
Accelerated Bounded Model Checking⋆

Florian Frohn and Jürgen Giesl

LuFG Informatik 2, RWTH Aachen University, Aachen, Germany

Abstract. Bounded Model Checking (BMC) is a powerful technique for
proving reachability of error states, i.e., unsafety. However, finding deep
counterexamples that require a large bound is challenging for BMC. On the
other hand, acceleration techniques compute “shortcuts” that “compress”
many execution steps into a single one. In this paper, we tightly integrate
acceleration techniques into SMT-based bounded model checking. By
adding suitable “shortcuts” to the SMT-problem on the fly, our approach
can quickly detect deep counterexamples, even when only using small
bounds. Moreover, using so-called blocking clauses, our approach can
prove safety of examples where BMC diverges. An empirical comparison
with other state-of-the-art techniques shows that our approach is highly
competitive for proving unsafety, and orthogonal to existing techniques
for proving safety.

1 Introduction

Bounded Model Checking (BMC) is a powerful technique for disproving safety
properties of software. However, as it uses breadth-first search to find counterex-
amples, the search space grows exponentially w.r.t. the bound, i.e., the limit on
the length of potential counterexamples. Thus, finding deep counterexamples that
require large bounds is challenging for BMC. On the other hand, acceleration
techniques can compute a first-order formula that characterizes the transitive
closure of the transition relation induced by a loop. Intuitively, such a formula
corresponds to a “shortcut” that “compresses” many execution steps into a single
one. In this paper, we consider relations defined by quantifier-free first-order
formulas over some background theory like non-linear integer arithmetic and two
disjoint vectors of variables x⃗ and x⃗′, called the pre- and post-variables. Such
transition formulas can easily represent, e.g., transition systems (TSs), linear
Constrained Horn Clauses (CHCs), and control-flow automata (CFAs).1 Thus,
they subsume many popular intermediate representations used for verification of
programs written in more expressive languages.2

⋆ funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
- 235950644 (Project GI 274/6-2)

1 To this end, it suffices to introduce one additional variable that represents the
control-flow location (for TSs and CFAs) or predicate (for CHCs).

2 Essentially, the same formalism is, e.g., used in the category “Linear Real Arithmetic
- Transition Systems” of the annual CHC-competition [8], where linear CHCs with
just a single uninterpreted predicate are considered, so all information about the
control flow is encoded in the constraints.

http://orcid.org/0000-0003-0902-1994
http://orcid.org/0000-0003-0283-8520

Example 1. Consider the transition formula τ := τx<100 ∨ τx=100 where

τx<100 := x < 100 ∧ x′ = x+ 1 ∧ y′ = y and

τx=100 := x = 100 ∧ x′ = 0 ∧ y′ = y + 1.

while (x <= 100) {
while (x < 100) x++;
x = 0 , y++;

}

Listing 1: Implementation of τ

It defines a relation →τ on Z× Z by relating the pre-variables x and y with the
post-variables x′ and y′. So for all cx, cy, c

′
x, c

′
y ∈ Z we have (cx, cy) →τ (c′x, c

′
y)

iff [x/cx, y/cy, x
′/c′x, y

′/c′y] is a model of τ . In other words, we have (cx, cy) →∗
τ

(c′x, c
′
y) if and only if a state with x = c′x ∧ y = c′y is reachable from a state with

x = cx ∧ y = cy in Listing 1. Assume that we want to prove that an error state
which satisfies ψerr := y ≥ 100 is reachable from an initial state which satisfies
ψinit := x ≤ 0 ∧ y ≤ 0. To do so, BMC has to unroll τ 10100 times.

Our new technique called Accelerated BMC (ABMC) accelerates τ , resulting
in the “shortcut”

n > 0 ∧ x+ n ≤ 100 ∧ x′ = x+ n ∧ y′ = y, (τ+i)

meaning that we have (cx, xy) →+
τ (c′x, c

′
y) if τ

+
i [x/cx, y/cy, x

′/c′x, y
′/c′y] is sat-

isfiable. So τ+i can simulate arbitrarily many steps with τ in a single step, as
long as x does not exceed 100. Here, acceleration was applied to τx<100, i.e.,
the projection of τ to the case x < 100, which corresponds to the inner loop of
Listing 1. We also call such projections transitions. Later, ABMC also accelerates
the outer loop (consisting of τx=100, τx<100, and τ

+
i), resulting in

n > 0 ∧ x = 100 ∧ 1 < x′ ≤ 100 ∧ y′ = y + n. (τ+o)

For technical reasons, our algorithm accelerates [τx=100, τx<100, τ
+
i] instead of

just [τx=100, τ
+
i], so that τ+o requires 1 < x′, i.e., it only covers cases where τx<100

is applied at least twice after τx=100. Details will be clarified in Sect. 3.2, see in
particular Fig. 1. Using these shortcuts, ABMC can prove unsafety with bound 7.

While our main goal is to improve BMC’s capability to find deep counterexamples,
the following straightforward observations can be used to block certain parts of
the transition relation in ABMC:

1. After accelerating a sequence of transitions, the resulting accelerated transi-
tion should be preferred over that sequence of transitions.

2. If an accelerated transition has been used, then the corresponding sequence
of transitions should not be used immediately afterwards.

Both observations are justified by the fact that an accelerated transition describes
the transitive closure of the transition relation induced by the corresponding
sequence of transitions. Due to its ability to block parts of the transition relation,
ABMC is able to prove safety in cases where BMC would unroll the transition
relation indefinitely.

2

Comparison with ADCL The idea of using acceleration to detect deep
counterexamples is not new. In particular, we recently introduced Acceleration
Driven Clause Learning [16, 17], a calculus that uses depth-first search and
acceleration to find counterexamples. So one major difference between ABMC
and ADCL is that ABMC performs breadth-first search, whereas ADCL performs
depth-first search. Thus, ADCL requires a mechanism for backtracking to avoid
getting stuck. To this end, it relies on a notion of redundancy, which is difficult
to automate. Thus, in practice, approximations are used [17, Sect. 4]. However,
even with a complete redundancy check, ADCL might get stuck in a safe part of
the search space [17, Thm. 18]. ABMC does not suffer from such deficits.

Like ADCL, ABMC also tries to avoid redundant work (see Sections 3.3
and 4). However, doing so is crucial for ADCL due to its depth-first strategy,
whereas it is a mere optimization for ABMC.

On the other hand, ADCL has successfully been adapted for proving non-
termination [16], and it is unclear whether a corresponding adaption of ABMC
would be competitive. Furthermore, ADCL applies acceleration in a very sys-
tematic way, whereas ABMC decides whether to apply acceleration or not based
on the model that is found by the underlying SMT solver. Therefore, ADCL is
advantageous for examples with deeply nested loops, where ABMC may require
many steps until the SMT solver yields models that allow for accelerating the
nested loops one after the other. Thus, both techniques are orthogonal. See Sect. 6
for an experimental comparison of ADCL with our novel ABMC technique.

Outline After introducing preliminaries in Sect. 2, we show how to use accelera-
tion in order to improve the BMC algorithm to ABMC in Sect. 3. Sect. 4 refines
ABMC by integrating blocking clauses. In Sect. 5, we discuss related work, and
in Sect. 6, we evaluate our implementation of ABMC in our tool LoAT.

2 Preliminaries

We assume familiarity with basics from many-sorted first-order logic. Without
loss of generality, we assume that all formulas are in negation normal form (NNF).
V is a countably infinite set of variables and A is a first-order theory over a
k-sorted signature Σ with carrier C = (C1, . . . , Ck). For each entity e, V(e) is
the set of variables that occur in e. QF(Σ) denotes the set of all quantifier-free
first-order formulas over Σ, and QF∧(Σ) only contains conjunctions of Σ-literals.
We let ⊤ and ⊥ stand for “true” and “false”, respectively.

Given ψ ∈ QF(Σ) with V(ψ) = y⃗, we say that ψ is A-valid (written |=A ψ) if
every model ofA satisfies the universal closure ∀y⃗. ψ of ψ. Moreover, σ : V(ψ) → C
is an A-model of ψ (written σ |=A ψ) if |=A σ(ψ), where σ(ψ) results from ψ
by instantiating all variables according to σ. If ψ has an A-model, then ψ is
A-satisfiable. We write ψ |=A ψ′ for |=A (ψ =⇒ ψ′), and ψ ≡A ψ′ means
|=A (ψ ⇐⇒ ψ′). In the sequel, we omit the subscript A, and we just say “valid”,
“model”, and “satisfiable”. We assume that A is complete, i.e., we either have
|= ψ or |= ¬ψ for every closed formula over Σ.

3

We write x⃗ for sequences and xi is the ith element of x⃗. We use “::” for
concatenation of sequences, where we identify sequences of length 1 with their
elements, so we may write, e.g., x :: xs instead of [x] :: xs.

Let d ∈ N be fixed, and let x⃗, x⃗′ ∈ Vd be disjoint vectors of pairwise different
variables, called the pre- and post-variables. Each τ ∈ QF(Σ) induces a transition
relation →τ on Cd where s⃗ →τ t⃗ iff τ [x⃗/s⃗, x⃗′/t⃗] is satisfiable. Here, [x⃗/s⃗, x⃗′/t⃗]
denotes the substitution θ with θ(xi) = si and θ(x

′
i) = ti for all 1 ≤ i ≤ d. We

refer to elements of QF(Σ) as transition formulas whenever we are interested in
their induced transition relation. Moreover, we also refer to conjunctive transition
formulas (i.e., elements of QF∧(Σ)) as transitions. A safety problem T is a triple
(ψinit, τ, ψerr) ∈ QF(Σ)×QF(Σ)×QF(Σ) where V(ψinit)∪V(ψerr) ⊆ x⃗. It is unsafe
if there are s⃗, t⃗ ∈ Cd such that [x⃗/s⃗] |= ψinit, s⃗→∗

τ t⃗, and [x⃗/t⃗] |= ψerr.
The composition of τ and τ ′ is ⊚(τ, τ ′) := τ [x⃗′/x⃗′′]∧τ ′[x⃗/x⃗′′] where x⃗′′ ∈ Vd is

fresh. Here, we assume V(τ)∩V(τ ′) ⊆ x⃗∪ x⃗′ (which can be ensured by renaming
other variables correspondingly). So →⊚(τ,τ ′) = →τ ◦ →τ ′ (where ◦ denotes
relational composition). For finite sequences of transition formulas we define
⊚([]) := (x⃗ = x⃗′) (i.e., →⊚([]) is the identity relation) and ⊚(τ :: τ⃗) := ⊚(τ,⊚(τ⃗)).
We abbreviate →⊚(τ⃗) by →τ⃗ .

Acceleration techniques compute the transitive closure of relations. In the
following definition, we only consider relations defined by conjunctive formulas,
since many existing acceleration techniques do not support disjunctions [6], or
have to resort to approximations in the presence of disjunctions [12]. So the
restriction to conjunctive formulas ensures that our approach works with arbitrary
acceleration techniques.

Definition 2 (Acceleration). An acceleration technique is a function accel :
QF∧(Σ) → QF∧(Σ

′) such that →accel(τ) ⊆ →+
τ , where Σ

′ is the signature of a
first-order theory A′.

We abbreviate accel(⊚(τ⃗)) by accel(τ⃗). So as we aim at finding counterexamples,
we allow under-approximating acceleration techniques, i.e., we do not require
→accel(τ) = →+

τ . Def. 2 allows A′ ̸= A, as most theories are not “closed under
acceleration”. For example, accelerating the following Presburger formula on the
left may yield the non-linear formula on the right:

x′ = x+ y ∧ y′ = y n > 0 ∧ x′ = x+ n · y ∧ y′ = y.

3 From BMC to ABMC

In this section, we introduce accelerated bounded model checking. To this end, we
first recapitulate bounded model checking in Sect. 3.1. Then we present ABMC in
Sect. 3.2. To implement ABMC efficiently, heuristics to decide when to perform
acceleration are needed. Thus, we present such a heuristic in Sect. 3.3.

3.1 Bounded Model Checking

Alg. 1 shows how to implement BMC on top of an incremental SMT solver.
In Line 1, the description of the initial states is added to the SMT problem.

4

Algorithm 1: BMC

Input: a safety problem T = (ψinit, τ, ψerr)
1 b← 0; add(µb(ψinit))
2 while ⊤ do
3 push(); add(µb(ψerr))
4 if check sat() do return unsafe else pop(); add(µb(τ))
5 if ¬check sat() do return safe else b← b+ 1

Here and in the following, for all i ∈ N we define µi(x) := x(i) if x ∈ V \ x⃗′,
and µi(x

′) = x(i+1) if x′ ∈ x⃗′. So in particular, we have µi(x⃗) = x⃗(i) and
µi(x⃗

′) = x⃗(i+1), where we assume that x⃗(0), x⃗(1), . . . ∈ Vd are disjoint vectors of
pairwise different variables. In the loop, we set a backtracking point with the
“push()” command and add a suitably variable-renamed version of the description
of the error states to the SMT problem in Line 3. Then we check for satisfiability
to see if an error state is reachable with the current bound in Line 4. If this is not
the case, the description of the error states is removed from the SMT problem
with the “pop()” command that deletes all formulas from the SMT problem that
have been added since the last backtracking point. Then a variable-renamed
version of the transition formula τ is added to the solver. If doing so results in
an unsatisfiable SMT problem in Line 5, then the whole search space has been
exhausted, i.e., the problem is safe. Otherwise, we enter the next iteration.

Example 3 (BMC). For the first 100 iterations of Alg. 1, all models found in Line 5
satisfy the 1st disjunct µb(τx<100) of µb(τ). Then we may have x(100) = 100, so
that the 2nd disjunct µb(τx=100) of µb(τ) applies once and we get y(101) = y(100)+1.
After another 100 iterations, the 2nd disjunct µb(τx=100) may apply again, and
so on. After 100 applications of the 2nd disjunct (and thus a total of 10100 steps),
there is a model with y(10100) = 100, so that unsafety can be proven.

3.2 Accelerated Bounded Model Checking

To incorporate acceleration into BMC, we have to bridge the gap between (disjunc-
tive) transition formulas and acceleration techniques, which require conjunctive
transition formulas. To this end, we use syntactic implicants.

Definition 4 (Syntactic Implicant Projection [17]). Let τ ∈ QF(Σ) be in
NNF and assume σ |= τ . We define the syntactic implicants sip(τ) of τ as follows:

sip(τ, σ) :=
∧

{λ | λ is a literal of τ, σ |= λ} sip(τ) := {sip(τ, σ) | σ |= τ}

Since τ is in NNF, sip(τ, σ) implies τ , and it is easy to see that τ ≡
∨
sip(τ).

Whenever the call to the SMT solver in Line 5 of Alg. 1 yields sat, the resulting
model gives rise to a sequence of syntactic implicants, called the trace. To define
the trace formally, note that when we integrate acceleration into BMC, we may
not only add τ to the SMT formula as in Line 4, but also learned transitions
that result from acceleration. Thus, the following definition allows for changing
the transition formula. In the sequel, ◦ also denotes composition of substitutions,
i.e., θ′ ◦ θ := [x/θ′(θ(x)) | x ∈ dom(θ′) ∪ dom(θ)].

5

Definition 5 (Trace). Let [τi]
b−1
i=0 be a sequence of transition formulas and let

σ be a model of
∧b−1

i=0 µi(τi). Then the trace induced by σ is

traceb(σ, [τi]
b−1
i=0) := [sip(τi, σ ◦ µi)]

b−1
i=0 .

We write traceb(σ) instead of traceb(σ, [τi]
b−1
i=0) if [τi]

b−1
i=0 is clear from the context.

So each model σ of
∧b−1

i=0 µi(τi) corresponds to a sequence of steps with the
relations →τ0 ,→τ1 , . . . ,→τb−1

, and the trace induced by σ contains the syntactic
implicant of each τi that was used in this sequence.

Example 6 (Trace). Reconsider Ex. 3. After two iterations of the loop of Alg. 1,
the SMT problem consists of the following formulas:

x(0) ≤ 0 ∧ y(0) ≤ 0 (ψinit)

(x(0) < 100 ∧ x(1) = x(0) + 1 ∧ y(1) = y(0)) ∨ (x(0) = 100 ∧ x(1) = 0 ∧ y(1) = y(0) + 1) (τ)

(x(1) < 100 ∧ x(2) = x(1) + 1 ∧ y(2) = y(1)) ∨ (x(1) = 100 ∧ x(2) = 0 ∧ y(2) = y(1) + 1) (τ)

With σ = [x(i)/i, y(i)/0 | 0 ≤ i ≤ 2], we get trace2(σ) = [τx<100, τx<100], as:

sip(τ, σ ◦ µ0) = sip(τ, [x/0, y/0, x′/1, y′/0]) = τx<100

sip(τ, σ ◦ µ1) = sip(τ, [x/1, y/0, x′/2, y′/0]) = τx<100

To detect situations where applying acceleration techniques pays off, we need
to distinguish traces that contain loops from non-looping ones. Since transition
formulas are unstructured, the usual techniques for detecting loops (based on,
e.g., program syntax or control flow graphs) do not apply in our setting. Instead,
we rely on the dependency graph of the transition formula.

Definition 7 (Dependency Graph). Let τ be a transition formula. Its de-
pendency graph DG = (V,E) is a directed graph whose vertices V := sip(τ) are
τ ’s syntactic implicants, and τ1 → τ2 ∈ E if ⊚(τ1, τ2) is satisfiable. We say that
τ⃗ ∈ sip(τ)c is DG-cyclic if c > 0 and (τ1 → τ2), . . . , (τc−1 → τc), (τc → τ1) ∈ E.

So intuitively, the syntactic implicants correspond to the different cases of →τ ,
and τ ’s dependency graph corresponds to the control flow graph of →τ .

Example 8 (Dependency Graph). For Ex. 1, the dependency graph is:

τx<100 τx=100

However, as the size of sip(τ) is worst-case exponential in the number of disjunc-
tions in τ , we do not compute τ ’s dependency graph eagerly. Instead, ABMC
maintains an under-approximation, i.e., a subgraph G of the dependency graph,
which is extended whenever two transitions that are not yet connected by an edge
occur consecutively on the trace. As soon as a G-cyclic suffix τ⃗⟲ is detected on
the trace, we may accelerate it. Therefore, the trace may also contain the learned
transition accel(τ⃗⟲) in subsequent iterations. Hence, to detect cyclic suffixes that
contain learned transitions, they have to be represented in G as well. Thus, G is

6

Algorithm 2: ABMC

Input: a safety problem T = (ψinit, τ, ψerr)
1 b← 0; V ← ∅; E ← ∅; add(µb(ψinit))
2 if ¬check sat() do return safe else σ ← get model()
3 while ⊤ do
4 push(); add(µb(ψerr))
5 if check sat() do return unsafe else pop()
6 τ⃗ ← traceb(σ); V ← V ∪ τ⃗ ; E ← E ∪ {(τ1, τ2) | [τ1, τ2] is an infix of τ⃗}
7 if τ⃗ = π⃗ :: π⃗⟲ ∧ π⃗⟲ is cyclic∧ should accel(π⃗⟲) do add(µb(τ ∨ accel(π⃗⟲)))
8 else add(µb(τ))
9 if ¬check sat() do return safe else σ ← get model(); b← b+ 1

in fact a subgraph of the dependency graph of τ ∨
∨

L, where L is the set of all
transitions that have been learned so far.

This gives rise to the ABMC algorithm, which is shown in Alg. 2. Here, we
just write “cyclic” instead of (V,E)-cyclic. The difference to Alg. 1 can be seen
in Lines 6 and 7. In Line 6, the trace is constructed from the current model.
Then, the approximation of the dependency graph is refined such that it contains
vertices for all elements of the trace, and edges for all transitions that occur
consecutively on the trace. In Line 7, the trace may get accelerated if it has a
cyclic suffix, provided that the call to should accel (which will be discussed in more
detail in Sect. 3.3) returns ⊤. In this way, in the next iteration the SMT solver
can choose a model that satisfies accel(π⃗⟲) and thus simulates several instead of
just one →τ -step. Note, however, that we do not update τ with τ ∨ accel(π⃗⟲). So
in every iteration, at most one learned transition is added to the SMT problem.
In this way, we avoid blowing up τ unnecessarily.

Fig. 1 shows a run of Alg. 2 on Ex. 1, where the formulas that are added to
the SMT problem are highlighted in gray , and x(i) 7→ c abbreviates σ(x(i)) = c.
For simplicity, we assume that should accel always returns ⊤, and the model σ
is only extended in each step, i.e., σ(x(i)) and σ(y(i)) remain unchanged for all
0 ≤ i < b. In general, the SMT solver can choose different values for σ(x(i)) and
σ(y(i)) in every iteration. On the right, we show the current bound b, as well as
the formulas that give rise to the highlighted formulas on the left when renaming
their variables suitably with µb. Initially, the approximation G = (V,E) of the
dependency graph is empty. When b = 2, the trace is [τx<100, τx<100], and the
corresponding edge is added to G. Thus, the trace has the cyclic suffix τx<100

and we accelerate it, resulting in τ+i , which is added to the SMT problem. Then
we obtain the trace [τx<100, τx<100, τ

+
i], and the edge τx<100 → τ+i is added to

G. Note that Alg. 2 does not enforce the use of τ+i , so τ might still be unrolled
thousands of times instead, depending on the models found by the SMT solver.
We will address this issue in Sect. 4.

Next, τx=100 already applies with b = 4 (whereas it only applied with b = 100
in Ex. 3). So the trace is [τx<100, τx<100, τ

+
i , τx=100], and the edge τ+i → τx=100

is added to G. Then we obtain the trace [τx<100, τx<100, τ
+
i , τx=100, τx<100], and

add τx=100 → τx<100 to G. Since the suffix τx<100 is again cyclic, we accel-
erate it and add τ+i to the SMT problem. After one more step, the trace

7

ABMC(T)

1: x(0) ≤ 0 ∧ y(0) ≤ 0 ψinit, b = 0

2 & 6:x(0) 7→ 0, y(0) 7→ 0 || τ⃗ ← [] || E ← ∅

8: (x(0) < 100 ∧ x(1) = x(0) + 1 ∧ y(1) = y(0)) ∨ . . . τ

6 & 9:x(1) 7→ 1, y(1) 7→ 0 || τ⃗ ← [τx<100] || E ← ∅ b = 1

8: (x(1) < 100 ∧ x(2) = x(1) + 1 ∧ y(2) = y(1)) ∨ . . . τ

6 & 9:x(2) 7→ 2, y(2) 7→ 0 || τ⃗ ← τ⃗ :: τx<100 || E ← {τx<100 → τx<100} b = 2

7: . . . ∨ (n(2) > 0 ∧ x(2) + n(2) ≤ 100 ∧ x(3) = x(2) + n(2) ∧ y(3) = y(2)) τ ∨ τ+i

6 & 9:x(3) 7→ 100, y(3) 7→ 0 || τ⃗ ← τ⃗ :: τ+i || E ← E ∪ {τx<100 → τ+i } b = 3

8: . . . ∨ (x(3) = 100 ∧ x(4) = 0 ∧ y(4) = y(3) + 1) τ

6 & 9:x(4) 7→ 0, y(4) 7→ 1 || τ⃗ ← τ⃗ :: τx=100 || E ← E ∪ {τ+i → τx=100} b = 4

8: (x(4) < 100 ∧ x(5) = x(4) + 1 ∧ y(5) = y(4)) ∨ . . . τ

6 & 9:x(5) 7→ 1, y(5) 7→ 1 || τ⃗ ← τ⃗ :: τx<100 || E ← E∪{τx=100 → τx<100} b = 5

7: . . . ∨ (n(5) > 0 ∧ x(5) + n(5) ≤ 100 ∧ x(6) = x(5) + n(5) ∧ y(6) = y(5)) τ ∨ τ+i

6 & 9:x(6) 7→ 100, y(6) 7→ 1 || τ⃗ ← τ⃗ :: τ+i || E ← E b = 6

7: . . . ∨ (n(6) > 0 ∧ x(6) = 100 ∧ 1 < x(7) ≤ 100 ∧ y(7) = y(6) + n(6)) τ ∨ τ+o

4: y(7) ≥ 100 b = 7

5: unsafe
Fig. 1: Running ABMC on Ex. 1

[τx<100, τx<100, τ
+
i , τx=100, τx<100, τ

+
i] has the cyclic suffix [τx=100, τx<100, τ

+
i].

Accelerating it yields τ+o , which is added to the SMT problem. Afterwards,
unsafety can be proven with b = 7.

Since using acceleration is just a heuristic to speed up BMC, all basic properties
of BMC immediately carry over to ABMC.

Theorem 9 (Properties of ABMC). ABMC is

Refutationally Complete: If T is unsafe, then ABMC(T) returns unsafe.
Sound: If ABMC(T) returns (un)safe, then T is (un)safe.
Non-Terminating: If T is safe, then ABMC(T) may not terminate.

3.3 Fine Tuning Acceleration

We now turn our attention to should accel, our heuristic for applying acceleration.
To explain the intuition of our heuristic, we assume that acceleration does not

8

approximate and thus →accel(τ⃗) = →+
τ⃗ , but in our implementation, we also use it

if →accel(τ⃗) ⊂ →+
τ⃗ . Doing so is uncritical for correctness, as using acceleration is

always sound. First, acceleration should be applied to cyclic suffixes consisting of
a single original (i.e., non-learned) transition.

Requirement 1. should accel([π]) = ⊤ if π ∈ sip(τ).

However, applying acceleration to a single learned transition is pointless, as

→accel(accel(τ)) = →+
accel(τ) = (→+

τ)
+ = →+

τ = →accel(τ).

Requirement 2. should accel([π]) = ⊥ if π /∈ sip(τ).

Next, for every cyclic sequence π⃗, we have

→accel(π⃗::accel(π⃗)) = →+
π⃗::accel(π⃗) = (→π⃗ ◦ →accel(π⃗))

+ = (→π⃗ ◦ →+
π⃗)

+

= →π⃗ ◦ →+
π⃗ = →π⃗ ◦ →accel(π⃗) = →π⃗::accel(π⃗),

and thus accelerating π⃗ :: accel(π⃗) is pointless, too. Hence, we obtain:

Requirement 3. should accel(π⃗ :: accel(π⃗)) = ⊥.

However, Req. 3 is too specific, as it, e.g., does not prevent acceleration of other
sequences π⃗2 :: accel(π⃗) :: π⃗1 where π⃗ = π⃗1 :: π⃗2. For such sequences, we have

→2
π⃗2::accel(π⃗)::π⃗1

= →π⃗2::accel(π⃗)::π⃗::accel(π⃗)::π⃗1
⊆ →π⃗2::accel(π⃗)::π⃗1

and thus →accel(π⃗2::accel(π⃗)::π⃗1) = →+
π⃗2::accel(π⃗)::π⃗1

= →π⃗2::accel(π⃗)::π⃗1
, so accelerating

them is pointless, too. Thus in general, the problem is that the cyclic suffix of the
trace might consist of a cycle π⃗ and accel(π⃗), but it might not necessarily start
with either of them. Hence, we generalize Req. 3 using the notion of conjugates.

Definition 10 (Conjugate). We say that two vectors v⃗, w⃗ are conjugates (de-
noted v⃗ ≡◦ w⃗) if v⃗ = v⃗1 :: v⃗2 and w⃗ = v⃗2 :: v⃗1.

So a conjugate of a cycle corresponds to the same cycle with another entry point.

Requirement 4. should accel(π⃗′) = ⊥ if π⃗′ ≡◦ π⃗ :: accel(π⃗) for some π⃗.

In general, however, we also want to accelerate cyclic suffixes that contain learned
transitions to deal with nested loops, as in the last acceleration step of Fig. 1.

Requirement 5. should accel(π⃗′) = ⊤ if π⃗′ ̸≡◦ π⃗ :: accel(π⃗) for all π⃗.

Req. 1, 2, 4, and 5 give rise to a complete specification for should accel: If the
cyclic suffix is a singleton, the decision is made based on Requirements 1 and 2,
and otherwise the decision is made based on Requirements 4 and 5.

should accel(π⃗′) := (|π⃗′| = 1 ∧ π⃗′ ∈ sip(τ)) ∨ (|π⃗′| > 1 ∧ ∀π⃗. (π⃗′ ̸≡◦ π⃗ :: accel(π⃗)))

However, this specification misses one important case: Recall that the trace was
[τx<100, τx<100] before acceleration was applied for the first time in Fig. 1. While
both [τx<100] and [τx<100, τx<100] are cyclic, the latter should not be accelerated,
since accel([τx<100, τx<100]) is a special case of τ+i that only represents an even
number of steps with τx<100. Here, the problem is that the cyclic suffix contains
a square, i.e., two adjacent repetitions of the same non-empty sub-sequence.

9

Requirement 6. should accel(π⃗) = ⊥ if π⃗ contains a square.

Thus, we obtain the following specification for should accel:

should accel(π⃗′) := |π⃗′| = 1 ∧ π⃗′ ∈ sip(τ) ∨
|π⃗′| > 1 ∧ π⃗′ is square-free ∧ ∀π⃗. (π⃗′ ̸≡◦ π⃗ :: accel(π⃗))

All properties that are required to implement should accel can easily be checked
automatically. To check π⃗′ ̸≡◦ π⃗ :: accel(π⃗), our implementation maintains a map
from learned transitions to the corresponding cycles that have been accelerated.

However, to implement Alg. 2, there is one more missing piece: As the choice
of the cyclic suffix in Line 7 is non-deterministic, a heuristic for choosing it is
required. In our implementation, we choose the shortest cyclic suffix such that
should accel returns ⊤. The reason is that, as observed in [17], accelerating short
cyclic suffixes before longer ones allows for learning more general transitions.

4 Guiding ABMC with Blocking Clauses

As mentioned in Sect. 3.2, Alg. 2 does not enforce the use of learned transitions.
Thus, depending on the models found by the SMT solver, ABMC may behave just
like BMC. We now improve ABMC by integrating blocking clauses that prevent it
from unrolling loops instead of using learned transitions. Here, we again assume
→accel(τ⃗) = →+

τ⃗ , i.e., that acceleration does not approximate. Otherwise, blocking
clauses are unsound (which is taken into account by our implementation).

Blocking clauses exploit the following straightforward observation: If the
learned transition τℓ = accel(π⃗⟲) has been added to the SMT problem with
bound b and an error state can be reached via a trace with prefix

π⃗ = [τ0, . . . , τb−1] :: π⃗
⟲ or π⃗′ = [τ0, . . . , τb−1, τℓ] :: π⃗

⟲,

then an error state can also be reached via a trace with the prefix [τ0, . . . , τb−1, τℓ],
which is not continued with π⃗⟲. Thus, we may remove traces of the form π⃗ and
π⃗′ from the search space by modifying the SMT problem accordingly.

To do so, we assign a unique identifier to each learned transition, and we
introduce a fresh integer-valued variable ℓ which is set to the corresponding
identifier whenever a learned transition is used, and to 0, otherwise.

Example 11 (Blocking Clauses). Reconsider Fig. 1 and assume that we modify τ
by conjoining ℓ = 0, and τ+i by conjoining ℓ = 1. Thus, we now have

τx<100 ≡ x < 100 ∧ x′ = x+ 1 ∧ y′ = y ∧ ℓ = 0 and

τ+i ≡ n > 0 ∧ x+ n ≤ 100 ∧ x′ = x+ n ∧ y′ = y ∧ ℓ = 1.

When b = 2, the trace is [τx<100, τx<100], and in the next iteration, it may
be extended to either π⃗ = [τx<100, τx<100, τx<100] or τ⃗ = [τx<100, τx<100, τ

+
i].

However, as →τ+
i
= →+

τx<100
, we have →π⃗ ⊆ →τ⃗ , so the entire search space can

be covered without considering the trace π⃗. Thus, we add the blocking clause

¬µ2(τx<100) (β1)

10

Algorithm 3: ABMCblock

Input: a safety problem T = (ψinit, τ, ψerr)
1 b← 0; V ← ∅; E ← ∅; id← 0; τ ← τ ∧ ℓ = 0; cache← ∅; add(µb(ψinit))
2 if ¬check sat() do return safe else σ ← get model()
3 while ⊤ do
4 push(); add(µb(ψerr))
5 if check sat() do return unsafe else pop()
6 τ⃗ ← traceb(σ); V ← V ∪ τ⃗ ; E ← E ∪ {(τ1, τ2) | [τ1, τ2] is an infix of τ⃗}
7 if τ⃗ = π⃗ :: π⃗⟲ ∧ π⃗⟲ is (V,E)-cyclic ∧ should accel(π⃗⟲) do
8 if ∃τc. (π⃗⟲, τc) ∈ cache do τℓ ← τc
9 else id← id+ 1; τℓ ← accel(π⃗⟲)∧ ℓ = id; cache← cache∪ {(π⃗⟲, τℓ)}

10 β1 ← ¬
(∧|π⃗⟲|−1

i=0 µb+i(π
⟲
i)

)
; β2 ← ℓ(b) ̸= id∨¬

(∧|π⃗⟲|−1
i=0 µb+i+1(π

⟲
i)

)
11 add(µb(τ ∨ τℓ) ∧ β1 ∧ β2)
12 else add(µb(τ))
13 if ¬check sat() do return safe else σ ← get model(); b← b+ 1

to the SMT problem to prevent ABMC from finding a model that gives rise to
the trace π⃗. Note that we have µ2(τ

+
i) |= β1, as τx<100 |= ℓ = 0 and τ+i |= ℓ ̸= 0.

Thus, β1 blocks τx<100 for the third step, but τ+i can still be used without
restrictions. Therefore, adding β1 to the SMT problem does not prevent us from
covering the entire search space.

Similarly, we have →π⃗′ ⊆ →τ⃗ for π⃗′ = [τx<100, τx<100, τ
+
i , τx<100]. Thus, we

also add the following blocking clause to the SMT problem:

ℓ(2) ̸= 1 ∨ ¬µ3(τx<100) (β2)

ABMC with blocking clauses can be seen in Alg. 3. The counter id is used to
obtain unique identifiers for learned transitions. Thus, it is initialized with 0
(Line 1) and incremented whenever a new transition is learned (Line 9). Moreover,
as explained above, ℓ = 0 is conjoined to τ (Line 1), and ℓ = id is conjoined to
each learned transition (Line 9).

In Line 10, the blocking clauses corresponding to the superfluous traces π⃗
and π⃗′ above are created, and they are added to the SMT problem in Line 11.
Here, π⟲

i denotes the ith transition in the sequence π⃗⟲.
Importantly, Alg. 3 caches (Line 9) and reuses (Line 8) learned transitions.

In this way, the learned transitions that are conjoined to the SMT problem have
the same id if they stem from the same cycle, and thus the blocking clauses β1
and β2 can also block sequences π⃗⟲ that contain learned transitions.

Example 12 (Caching). Assume that τ has the following dependency graph:

τ1 τ2 τ3

As Alg. 3 conjoins ℓ = 0 to τ , assume τi |= ℓ = 0 for all i ∈ {1, 2, 3}. Moreover,
assume that accelerating τ2 yields τ+2 with τ+2 |= ℓ = 1. If we obtain the trace
[τ1, τ

+
2 , τ3], it can be accelerated. Thus, Alg. 3 would add

11

β1 ≡ ¬
(
µ3(τ1) ∧ µ4(τ

+
2) ∧ µ5(τ3)

)
to the SMT problem. If the next step yields the trace [τ1, τ

+
2 , τ3, τ2], then τ2 is

accelerated again. Without caching, acceleration may yield a new transition τ+2′
with τ+2′ |= ℓ = 2. As the SMT solver may choose a different model in every
iteration, the trace may also change in every iteration. So after two more steps, we
could get the trace [τ1, τ

+
2 , τ3, τ1, τ

+
2′ , τ3]. At this point, the “outer” loop consisting

of τ1, arbitrarily many repetitions of τ2, and τ3, has been unrolled a second time,
which should have been prevented by β1. The reason is that τ+2 |= ℓ = 1, whereas
τ+2′ |= ℓ = 2, and thus τ+2′ |= ¬τ+2 . With caching, we again obtain τ+2 when τ2 is
accelerated for the second time, such that this problem is avoided.

Remarkably, blocking clauses allow us to prove safety in cases where BMC fails.

Example 13 (Proving Safety with Blocking Clauses). Consider the safety problem
(x ≤ 0, τ, x > 100) with τ ≡ x < 100 ∧ x′ = x+ 1. Alg. 1 cannot prove its safety,
as τ can be unrolled arbitrarily often (by choosing smaller and smaller initial
values for x). With Alg. 3, we obtain the following SMT problem with b = 3.

µ0(x ≤ 0) (initial states)

µ0(τ ∧ ℓ = 0) (τ)

µ1(τ ∧ ℓ = 0) (τ)

¬µ2(τ ∧ ℓ = 0) (β1)

ℓ(2) ̸= 1 ∨ ¬µ3(τ ∧ ℓ = 0) (β2)

µ2((τ ∧ ℓ = 0) ∨ (n > 0 ∧ x+ n ≤ 100 ∧ x′ = x+ n ∧ ℓ = 1)) (τ ∨ accel(τ))

µ3(τ ∧ ℓ = 0) (τ)

From the last formula and β2, we get ℓ(2) ̸= 1. On the other hand, the formula
labeled with (τ ∨ accel(τ)) and β1 imply µ2(ℓ = 1) ≡ ℓ(2) = 1, resulting in a
contradiction. Thus, ABMCblock can prove safety with the bound b = 3.

Like ABMC, ABMCblock preserves all important properties of BMC (see [14] for a
proof).

Theorem 14. ABMCblock is
Refutationally Complete: If T is unsafe, then ABMCblock(T) returns unsafe.
Sound: If ABMCblock(T) returns (un)safe, then T is (un)safe.
Non-Terminating: If T is safe, then ABMCblock(T) may not terminate.

5 Related Work

There is a large body of literature on bounded model checking that is concerned
with encoding temporal logic specifications into propositional logic, see [3, 4] as
starting points. This line of work is clearly orthogonal to ours.

Moreover, numerous techniques focus on proving safety or satisfiability of
transition systems or CHCs, respectively (e.g., [9,11,18,20,21,26]). A comprehen-
sive overview is beyond the scope of this paper. Instead, we focus on techniques
that, like ABMC, aim to prove unsafety by finding long counterexamples.

12

The most closely related approach is ADCL, which has already been discussed
in Sect. 1. Other acceleration-based approaches [2, 7, 15] can be seen as general-
izations of the classical state elimination method for finite automata: Instead of
transforming finite automata to regular expressions, they transform transition
systems to formulas that represent the runs of the transition system. During this
transformation, acceleration is the counterpart to the Kleene star in the state
elimination method. Clearly, these approaches differ fundamentally from ours.

In [22], under-approximating acceleration techniques are used to enrich the
control-flow graph of C programs. Then an external model checker is used to find
counterexamples. In contrast, ABMC tightly integrates acceleration into BMC,
and thus enables an interplay of both techniques: Acceleration changes the state
of the bounded model checker by adding learned transitions to the SMT problem.
Vice versa, the state of the bounded model checker triggers acceleration. Doing
so is impossible if the bounded model checker is used as an external black box.

In [23], the approach from [22] is extended by a program transformation that,
like our blocking clauses, rules out superfluous traces. For structured programs,
program transformations are quite natural. However, as we analyze unstructured
transition formulas, such a transformation would be very expensive in our setting.
More precisely, [23] represents programs as CFAs. To transform them, the edges
of the CFA are inspected. In our setting, the syntactic implicants correspond to
these edges. An important goal of ABMC is to avoid computing them explicitly.
Hence, it is unclear how to apply the approach from [23] in our setting.

Another related approach is described in [19], where acceleration is integrated
into a CEGAR loop in two ways: (1) as preprocessing and (2) to generalize
interpolants. In contrast to (1), we use acceleration “on the fly”. In contrast
to (2), we do not use abstractions, so our learned transitions can directly be
used in counterexamples. Moreover, [19] only applies acceleration to conjunctive
transition formulas, whereas we accelerate conjunctive variants of arbitrary
transition formulas. So in our approach, acceleration techniques are applicable
more often, which is particularly useful for finding long counterexamples.

Finally, transition power abstraction (TPA) [5] computes a sequence of over-
approximations for transition systems where the nth element captures 2n instead
of just n steps of the transition relation. So like ABMC, TPA can help to find long
refutations quickly, but in contrast to ABMC, TPA relies on over-approximations.

6 Experiments and Conclusion

We presented ABMC, an adaption of bounded model checking that makes use
of acceleration techniques. By enabling BMC to find deep counterexamples, it
targets one of the main limitations of BMC. However, without further precautions,
ABMC is not guaranteed to make use of the transitions that result from applying
acceleration, since whether they are used or not depends on the models found
by the underlying SMT solver. Hence, we introduced blocking clauses to enforce
the use of accelerated transitions. In this way, they also enable ABMC to prove
safety in cases where BMC fails to do so.

13

We implemented ABMC in our tool LoAT [13]. It uses the SMT solvers Z3 [24]
and Yices [10]. Currently, our implementation is restricted to integer arithmetic.
It uses the acceleration technique from [12] which, in our experience, is precise
in most cases where the values of the variables after executing the loop can be
expressed by polynomials of degree ≤ 2. If acceleration yields a non-polynomial
formula, then this formula is discarded by our implementation, since Z3 and
Yices only support polynomials. We evaluate our approach on the examples from
the category LIA-Lin (linear CHCs with linear integer arithmetic) from the CHC
competition ’23 [8], which contain numerous problems from program verification.

We compared several configurations of LoAT with other leading CHC solvers.
More precisely, we evaluated the following configurations:

LoAT We used LoAT’s implementations of Alg. 1 (LoAT BMC), Alg. 2 (LoAT
ABMC), Alg. 3 (LoAT ABMCblock), and ADCL (LoAT ADCL).

Z3 [24] We used Z3 4.12.2, where we evaluated its implementations of the Spacer
algorithm (Spacer [21]) and BMC (Z3 BMC).

Golem [5] We used Golem 0.4.3, where we evaluated its implementations of
transition power abstraction (Golem TPA [5]) and BMC (Golem BMC).

Eldarica [20] We used the default configuration of Eldarica 2.0.9.

We ran our experiments on StarExec [25] with a wallclock timeout of 300s, a cpu
timeout of 1200s, and a memory limit of 128GB per example.

2023
unsafe safe

✓ ! ✓ !

LoAT ABMC 73 – 31 –

LoAT ABMCblock 72 0 75 12

Golem TPA 63 4 88 3

LoAT BMC 60 0 36 0

Z3 BMC 58 – 21 –

LoAT ADCL 56 1 0 –

Golem BMC 55 – 20 –

Spacer 52 5 156 51

Eldarica 29 0 121 17

0 50 100 150 200 250 300

40

50

60

70

runtime in seconds

u
n
sa
fe

p
ro
o
fs

LoAT ABMC

LoAT ABMCblock

Golem TPA

LoAT BMC

Z3 BMC

LoAT ADCL

0 5000 10000 15000

40

50

60

70

length of counterexamples

u
n
sa
fe

p
ro
o
fs

LoAT ABMCblock

LoAT BMC

0 50 100 150 200

40

50

60

70

length of counterexamples

Fig. 2: Comparing ABMC with other techniques and tools for CHC solving

14

The results can be seen in Fig. 2. In the table, the columns marked with !
show the number of unique proofs, i.e., the number of examples that could only
be solved by the corresponding configuration. Clearly, such a comparison only
makes sense if just one implementation of each algorithm is considered. Hence,
here we disregarded LoAT ABMC, Z3 BMC, and Golem BMC.

The table shows that our implementation of ABMC is very powerful for
proving unsafety. In particular, it shows a significant improvement over LoAT
BMC, which is implemented very similarly, but does not make use of acceleration.

Note that all unsafe instances that can be solved by ABMC can also be
solved by other configurations. This is not surprising, as LoAT ADCL is also
based on acceleration techniques. Hence, ABMC combines the strengths of ADCL
and BMC, and conversely, unsafe examples that can be solved with ABMC can
usually also be solved by one of these techniques. So for unsafe instances, the
main contribution of ABMC is to have one technique that performs well both on
instances with shallow counterexamples (which can be solved by BMC) as well as
instances with deep counterexamples only (which can often be solved by ADCL).

On the one instance that can only be solved by ADCL, our (A)BMC imple-
mentation spends most of the time with applying substitutions, which clearly
shows potential for further optimizations. Due to ADCL’s depth-first strategy, it
tends to produce smaller formulas, so that applying substitutions is cheaper.

Regarding safe examples, the tables show that our implementation of ABMC
is not competitive with state-of-the-art techniques. However, it finds several
unique proofs. This is remarkable, as LoAT is not at all fine-tuned for proving
safety. For example, we expect that LoAT’s results on safe instances can easily
be improved by integrating over-approximating acceleration techniques. While
such a variant of ABMC could not prove unsafety, it would presumably be much
more powerful for proving safety. We leave that to future work.

The upper right plot shows how many proofs of unsafety were found within a
given runtime, where we only include the six best configurations for readability.
They clearly show that ABMC is highly competitive on unsafe instances, not
only in terms of solved examples, but also in terms of runtime. The plots on the
bottom show how many counterexamples of a certain length have been found
by LoAT BMC and ABMCblock (the right one is truncated after 200 steps). They
show the impact of acceleration: While LoAT BMC needs up to 16000 steps, the
longest counterexamples found by LoAT ABMCblock has length 200.

Our results also show that blocking clauses have no significant impact on
ABMC’s performance on unsafe instances, neither regarding the number of solved
examples, nor regarding the runtime. In fact, ABMCblock solved one instance
less than ABMC (which can, however, also be solved by ABMCblock with a larger
timeout). On the other hand, blocking clauses are clearly useful for proving safety,
where they even allow LoAT to find several unique proofs.

Our implementation is open-source and available on Github. For the sources,
a pre-compiled binary, and more information on our evaluation, we refer to [1].

15

References

1. Evaluation of “Accelerated Bounded Model Checking” (2023), https://
loat-developers.github.io/abmc-eval/

2. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Acceleration from the-
ory to practice. Int. J. Softw. Tools Technol. Transf. 10(5), 401–424 (2008).
https://doi.org/10.1007/s10009-008-0064-3

3. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model check-
ing. Advances in Computers 58, 117–148 (2003). https://doi.org/10.1016/S0065-
2458(03)58003-2

4. Biere, A.: Bounded model checking. In: Handbook of Satisfiability - Second Edition,
pp. 739–764. Frontiers in Artificial Intelligence and Applications 336, IOS Press
(2021). https://doi.org/10.3233/FAIA201002

5. Blicha, M., Fedyukovich, G., Hyvärinen, A.E.J., Sharygina, N.: Transition power
abstractions for deep counterexample detection. In: TACAS ’22. pp. 524–542. LNCS
13243 (2022). https://doi.org/10.1007/978-3-030-99524-9 29

6. Bozga, M., Gı̂rlea, C., Iosif, R.: Iterating octagons. In: TACAS ’09. pp. 337–351.
LNCS 5505 (2009). https://doi.org/10.1007/978-3-642-00768-2 29

7. Bozga, M., Iosif, R., Konečný, F.: Relational analysis of integer programs. Tech. Rep.
TR-2012-10, VERIMAG (2012), https://www-verimag.imag.fr/TR/TR-2012-10.
pdf

8. CHC Competition, https://chc-comp.github.io
9. Dietsch, D., Heizmann, M., Hoenicke, J., Nutz, A., Podelski, A.: Ultimate TreeAu-

tomizer (CHC-COMP tool description). In: HCVS/PERR@ETAPS ’19. pp. 42–47.
EPTCS 296 (2019). https://doi.org/10.4204/EPTCS.296.7

10. Dutertre, B.: Yices 2.2. In: CAV ’14. pp. 737–744. LNCS 8559 (2014).
https://doi.org/10.1007/978-3-319-08867-9 49

11. Fedyukovich, G., Prabhu, S., Madhukar, K., Gupta, A.: Solving constrained
Horn clauses using syntax and data. In: FMCAD ’18. pp. 1–9 (2018).
https://doi.org/10.23919/FMCAD.2018.8603011

12. Frohn, F.: A calculus for modular loop acceleration. In: TACAS ’20. pp. 58–76.
LNCS 12078 (2020). https://doi.org/10.1007/978-3-030-45190-5 4

13. Frohn, F., Giesl, J.: Proving non-termination and lower runtime bounds with
LoAT (system description). In: IJCAR ’22. pp. 712–722. LNCS 13385 (2022).
https://doi.org/10.1007/978-3-031-10769-6 41

14. Frohn, F., Giesl, J.: Accelerated bounded model checking. arXiv:2401.09973 [cs.LO]
(2024). https://doi.org/10.48550/arXiv.2401.09973

15. Frohn, F., Naaf, M., Brockschmidt, M., Giesl, J.: Inferring lower runtime bounds
for integer programs. ACM Trans. Program. Lang. Syst. 42(3), 13:1–13:50 (2020).
https://doi.org/10.1145/3410331

16. Frohn, F., Giesl, J.: Proving non-termination by Acceleration Driven Clause Learn-
ing. In: CADE ’23. LNCS 14132 (2023). https://doi.org/10.1007/978-3-031-38499-
8 13

17. Frohn, F., Giesl, J.: ADCL: Acceleration Driven Clause Learning for con-
strained Horn clauses. In: SAS ’23. pp. 259–285. LNCS 14284 (2023).
https://doi.org/10.1007/978-3-031-44245-2 13

18. Hoder, K., Bjørner, N.S.: Generalized property directed reachability. In: SAT ’12.
pp. 157–171. LNCS 7317 (2012). https://doi.org/10.1007/978-3-642-31612-8 13

19. Hojjat, H., Iosif, R., Konečný, F., Kuncak, V., Rümmer, P.: Accelerating interpolants.
In: ATVA ’12. pp. 187–202. LNCS 7561 (2012). https://doi.org/10.1007/978-3-642-
33386-6 16

16

https://loat-developers.github.io/abmc-eval/
https://loat-developers.github.io/abmc-eval/
https://doi.org/10.1007/s10009-008-0064-3
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.3233/FAIA201002
https://doi.org/10.1007/978-3-030-99524-9_29
https://doi.org/10.1007/978-3-642-00768-2_29
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://www-verimag.imag.fr/TR/TR-2012-10.pdf
https://chc-comp.github.io
https://doi.org/10.4204/EPTCS.296.7
https://doi.org/10.1007/978-3-319-08867-9_49
https://doi.org/10.23919/FMCAD.2018.8603011
https://doi.org/10.1007/978-3-030-45190-5_4
https://doi.org/10.1007/978-3-031-10769-6_41
https://doi.org/10.48550/arXiv.2401.09973
https://doi.org/10.1145/3410331
https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/978-3-031-38499-8_13
https://doi.org/10.1007/978-3-031-44245-2_13
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-33386-6_16
https://doi.org/10.1007/978-3-642-33386-6_16

20. Hojjat, H., Rümmer, P.: The Eldarica Horn solver. In: FMCAD ’18. pp. 1–7 (2018).
https://doi.org/10.23919/FMCAD.2018.8603013

21. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for
recursive programs. Formal Methods Syst. Des. 48(3), 175–205 (2016).
https://doi.org/10.1007/s10703-016-0249-4

22. Kroening, D., Lewis, M., Weissenbacher, G.: Under-approximating loops in C
programs for fast counterexample detection. Formal Methods Syst. Des. 47(1),
75–92 (2015). https://doi.org/10.1007/s10703-015-0228-1

23. Kroening, D., Lewis, M., Weissenbacher, G.: Proving safety with trace automata
and bounded model checking. In: FM ’15. pp. 325–341. LNCS 9109 (2015).
https://doi.org/10.1007/978-3-319-19249-9 21

24. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS ’08. pp. 337–340.
LNCS 4963 (2008). https://doi.org/10.1007/978-3-540-78800-3 24

25. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: A cross-community infra-
structure for logic solving. In: IJCAR ’14. pp. 367–373. LNCS 8562 (2014).
https://doi.org/10.1007/978-3-319-08587-6 28

26. Zhu, H., Magill, S., Jagannathan, S.: A data-driven CHC solver. In: PLDI ’18. pp.
707–721 (2018). https://doi.org/10.1145/3192366.3192416

17

https://doi.org/10.23919/FMCAD.2018.8603013
https://doi.org/10.1007/s10703-016-0249-4
https://doi.org/10.1007/s10703-015-0228-1
https://doi.org/10.1007/978-3-319-19249-9_21
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1145/3192366.3192416

	Accelerated Bounded Model Checking

