̄) of the queue Q are
first sorted in descending order of P (h); the number rankP (q) is the position
of q in this sequence. This means that rankP (q) ranges from 0 to |Q| − 1, and
elements with large probability P (h) will be assigned small rank.

In normP (q), we assume that minP = min{P (h) | (h, v̄) ∈ Q} and maxP =
max{P (h) | (h, v̄) ∈ Q} denote the minimum and maximum probability, respec-
tively, among elements of Q. The normalized value normP (q) ∈ [0, 1] is defined
by

normP ((h, v̄)) =
P (h)−minP
maxP −minP

In the ranking functions, we multiple normP (q) with a negative coefficient coef
and round the result to the nearest integer.

3 Strictly speaking, this information cannot be computed from q, it is in practice stored
as an additional field of the queue elements.
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Table 1: Ranking function for queue elements q ∈ Q in Algorithm 1, where
P ∈ {P union, P single, P intersection}.

Algorithm Name Ranking function

CEGAR

Fixed EldCEGARRank(q)
Random RandomRank

Score coef · normP (q)
Rank rankP (q)

R-Plus rankP (q) + EldCEGARRank(q)
S-Plus coef · normP (q) + EldCEGARRank(q)

R-Minus rankP (q)− EldCEGARRank(q)
S-Minus coef · normP (q)− EldCEGARRank(q)

SymEx

Fixed EldSymExRank(q)
Random RandomRank

Score coef · normP (q)
Rank rankP (q)

R-Plus rankP (q) + EldSymExRank(q) + birthTime(q)
S-Plus coef · normP (q) + EldSymExRank(q) + birthTime(q)

R-Minus rankP (q)− EldSymExRank(q)− birthTime(q)
S-Minus coef · normP (q)− EldSymExRank(q)− birthTime(q)

Two-queue

{
R-Minus, 80% probability

Random, 20% probability

The RandomRank function ensures that each CHC has an equal opportunity
to be selected in each iteration. The Two-queue case denotes a setup with two
queues, Q1 and Q2, each used with a certain probability in line 5 of Algorithm 1.
We list just one such combination, which alternates between queues with the R-
Minus and Random functions: there’s an 80% chance we use the R-Minus queue
and a 20% chance we use the Random queue.

5 Design of Model

As shown in Figure 1, within the CHC-R-HyGNN framework, we first encode a
set of CHCs into a graph format, and then we build a GNN model consisting of
an encoder, GNN layers, and a decoder.

5.1 Encode CHCs to Graph Representation

We apply the two (hyper-)graph representations of CHCs defined in [1]. We will
briefly describe their main features here.

The first graph representation is called a constraint graph (CG). This graph
encapsulates syntactic information by using nodes to represent each symbol and
connecting them with binary edges. Each CHC and each predicate symbol is
represented by a unique node. Terms and formulas are represented using their
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abstract syntax trees (AST). CHC nodes are connected to the constituent atoms
and constraints by binary edges. Within one CHC, common sub-expressions are
represented by the same nodes. Different hyper-graph node and edges types are
used to distinguish the various encoded operators (see Section 2.3).

The second graph representation is the control- and data-flow hypergraph
(CDHG). This graph is designed to capture both control- and data-flow within
CHCs using hyperedges, and therefore captures the semantics of CHCs more
directly than GCs. Similar to the CG, in the CDHG, each CHC is represented
by a unique node, and the atoms are rendered in the same way as in CG. Unlike
the CG, the CDHG uses control-flow hyperedges (CFHEs) to describe the control-
flow from the body to the head in each CHC, guarded by the constraint of the
CHC. Furthermore, the CDHG uses data-flow hyperedges (DFHEs) to represent
data-flow from the terms in the body to the terms in the head. These data-flows
are also guarded by the constraint.

5.2 Model Structure

The R-HyGNN model consists of three sub-components: (i) encoder, (ii) R-
HyGNN [1] (a GNN), and (iii) decoder:

(i) H0 = encoder(V, λV , LV ), (ii) Ht = R-HyGNN(H0, E, LE),

(iii) L̂ = decoder(Ht) .

The encoder in (i) first maps each node in V to an integer according to the
node’s type determined by λV and LV . Then, it passes the encoded integers
to a single-layer neural network (embedding layer) to compute initial node rep-
resentations H0. The R-HyGNN in (ii) is a GNN with its node representation
updating rule defined in (3). It takes the initial node representations (H0), edges
(E), and edge types (LE) as input and outputs the updated node represen-
tations Ht. The decoder in (iii) first identifies the node that denote the CHC
instead of the variables, atoms, or other elements in the CHC, then we collect
the representations of these CHC nodes HCHCs

t from all node representations Ht.
Finally, we pass HCHCs

t to a set of fully connected neural networks to compute
the probability of each CHC being in the MUSes, and L̂ is a set of probabilities.

The parameters of neural networks in (i), (ii), and (iii) are optimized together
by minimizing the binary cross-entropy loss [33] between L̂ and the true labels
L, i.e.,

loss = − 1

N

N∑
i=1

Lilog(L̂i) + (1− Li)log(1− L̂i). (5)

6 Evaluation

We first describe how the benchmarks are split for training and evaluation, then
list some important parameters. Finally, we show and explain the experimental
results. This work can be reproduced by following the instructions in [34].
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Table 2: Distribution of the number of problems for both training and evaluation.
T/O, N/A, and Evail. denote timeout, not available, and evaluation, respectively.

Linear LIA problems Non-linear LIA problems

8705 8425

Benchmarks for training Holdout set Benchmarks for training Holdout set

7834 (90%) 871 (10%) 7579 (90%) 846 (10%)

UNSAT SAT T/O Eval. N/A UNSAT SAT T/O Eval. N/A

1585 4004 2245 383 488 3315 4010 254 488 358

Train Valid N/A Train Valid N/A
782 87 716 1617 180 1518

6.1 Benchmark

The training and evaluation data are specified in Table 2, and available in [20].
There are 8705 linear and 8425 non-linear LIA problems, taken from CHC-
COMP 2021 [19]. We first uniformly reserved 10% of the benchmarks as holdout
set for the final evaluation. We ran the CEGAR in Eldarica using a 3-hour timeout
to solve the remaining 90% of benchmarks, leading to three groups of bench-
marks: SAT, UNSAT, and timeout. For UNSAT problems, we also computed
the MUS sets Cunion

MUSes, Cintersection
MUSes , and Csingle

MUSes. Some problems in UNSAT were
eliminated in this process (N/A, for both training and evaluation) because the
problems were trivial (already solved by the Eldarica preprocessor), the process
of extracting MUSes timed out (3 hours), or a timeout occurred when encoding
CHCs as graphs. The remaining problems are divided into training (90%) and
validation (10%) datasets.

6.2 Parameters

We select the hyper-parameters for the GNN empirically, and according to the
experimental results from [1]. We set the vector size of the initial node represen-
tation and the number of neurons in all intermediate neural network layers to 32;
we also set the number of message-passing steps to 8 (i.e., applying (3) 8 times).
The constant coef in Table 1 is −1000. Other parameters and the instructions
to reproduce these results can be found in [20].

6.3 Experimental Results

In our experiment, we measure the number of solved problems and the average
solving time for the holdout evaluation set. This included 383 and 488 problems
in the linear and non-linear LIA datasets, respectively. The timeout for evalu-
ating each problem is 1200 seconds. The additional overhead for reading and
applying the GNN predicted results in each iteration is included in the solving
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Table 3: Overview of the best ranking function and improvement in number of
solved problems compared to the Eldarica. A ranking function marked with *
(e.g., S-Plus*) denotes that there are multiple ranking functions with the same
performance.

Benchmark
Algorithm

MUS
data set

(best count)

Best ranking function (improvement in %)
Number of Solved Problems Average Time

Total SAT UNSAT All Common SAT UNSAT

Linear
CEGAR

Union
(0)

R-Plus
(1.4%)

R-Plus
(2.4%)

R-Minus
(1.0%)

R-Plus
(1.3%)

S-Plus
(19.1%)

S-Minus
(46.5%)

Rank
(31.1%)

Single
(3)

Rank
(3.6%)

R-Plus
(4.0%)

Rank
(8.2%)

R-Plus
(1.9%)

S-Plus
(26.6%)

R-Minus
(57.9%)

Rank
(36.3%)

Intersection
(4)

R-Plus
(4.1%)

S-Plus
(0.8%)

R-Plus
(9.3%)

R-Plus
(3.1%)

S-Plus
(27.6%)

R-Minus
(45.0%)

S-Plus
(0.0%)

Linear
SymEx

Union
(4)

Two-Q
(1.0%)

S-Plus*
(0.0%)

Random
(2.0%)

Two-Q
(0.9%)

R-Minus
(12.7%)

R-Minus
(30.2%)

S-Plus
(26.5%)

Single
(3)

S-Minus*
(0.5%)

S-Plus*
(0.0%)

Random
(2.0%)

Random
(0.8%)

S-Plus
(12.9%)

Random
(28.4%)

S-Plus
(17.6%)

Intersection
(5)

S-Plus*
(1.0%)

S-Plus*
(0.0%)

S-Plus*
(2.0%)

S-Plus
(1.3%)

Score
(9.5%)

Random
(28.4%)

R-Plus
(35.8%)

Non-
Linear
CEGAR

Union
(7)

S-Plus
(0.5%)

S-Plus
(0.8%)

S-Plus*
(0.0%)

S-Plus
(7.1%)

R-Minus
(20.8%)

Rank
(53.5%)

S-Plus
(19.4%)

Single
(1)

R-Plus
(0.2%)

R-Plus
(0.4%)

R-Plus*
(0.0%)

R-Plus
(6.6%)

S-Plus
(18.4%)

R-Minus
(52.8%)

R-Minus
(14.2%)

Intersection
(1)

R-Plus*
(0.0%)

S-Plus
(0.5%)

S-Plus*
(0.0%)

R-Plus
(5.9%)

R-Plus
(20.3%)

Rank
(45.8%)

S-Plus
(16.8%)

Non-
Linear
SymEx

Union
(6)

Two-Q
(6.1%)

S-Minus*
(1.6%)

Random
(12.3%)

Two-Q
(13.3%)

R-Minus
(7.3%)

Score
(5.1%)

R-Plus
(19.9%)

Single
(3)

Two-Q
(6.1%)

Score
(1.6%)

Two-Q
(12.9%)

Two-Q
(12.4%)

Rank
(-2.2%)

R-Minus
(0.2%)

Two-Q
(11.2%)

Intersection
(3)

Two-Q
(6.1%)

S-Plus
(1.6%)

Two-Q
(12.9%)

Two-Q
(12.7%)

S-Minus
(0.6%)

Two-Q
(1.7%)

S-Plus
(5.4%)

time. The numerical results are shown in Tables 3 and 4. We also visualize some
numerical results by scatter plots in Figure 2.

In Tables 3 and 4, under the Number of Solved Problems column, the Total,
and SAT, UNSAT columns denote the number of totals solved, solved SAT, and
solved UNSAT problems, respectively. Under the Average Time column, the All
column denotes the average solving time for all problems, including those that
timed out; the Common column means the average solving time for problems
that were commonly solved using one of the ranking functions in Table 1, and the
default Eldarica ranking function; the SAT and UNSAT columns are the average
solving times for SAT and UNSAT problems, respectively. In certain cells, the
percentage in brackets represents the improvement compared to the correspond-
ing default ranking function. The bold text highlights the best performance in
a Benchmark Algorithm block for each measurement.
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Table 4: Evaluation on holdout problems using union dataset. The time unit is
second.

Number of Solved Problems
(improvement %)

Average Time
(improvement %)

Benchmark
Algorithm

Ranking
Function

Total SAT UNSAT All Common SAT UNSAT

Linear
CEGAR

Default 222 125 97 519.38 25.77 38.97 8.77

Random
221

(-0.5%)
124

(-0.8%)
97

(0.0%)
523.58
(-0.8%)

27.49
(-29.5%)

37.05
(4.9%)

15.85
(-80.7%)

R-Plus
225

(1.4%)
128

(2.4%)
97

(0.0%)
512.41
(1.3%)

21.65
(16.0%)

42.89
(-10.1%)

11.99
(-36.7%)

R-Minus
220

(-0.9%)
122

(-2.4%)
98

(1.0%)
526.08
(-1.3%)

18.02
(-24.4%)

30.93
(20.6%)

21.60
(-146.3%)

S-Plus
222

(0.0%)
125

(0.0%)
97

(0.0%)
517.43
(0.4%)

20.92
(19.1%)

34.13
(12.4%)

7.32
(16.5%)

S-Minus
219

(-1.4%)
122

(-2.4%)
97

(0.0%)
522.97
(-0.7%)

12.56
(2.4%)

20.86
(46.5%)

9.81
(-11.9%)

Portfolio
229

(3.2%)
130

(4.0%)
99

(2.1%)
503.16
(3.1%)

18.28
(29.1%)

45.67
(-17.2%)

19.94
(-127.4%)

Linear
SymEx

Default 200 101 99 590.68 33.16 55.42 10.44

Random
201

(0.5%)
100

(-1.0%)
101

(2.0%)
586.12
(0.8%)

30.08
(-8.5%)

39.69
(28.4%)

20.95
(-100.7%)

R-Plus
192

(-4.0%)
101

(0.0%)
91

(-8.1%)
617.60
(-4.6%)

38.59
(-10.9%)

52.87
(4.6%)

21.99
(-110.6%)

R-Minus
200

(0.0%)
100

(-1.0%)
100

(1.0%)
586.24
(0.8%)

24.67
(12.7%)

38.69
(30.2%)

10.60
(-1.5%)

S-Plus
198

(-1.0%)
101

(0.0%)
97

(-2.0%)
595.02
(-0.7%)

30.22
(11.6%)

50.97
(8.0%)

7.67
(26.5%)

S-Minus
201

(0.5%)
101

(0.0%)
100

(1.0%)
586.35
(0.7%)

30.64
(7.8%)

50.57
(8.8%)

10.65
(-2.0%)

Two-queue
202

(1.0%)
101

(0.0%)
101

(2.0%)
585.58
(0.9%)

35.11
(-5.9%)

49.94
(9.9%)

20.14
(-92.9%)

Portfolio
206

(3%)
101

(0.0%)
105

(6.1%)
569.1

(3.7%)
25.79

(22.2%)
44.58

(19.6%)
10.16

(2.6%)

Non
Linear
CEGAR

Default 432 250 182 131.12 42.05 43.34 40.28

Random
425

(-1.6%)
243

(-2.8%)
182

(0.0%)
143.42
(-9.4%)

34.27
(-11.1%)

34.84
(19.6%)

38.75
(3.8%)

R-Plus
432

(0.0%)
250

(0.0%)
182

(0.0%)
122.29
(6.7%)

31.74
(17.8%)

28.59
(34.0%)

37.82
(6.1%)

R-Minus
417

(-3.5%)
240

(-4.0%)
177

(-2.7%)
154.07

(-17.5%)
26.20

(20.8%)
21.46

(50.5%)
32.51

(19.3%)

S-Plus
434

(0.5%)
252

(0.8%)
182

(0.0%)
121.75
(7.1%)

34.64
(13.1%)

35.97
(17.0%)

39.10
(2.9%)

S-Minus
421

(-2.5%)
242

(-3.2%)
179

(-1.6%)
149.02

(-13.7%)
31.76

(-2.0%)
26.33

(39.2%)
38.95

(3.3%)

Portfolio
435

(0.7%)
253

(1.2%)
182

(0.0%)
113.49

(13.4%)
28.24

(29.1%)
30.57

(29.5%)
31.75

(21.2%)

Non
Linear
SymEx

Default 342 187 155 343.82 28.39 29.05 27.59

Random
362

(5.8%)
188

(0.5%)
174

(12.3%)
301.90

(12.2%)
32.67

(-15.1%)
36.24

(-24.8%)
41.83

(-51.6%)

R-Plus
339

(-0.9%)
190

(1.6%)
149

(-3.9%)
357.18
(-3.9%)

27.88
(0.3%)

47.71
(-64.2%)

22.10
(19.9%)

R-Minus
361

(5.6%)
189

(1.1%)
172

(11.0%)
299.86

(12.8%)
26.35
(7.3%)

37.68
(-29.7%)

27.98
(-1.4%)

S-Plus
340

(-0.6%)
189

(1.1%)
151

(-2.6%)
352.84
(-2.6%)

29.04
(-0.3%)

41.41
(-42.5%)

24.54
(11.1%)

S-Minus
362

(5.8%)
190

(1.6%)
172

(11.0%)
303.65

(11.7%)
28.62

(-0.4%)
44.11

(-51.8%)
37.95

(-37.5%)

Two-queue
363

(6.1%)
189

(1.1%)
174

(12.3%)
297.93
(13.3%)

30.15
(-6.2%)

41.14
(-41.6%)

32.51
(-17.8%)

Portfolio
366

(7.0%)
191

(2.1%)
175

(12.9%)
288.85

(16.0%)
22.29

(21.4%)
42.42

(-46.0%)
26.75

(3.0%)
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Table 3 displays the best ranking function and its improvement over the
default Eldarica ranking function in different measurements for various com-
binations of benchmarks (linear and non-linear LIA), algorithms (CEGAR and
SymEx), and MUS datasets (union, single, and intersection of MUSes). In the
MUS dataset column, the numbers in brackets represent the count of bold text
cells in the row, indicating the number of best performances achieved by that
type of MUS dataset. For instance, in the last row (i.e., the Intersection row of
the Non-Linear SymEx block), the number in the bracket is counted from the
bold text highlighted cells in columns Total, SAT, and UNSAT under the Num-
ber of Solved Problems. This suggests that using the intersection of the MUSes
dataset achieves the best performance when the evaluation set is non-linear and
the algorithm is SymEx. Across the entire table, there are 17, 10, and 13 bold text
counts for the union, single, and intersection MUS datasets, respectively. This
indicates that the union is the most effective MUS dataset for better performance
across different benchmarks and algorithms. Consequently, we provide further
numerical details for the union MUS dataset in Table 4. Evaluation results for
both the single and intersection MUS datasets can be found in [20].

Table 4 illustrates the evaluation results using MUS-guided ranking functions
(refer to Table 1), compared to the default and random ranking functions. The
portfolio rows in each Benchmark Algorithm block represent the best potential
of ranking functions, as they accumulate the best performance for each problem
across all ranking functions. The model is trained using the union of MUSes.

In terms of the total number of solved problems, the improvement for the
Linear dataset is at most 1.4%, achieved by the CEGAR algorithm with the R-
Plus ranking function. Meanwhile, for the Non-linear dataset, the improvement
is 6.1%, achieved by the SymEx algorithm with the two-queue ranking function.
And, this is consistent with the average solving time for all benchmarks.

The best performances in the Common column are inconsistent with the All
column under Average Time. This suggests that the number of newly solved
problems has a greater impact on the improvement in the average solving time
for all problems than the commonly solved problems.

The improvements in the average solving time for SAT and UNSAT problems
are 50.5% and 26.5%, achieved by the CEGAR with R-Minus and the SymEx with
S-Plus ranking function, respectively. When combined with the corresponding
numbers of total solved problems (i.e., -3.5% and -1.0%), it suggests that these
ranking functions either solve the problems quickly or not at all.

Furthermore, Figure 2 shows the solving time scatter plots for the problems
from the best configurations in each Benchmark Algorithm block in Table 4.
Notably, a majority of the dots lie below the diagonal lines in each scatter plot,
indicating the solving time is improved by the MUS-guided ranking function for
more than half of the problems. This is consistent with the numerical results.

In summary, for both algorithms in different datasets, there is always at
least one of the MUS-guided ranking functions that achieves the best result in
terms of all aspects of measurements. Using the predicted probabilities alone
(i.e., using the Rank and Score ranking function) performs weaker than other
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(a) Linear, CEGAR, R-Plus (b) Linear, SymEx, two-queue

(c) Non-Linear, CEGAR, S-Plus (d) Non-Linear, SymEx, two-queue

Fig. 2: All benchmark average solving time scatter plots for best ranking func-
tions in different dataset and algorithms. “above/under” means the number of
dots above and under the diagonal line.

MUS-guided ranking functions that combine the predicted probability and the
default heuristics. Currently, the MUS-guided ranking functions in Table 1 are
designed by simply varying the relation symbols “+” and “-” between differ-
ent elements (e.g., ranking functions S-Plus and S-Minus for both CEGAR and
SymEx) or by setting the restart point randomly (i.e., ranking function Two-
queue in SymEx). We believe MUSHyperNet has more potential if the ranking
functions are designed carefully or learned from some good tasks.

7 Related Work

Machine learning techniques have been adapted in various ways to assist in for-
mal verification. For example, the study in [35] employs Support Vector Machines
(SVM) [36] and Gaussian processes[37] to select heuristics for theorem proving.
Similarly, [38] introduces the use of a Recurrent Neural Network Based Language
Model (RNNLM) to derive finite-state automaton-based specifications from ex-
ecution traces. In the domain of selecting algorithms for program verification,
[39] apply the Transformer architecture [40], while [41] uses kernel-based meth-
ods [42]. With the thriving of deep learning techniques, an increasing number of
works are utilizing GNNs to learn the features from programs and logic formu-
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lae. This trend is attributed to the inherent structure of these languages, which
can be naturally represented as graphs and subsequently learned by GNNs. For
instance, studies like [14,15], [16,43], and [44] use GNNs [24,45,46] to learn fea-
tures from graph-represented logic formulas and programs, aiding in tasks such
as theorem proving, SAT solving, and loop invariant reasoning.

One closed idea is NeuroSAT [17,16], which trains a GNN to predict the
probability of variables appearing in unsat cores. This prediction can guide the
variable branching decisions for Conflict-Driven Clause Learning (CDCL) [47]-
based SAT solvers. In a similar vein, our study trains a GNN to predict the
probability of a CHC appearing in MUSes. This aids in determining the process-
ing sequence of CHCs in Algorithm 1 used for solving a set of CHCs.

8 Conclusion and Future Works

In this study, we train a GNN model to predict the probability of each CHC in
a set of CHCs being in the MUSes. We then utilize these predicted probabilities
to guide the abstract symbolic model-checking algorithm in selecting a CHC
during each iteration. Extensive experiments demonstrate improvements in both
the number of solved problems and average solving time when using the MUS-
guided ranking functions, compared to the default ranking function. This was
observed in two instances of the abstract symbolic model checking algorithm:
CEGAR and SymEx. We believe that this approach can be extended to other
algorithms, as many could benefit from understanding more about the MUSes
of a set of CHCs.

There are several ways to further enhance the performance of MUSHyperNet.
One of our future work is to integrate the work of manually designing the ranking
functions in Table 1 to the learning process. Regarding the GNN model, we
believe that incorporating an attention mechanism could bolster its performance,
subsequently refining the quality of the predicted probabilities. Another avenue
to explore involves integrating the GNN with the solver in a more interactive
manner. Instead of predicting something at once and then using them in each
iteration, we could query the GNN model to predict something in real-time based
on the current context during each iteration.

Acknowledgement. We thank Zafer Esen for providing assistance in using the
symbolic execution engine of Eldarica, and Marc Brockschmidt for various dis-
cussions on this work. The computations and data handling were enabled by re-
sources provided by the Swedish National Infrastructure for Computing (SNIC)
at UPPMAX and C3SE. The research was partially funded by the Swedish Re-
search Council through grant agreement no. 2018-05973, by a Microsoft Re-
search PhD grant, the Swedish Foundation for Strategic Research (SSF) under
the project WebSec (Ref. RIT17-0011), and the Wallenberg project UPDATE.



Boosting Constrained Horn Solving by Unsat Core Learning 21

References
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Raphaël Troncy, Laura Hollink, Anna Tordai, and Mehwish Alam, editors, The
Semantic Web, pages 593–607, Cham, 2018. Springer International Publishing.

26. Abien Fred Agarap. Deep Learning using Rectified Linear Units (ReLU). arXiv
e-prints, page arXiv:1803.08375, March 2018.

27. James C. King. Symbolic execution and program testing. Commun. ACM,
19(7):385–394, july 1976.
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