
CHC Model Validation with Proof Guarantees

Rodrigo Otoni1B, Martin Blicha1,2, Patrick Eugster1, and Natasha Sharygina1

1 Università della Svizzera italiana, Lugano, Switzerland
{otonir,blichm,eugstp,sharygin}@usi.ch
2 Charles University, Prague, Czech Republic

[Presentation-only submission - presented at iFM’23]

Abstract. Formal verification tooling increasingly relies on logic solvers
as automated reasoning engines. A point of commonality among these
solvers is the high complexity of their codebases, which makes bug oc-
currence disturbingly frequent. Tool competitions have showcased many
examples of state-of-the-art solvers disagreeing on the satisfiability of
logic formulas, be them solvers for Boolean satisfiability (SAT), satisfia-
bility modulo theories (SMT), or constrained Horn clauses (CHC). The
validation of solvers’ results is thus of paramount importance, in order
to increase the confidence not only in the solvers themselves, but also
in the tooling which they underpin. Among the formalisms commonly
used by modern verification tools, CHC is one that has seen, at the same
time, extensive practical usage and very little efforts in result validation.
As one of the initial steps in addressing this issue, we propose and evalu-
ate a two-layered validation approach for witnesses of CHC satisfiability.
Our approach relies, first, on a proof producing SMT solver to validate a
CHC model via a series of SMT queries, and, second, on a proof checker
to validate the SMT solver’s results. We developed a modular evaluation
framework and assessed the approach’s viability via large scale exper-
imentation, comparing three CHC solvers, five SMT solvers, and four
proof checkers. Our results indicate that the approach is feasible, with
potential to be incorporated into CHC-based tooling, and also confirm
the need for validation, with nine bugs being found in the tools used.

Keywords: validation · constrained Horn clauses · SMT proofs

1 Introduction

First-order logic (FOL) is a formalism capable of representing many interesting
verification problems, ranging from simple integer overflow to elaborate safety
and liveness properties. Different fragments of FOL are suitable to aid in specific
verification tasks, with one fragment of particular practical interest being con-
strained Horn clauses (CHC) [28]. The CHC fragment has been shown to be a
match for Hoare logic [33] with practical uses [12], aiding in reasoning about the
behaviour of procedural [12] and functional [27] programs, as well as concurrent
systems [35] and smart contracts [46], to name a few examples.

To enable the automated reasoning of FOL formulas different logic solvers
can be used, depending on the fragment selected. The most common categories



2 R. Otoni et al.

of such tools are arguably Boolean satisfiability (SAT) and satisfiability modulo
theories (SMT) solvers [40], which respectively solve formulas in the proposi-
tional fragment of FOL and in extensions of it with theories such as arithmetics,
arrays, and bit vectors. CHC solvers are also available, e.g., Eldarica [36],
Golem [14], and Spacer [39], serving, for instance, as the back-end reasoning
engines of verification tools targeting programs written in C/C++ [29], Java [38],
Rust [43], and Solidity [1], as well as Android applications [18].

Despite their extensive usage in verification, logic solvers are themselves not
immune to bugs. To illustrate this point, in the 2022 edition of the annual SMT
competition there were 18 benchmarks in which at least two state-of-the-art
solvers disagreed on the results [7]3. In light of this, having guarantees about
solvers’ results is of paramount importance. One approach to achieve this goal
is to formally verify the solvers’ code, as has been done for read-eval-print
loop (REPL) [41] and garbage collector [49] implementations. Despite the strong
guarantees provided, this approach incurs a high cost to verify the existing code-
base and any future modifications to it, as well as potentially preventing many
code optimizations to be made, which are essential for solver performance. An-
other, less invasive, approach, is to validate solvers’ outputs, rather than verify-
ing the solvers themselves. This requires a solver, in addition to producing its
standard output, to also produce a witness that can be used by an independent
tool to validate the given result. Currently, the community is moving towards
the second approach, with many witness formats being proposed to validate the
outputs of SAT [4,20,30,32,51,54] and SMT [34,44,45,50,52] solvers, and both
the annual SAT and SMT competitions now following this approach4. Code-
base verification can still be applied, however, targeting instead the validation
tools [31,42], which are much less complex and easier to maintain.

When it comes to CHC solvers, the annual CHC competition, CHC-COMP,
encountered similar issues to its SAT and SMT counterparts, with competing
solvers disagreeing on certain benchmarks, and its organizers having the valida-
tion of results as a goal [21]. The input of a CHC solver, detailed in Section 2, is
a conjunction of logical implications containing uninterpreted predicates, with
the task of the solver being to decide if false can be derived or not. If it can the
input is considered unsatisfiable, UNSAT for short, and if it cannot the input is
considered satisfiable, SAT for short, not to be confused with Boolean satisfia-
bility. A witness for an UNSAT result, called an UNSAT proof, should contain
an explanation of how false can be derived, while a witness for a SAT result,
called a SAT model, should contain interpretations for all the predicates in such
a way that all clauses evaluate to true, entailing that false cannot be derived;
for the remainder of the paper UNSAT proofs and SAT models will be referred
to simply as proofs and models.

3 This is down from 274 benchmarks in the 2021 edition, showcasing the attention
given by competitors to addressing unsound results found.

4 The SAT competition requires its competitors to produce witnesses since its 2013
edition, while the SMT competition started an exhibition track for this, still separate
from the main tracks, in its 2022 edition.



CHC Model Validation with Proof Guarantees 3

CHC input

End user Verification tool

CHC solver

SAT result UNSAT result
Model Proof

Model validator

Invalid model Valid model
Proof

Proof checker

Valid proof Invalid proof

Verification environment

Witness production

Layer 1

Layer 2

Result

Fig. 1: Overview of our two-layered validation ap-
proach for CHC models. Although capable of being
produced, CHC proofs cannot be checked currently.

The production of wit-
nesses is a common feature
of modern CHC solvers,
but efforts in witnesses
validation are limited at
present. The validation of
models is done via SMT
queries, and is currently
supported only by an
ad hoc validator tied to
the SMT solver Z3 [22]5.
Unlike the case for mod-
els, however, the proofs
produced cannot be vali-
dated with available tool-
ing, given that, to the
best of our knowledge, no
proof checking approach
currently exists.

Since CHC model val-
idation is underpinned by
SMT solving, the same
concern regarding the cor-
rectness of CHC solvers’
results is put on the val-
idation itself, i.e., on the
correctness of SMT solvers’ results. To address this, we propose a two-layered
validation approach to provide additional guarantees about the results obtained,
illustrated in Figure 1. The first layer, consisting of the SMT queries responsible
for model validation, is enhanced by a second layer, consisting of the production
and checking of SMT proofs, with the result obtained being forwarded to the
user or tool interacting with the CHC solver. The approach is generic w.r.t. FOL
theories and solvers, and is also very modular, enabling different SMT solvers to
be used in the validation, further increasing assurances.

To asses the viability of practical model validation we developed a modular
evaluation framework, called ATHENA, capable of catering to different combi-
nations of state-of-the-art CHC and SMT solvers, and conducted a large scale
evaluation. Concretely, we used our framework to validate the models produced
by three CHC solvers, Eldarica [36], Golem [14], and Spacer [39], with each
model produced being separately validated, in Layer 1, by five proof producing
SMT solvers, cvc5 [5], OpenSMT [37], SMTInterpol [19], veriT [16], and
Z3 [22]. In addition, we checked, in Layer 2, all the proofs produced in the proof
formats currently supported by automated proof checkers, by using the checkers
Carcara [2], LFSC checker [52], SMTInterpol checker [34], and TSWC [45].

5 See https://github.com/chc-comp/chc-tools/blob/master/chctools/chcmodel.py.

https://github.com/chc-comp/chc-tools/blob/master/chctools/chcmodel.py


4 R. Otoni et al.

Table 1: Brief descriptions of the bugs found during the evaluation.
Bug Effect

CHC solvers

Eldarica Invalid model produced10

Spacer Invalid model produced12

Golem Syntactically malformed model produced9

Golem Crash during model production8

SMT solvers
cvc5 Invalid proof produced15

cvc5 Crash during proof production14

OpenSMT Crash during sort inference13

Proof checkers Carcara Parsing error due to unknown attribute16

LFSC checker Crash during type inference17

To have a focused evaluation we conducted our experiments on benchmarks
from one specific FOL theory, namely the linear integer arithmetic (LIA) the-
ory. We used all 955 LIA benchmarks from CHC-COMP 2022 in our evaluation,
499 containing only linear Horn clauses, i.e., implications with a single uninter-
preted predicate in the implicant, and 456 containing nonlinear Horn clauses,
i.e., implications with multiple uninterpreted predicates in the implicant. The
benchmarks used led to 91626 SMT instances and 385303 SMT proofs being
produced as part of the validation process.

Three observations can be made from the results obtained. First, the proof-
backed model validation approach proposed is viable in practice, with the ma-
jority of the models being validated with available tooling. This means that any
CHC-based tool, e.g., the SeaHorn [29] and SolCMC [1] model checkers, can
in principle benefit from the guarantees provided by model validation. Second,
model and proof sizes, which were in the order of hundreds of megabytes in our
experiments and can potentially require gigabytes of storage, are a concern and a
potential limitation to the practical use of validation. Producing compact mod-
els and proofs is thus an important goal, with compression, recently investigated
in the context of unsatisfiability proofs for SAT solvers [47], being a potential
complementary goal. Lastly, model validation provides a useful way to generate
new and interesting SMT instances. Our evaluation uncovered bugs not only in
the selected CHC solvers, which are our main focus, but also in two SMT solvers
and two proof checkers for SMT proofs. The bugs found, listed in Table 1, range
from parsing errors to invalid models being produced. They were all acknowl-
edged by the developers and are detailed in Section 5. In addition to aiding in
tool development, these bugs confirm the need for additional guarantees to be
provided to modern verification tooling.

To summarise, our contributions are the following:

1. Proposal of a two-layered validation approach for CHC models;
2. Development of an evaluation framework, ATHENA, to assess the approach;
3. Staging of a large scale evaluation to determine the viability of the approach.



CHC Model Validation with Proof Guarantees 5

The remainder of the paper is structured as follows: the necessary background
is given in Section 2, the two layers of our validation approach are presented in
Section 3, ATHENA is detailed in Section 4, the evaluation is discussed in
Section 5, and, finally, our conclusions are laid out in Section 6.

2 Background

The constrained Horn clauses formalism has been proposed as a unified, purely
logic-based, intermediate language for reasoning about verification tasks [27]. It
builds upon the success achieved with SAT and SMT, using logical constraints to
capture various verification tasks, including safety, termination, and loop invari-
ant computation, from a variety of domains. In this section the necessary CHC
background is presented, followed by an overview of related witness validation
approaches. We refer readers to [40] for details on SAT and SMT.

2.1 Constrained Horn Clauses

Following standard SMT terminology [9], we assume a first-order theory T and a
set of uninterpreted predicates P disjoint from the signature of T . A constrained
Horn clause is a formula φ ∧ P1 ∧ . . . ∧ Pn =⇒ H, where φ is an interpreted
formula in the language of T , each Pi is an application of a symbol p ∈ P to
terms of T , H is either an application of a symbol p ∈ P to terms of T or false,
and all variables in the formula are implicitly universally quantified. Commonly,
the antecedent and the consequent of the implication are denoted as the body
and the head of the Horn clause, and φ is referred to as its constraint.

Given a set of constrained Horn clauses S over the uninterpreted predicates
P and theory T , we say that S is satisfiable if there exists a model M of T
extended with an interpretation for all the uninterpreted predicates P such that
all the clauses evaluate to true in M, i.e., every clause evaluate to true in M for
all possible instantiations of the universally quantified variables. In practice, we
are interested in interpretations that are definable in the language of T , i.e., we
want a mapping of the predicates to a set of formulas in the language of T such
that each clause from S is valid in T after the uninterpreted predicates are re-
placed by their interpretations. This is called syntactic solvability, as opposed to
the more general semantic solvability [48]. The interpretations of the predicates
from the discovered model serve as witnesses for the satisfiability answer. An un-
satisfiability answer, on the other hand, needs to be witnessed by a derivation of
false from the original clauses, likely via universal instantiation and resolution.

2.2 Related Witness Validation Approaches

As logic solvers became more powerful they were quickly adopted as the back-end
reasoning engines of many verification tools. The need to validate the answers
from these solvers arose soon after, with the complexity of the validation in-
creasing hand-in-hand with the expressiveness of the underlying formalism.



6 R. Otoni et al.

In line with its relative simplicity, witness validation in the context of Boolean
satisfiability was the first to be investigated. Validating a satisfying model is an
easy task: one simply substitutes the variables of the formula with their values
from the model and checks if the resulting Boolean expression over constants true
and false simplifies to true. The validation of unsatisfiability proofs, however, is
far from trivial, even in such a restricted domain. Many proof formats have been
proposed, offering different trade-offs between proof compactness and checking
efficiency. Initial formats were based on resolution [51] and clausal proofs [30],
with resolution asymmetric tautology (RAT) [32] being a base for many recent
developments, e.g., deletion RAT (DRAT) [54], linear RAT (LRAT) [20], and
flexible RAT (FRAT) [4]. The production of proofs in the DRAT format has
been a requirement in the SAT competition since its 2014 edition, with DRAT-
trim [54] being the standard proof checker for proofs following this format.

In regards to satisfiability modulo theories, witness validation is complicated
by the presence of theories and quantifiers. No standard way of representing
SMT models currently exists, with a consistent push by the SMT competition
organizers having been made in recent years for the adoption of a unified format
in line with the SMT-LIB standard [8]. A separate, experimental, model valida-
tion track has been established and has seen a steady increase in the SMT-LIB
logics supported, with PySMT [26] and Dolmen [17] used as validating tools.
Despite recent advances, model validation is still restricted to quantifier-free for-
mulas. For unsatisfiability proofs, different formats, often attached to a specific
solver, have been proposed. The Alethe format [50] was initially supported
by veriT, but has since also being integrated into cvc5’s proof production.
cvc5 also caters for proofs based on the logical framework with side condi-
tions (LFSC) [52], with LFSC support preceding Alethe’s integration and dat-
ing back to the CVC3 version of the tool. SMTInterpol [34], OpenSMT [45],
and Z3 [44] also support their own, unnamed, proof formats. Each format has
one or more associate tools that can consume the proofs produced, with said
tools being either interactive or automated. In the interactive side, proof assis-
tants discharge some verification conditions to external logic solvers as a way to
increase their level of automation, with the proofs produced providing new the-
orems to be checked by the proof assistant’s internal engine, as it has been done
with Coq [3,23] and Isabelle/HOL [6,13,15,25]. When it comes to automated
checkers, their goal is mainly to serve as independent lightweight validators, with
potential to be integrated into tools such as model checkers. Automated checkers
are available for a variety of formats [2,34,45,52,54]. As of the time of writing, no
proof format is enforced by the SMT competition, with an experimental track
being available as a way to showcase the strengths of existing formats.

In addition to logic solving, witness validation is also pursued in other con-
texts. A good example of this is the use of validation in the annual competition
on software verification [10]. Software verification witnesses are different from
those used by logic solvers, being categorizes as either correctness or violation
witnesses, with their own formats6 and limitations [11]. The tool that maybe best

6 See https://gitlab.com/sosy-lab/benchmarking/sv-witnesses.

https://gitlab.com/sosy-lab/benchmarking/sv-witnesses


CHC Model Validation with Proof Guarantees 7

illustrates usage of witness is Korn [24], a participant in the software verification
competition that relies on Horn solvers as its back-end and produces witnesses
for its reasoning about C programs’ properties from the witnesses produced by
the underlying solvers.

3 Validation of CHC Models

A CHC solver is a complex piece of software, often implementing sophisticated
algorithms relying on decision and interpolation procedures, which allows for
subtle bugs to occur and lead to incorrect answers. In addition to providing much
needed stronger guarantees in regards to SAT or UNSAT results, model valida-
tion also ensures the correctness of the models themselves, which are commonly
relied upon by verification tools to, for instance, establish inductive invariants of
programs. Model validation is therefore critical for assurance not only of solvers’
results, but also of all structures derived from models presented to end users.

CHC benchmark

CHC model

End user Verification tool

CHC solver

Instance generator

SMT instanceSMT instanceSMT instance

SMT solver

SAT result UNSAT result
Proof

Proof checker

Valid proof Invalid proof

Verification environment

Model
production

Layer 1

Layer 2

Result

Fig. 2: Breakdown of our two-layered validation
approach for CHC models. A valid model will have
all the SMT instances generated from it yield an
UNSAT result backed by a valid SMT proof.

We propose a two-layered
validation approach for CHC
models, detailed in Figure 2;
since our focus is on mod-
els, the illustration assumes
the benchmark is satisfiable.
The first of the two layers in
the approach handles model
validation via SMT solving.
Following the CHC model
definition laid out in Sec-
tion 2.1, model validation
can be done via a number of
SMT queries which is linear
w.r.t. to the number of Horn
clauses present in the input.
Each such query checks if a
specific Horn clause is logi-
cally valid in the theory T
after its uninterpreted pred-
icates are substituted by
their interpretations given
by the model. This is done
by checking if the negation
of the Horn clause, aug-
mented with the interpreta-
tions, is satisfiable, i.e., if
a satisfying assignment for
φ∧P1∧ . . .∧Pn∧¬H exists.
This check is well suited for



8 R. Otoni et al.

SMT solving, with a valid model leading to all queries being unsatisfiable. An
important note is that, depending on the theory T , the query checking might be
intractable for existing SMT solvers, and in some cases even undecidable.

As an example, consider the following CHC system, consisting of three Horn
clauses and a single uninterpreted predicate Inv :

x ≤ 0 =⇒ Inv(x)

Inv(x) ∧ x < 5 ∧ x′ = x+ 1 =⇒ Inv(x′)

Inv(x) ∧ ¬(x < 10) =⇒ false

This system is satisfiable with a potential model being one that contains the
interpretation Inv(x) ≡ x ≤ 5. To validate this model we need to establish that
the following three formulas are logically valid in the LIA theory:

x ≤ 0 =⇒ x ≤ 5

x ≤ 5 ∧ x < 5 ∧ x′ = x+ 1 =⇒ x′ ≤ 5

x ≤ 5 ∧ ¬(x < 10) =⇒ false

The validation can be done by showing that the three formulas below are unsat-
isfiable, which can be trivially seen for this small example:

x ≤ 0 ∧ ¬(x ≤ 5)

x ≤ 5 ∧ x < 5 ∧ x′ = x+ 1 ∧ ¬(x′ ≤ 5)

x ≤ 5 ∧ ¬(x < 10) ∧ ¬false

While it can be easy to validate models such as the one above, this is far
from the case when dealing with real world examples. As a consequence, SMT
solvers are, like their CHC counterparts, very complex tools that are susceptible
to bugs. The second layer in the approach we propose tackles this issue via the
validation of SMT solvers’ results. A number of SMT solvers produce unsatis-
fiability proofs that can be independently checked. These proofs provide much
needed guarantees regarding unsatiafiability results, which are at the core of the
validation done in Layer 1. By relying on the currently untapped power of SMT
proofs we provide additional correctness guarantees for CHC model validation.

Our approach is theory independent and can be applied to any CHC, with the
only requirement being that a proof producing SMT solver and a proof checker
are available for the theory in question. In addition to validating direct end
user usage of CHC solvers, our approach can also be embedded into CHC-based
verification tools, enhancing their own guarantees.

4 Implementation

To enable the practical use of our approach, with the immediate goal of ascertain-
ing the capabilities of state-of-the-art CHC and SMT solvers, we developed the
modulAr consTrained Horn clauses modEl validatioN frAmework, ATHENA



CHC Model Validation with Proof Guarantees 9

for short. Our framework is capable of validating CHC models via SMT solving
while using different solver combinations. ATHENA also handles the produc-
tion and checking of SMT proofs, for the SMT solvers with proof production
capabilities. In addition, metrics such as model and proof sizes can be gathered
and analysed. The framework consists of 2535 lines of shell and Python code in
total, is fully automated, and uses GNU parallel [53] to achieve a large degree
of parallelisation in order to better tackle the high computation cost. ATHENA
is open-source7, enabling third-parties to make full use of it, with one of our
goals being to provide the groundwork for model validation at CHC-COMP.

5 Evaluation

We first describe the benchmarks and tools used, in Section 5.1, and then dis-
cuss the results obtained related to CHC model validation, in Section 5.2, and
SMT proof checking, in Section 5.3. We used a machine with 64 AMD EPYC
7452 processors and 256 GB of memory for the evaluation. All individual tool
executions had a timeout of 60 seconds and a memory limit of 5 gigabytes.

5.1 Benchmarks and Tools

We used the benchmarks of the two LIA tracks of CHC-COMP 2022 [21], the
LIA-lin track, consisting of benchmarks containing only linear Horn clauses,
and the LIA-nonlin track, consisting of benchmarks containing nonlinear Horn
clauses. We decided to use LIA benchmarks for two reasons: first, the LIA tracks
are the most traditional in CHC-COMP, being present in every edition of the
competition and having the most competing solvers, and second, the LIA theory
is covered by all proof producing SMT solvers available, even if for some only in
its quantifier-free fragment.

For model production we chose the current three best performing CHC solvers
in the LIA tracks for comparison, which are, in alphabetical order, Eldar-
ica [36], Golem [14], and Spacer [39]. For model validation we used all SMT
solvers that competed in the proof exhibition track of the 2022 SMT competi-
tion, which are, in alphabetical order, cvc5 [5], OpenSMT [37], SMTInter-
pol [19], and veriT [16], as well as Z3 [22], which can produce proofs but did
not compete in the track. To check the SMT proofs we used the fully automated
checkers Carcara [2], for Alethe proofs produced by cvc5 and veriT, LFSC
checker [52], for LFSC proofs produced by cvc5, SMTInterpol checker [34],
for proofs produced by SMTInterpol, and TSWC [45], for proofs produced
by OpenSMT; to the best of our knowledge there is currently no independent
automated checker for proofs produced by Z3.

5.2 Model Validation Results

To produce the CHC models we executed the selected CHC solvers with all
benchmarks; the results are summarised in Table 2. All tools were executed with
7 Available at https://github.com/usi-verification-and-security/athena.

https://github.com/usi-verification-and-security/athena


10 R. Otoni et al.

Table 2: Results for solving the CHC benchmarks of the two LIA tracks.
SAT UNSAT Unknown Timeout Memout Error

LIA-lin
(499 benchmarks)

Eldarica 141 51 0 307 0 0
Golem 165 80 0 254 0 0
Spacer 182 89 0 212 16 0

LIA-nonlin
(456 benchmarks)

Eldarica 117 56 0 283 0 0
Golem 209 118 0 129 0 0
Spacer 244 130 1 74 7 0

0 50 100 150 200 250
10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB
Eldarica
Golem
Spacer

(a) Models for LIA-lin.

0 50 100 150 200 250
10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB
Eldarica
Golem
Spacer

(b) Models for LIA-nonlin.

Fig. 3: Sizes of the CHC models. The models are ordered according to their size,
the x-axis indicates their position in the order and the y-axis indicates their size.

their default engine configurations. The performance of the tools is in line with
the CHC-COMP results, with Spacer solving the most benchmarks overall,
followed by Golem and Eldarica. Only one execution, with Spacer, yielded
an unknown result, meaning that the solver terminated within the allocated time
frame but was not able to decide if the benchmark was satisfiable or not. A
number of errors, i.e., tool crashes, were observed with Golem while testing our
framework8, as well as syntactically malformed models being produced by it9,
with the underlying causes of both issues being addressed before the full-scale
evaluation. Regarding the models’ sizes, Eldarica’s models tended to be the
most compact, followed by Golem’s, with Spacer producing most of the larger
models, as can be seen in Figure 3; the single largest model is an outlier produced
by Golem, with a size exceeding 100 MB. The last point of note is that all models
produced by Golem are quantifier-free, while Eldarica produced 1 quantified
model, for 1 nonlinear benchmark, and Spacer produced 281 quantified models
in total, 90 from linear benchmarks and 191 from nonlinear benchmarks.

8 See https://github.com/usi-verification-and-security/golem/issues/29.
9 See https://github.com/usi-verification-and-security/golem/issues/27.

https://github.com/usi-verification-and-security/golem/issues/29
https://github.com/usi-verification-and-security/golem/issues/27


CHC Model Validation with Proof Guarantees 11

Table 3: Results for solving the SMT instances generated from the LIA-lin mod-
els. Due to the space limitation, unknown, timeout, memout, and error are short-
ened to UNK, TO, MO, and ERR. UNS stands for unsupported, meaning that
the SMT solver is not equipped to handle some features of the instance.

SAT UNSAT UNK TO MO ERR UNS

LIA-lin
Eldarica

(5050 instances)

cvc5 0 5041 0 0 0 9 0
OpenSMT 0 4970 0 0 0 80 0

SMTInterpol 0 5041 0 0 0 9 0
veriT 0 4986 0 0 0 9 55

Z3 3 5047 0 0 0 0 0

LIA-lin
Golem

(5268 instances)

cvc5 0 5268 0 0 0 0 0
OpenSMT 0 5268 0 0 0 0 0

SMTInterpol 0 5265 0 3 0 0 0
veriT 0 5216 0 0 0 0 52

Z3 0 5268 0 0 0 0 0

LIA-lin
Spacer

(16232 instances)

cvc5 695 15464 0 73 0 0 0
OpenSMT 7 700 0 0 0 912 14613

SMTInterpol 105 11909 28 4190 0 0 0
veriT 19 1543 0 0 0 0 14670

Z3 690 15026 0 516 0 0 0

To validate each model we executed the SMT instances generated from it with
the selected SMT solvers; in this section all the reported SMT solvers’ executions
were done with proof production disabled. One SMT instance is generated for
each Horn clause in the CHC benchmark for which the model was produced,
thus many SMT instances, sometimes hundreds, can be generated for a single
model. We consider the SMT instances generated for the models produced by
each CHC solver, by track, as separate instance sets, thus we have three instance
sets per track. The results for the LIA-lin and LIA-nonlin instance sets can be
seen in tables 3 and 4, respectively; the number of SMT instances generated for
each CHC solver is related to the amount of models it produced.

The validation results provide a useful insight into the quality of the models
produced by each CHC solver. The models produced by Golem are the only
ones for which no invalid result, i.e., a SAT output, was observed. Both Eldar-
ica and Spacer produced invalid models, although the latter to a significantly
higher degree. Eldarica’s invalid models are due to the embedding of Boolean
values into arithmetic operations10, which leads to an error in most SMT solvers,
but can be solved by Z3 via unit propagation11. Spacer’s invalid models are
due to problematic internal transformations12. Another aspect of model quality
10 See https://github.com/uuverifiers/eldarica/issues/51.
11 See https://github.com/Z3Prover/z3/issues/6719.
12 See https://github.com/Z3Prover/z3/issues/6716.

https://github.com/uuverifiers/eldarica/issues/51
https://github.com/Z3Prover/z3/issues/6719
https://github.com/Z3Prover/z3/issues/6716


12 R. Otoni et al.

Table 4: Results for solving the SMT instances generated from the LIA-nonlin
models. Due to the space limitation, unknown, timeout, memout, and error are
shortened to UNK, TO, MO, and ERR. UNS stands for unsupported, meaning
that the SMT solver is not equipped to handle some features of the instance.

SAT UNSAT UNK TO MO ERR UNS

LIA-nonlin
Eldarica

(6216 instances)

cvc5 0 6216 0 0 0 0 0
OpenSMT 0 2493 0 0 0 3706 17

SMTInterpol 0 6216 0 0 0 0 0
veriT 0 6195 2 0 0 0 19

Z3 0 6216 0 0 0 0 0

LIA-nonlin
Golem

(22458 instances)

cvc5 0 22458 0 0 0 0 0
OpenSMT 0 22458 0 0 0 0 0

SMTInterpol 0 22458 0 0 0 0 0
veriT 0 22449 0 0 0 0 9

Z3 0 22458 0 0 0 0 0

LIA-nonlin
Spacer

(36402 instances)

cvc5 147 36254 0 1 0 0 0
OpenSMT 0 961 0 0 0 1326 34115

SMTInterpol 97 34095 764 1446 0 0 0
veriT 0 2286 0 0 0 0 34116

Z3 147 36230 0 25 0 0 0

is the presence of quantifiers, which can make solving harder and is unsupported
by both OpenSMT and veriT. Two last points of note are the high num-
ber of OpenSMT errors, i.e., crashes, when handling instances generated from
Eldarica and Spacer models, which is due to a limitation in scoping in the
presence of different sorts13, and the small, but consistent, number of instances
unsupported by veriT. After a manual inspection, it was discovered that the
lack of support observed with veriT is due to the LIA tracks containing some
benchmarks that, although semantically belonging to the LIA fragment of FOL,
use operators reserved for the nonlinear integer arithmetic (NIA) logic of the
SMT-LIB standard; the competition organizers were informed of this finding.

5.3 Proof Checking Results

To validate the UNSAT results given by the SMT solvers we rely on the proofs
produced by them. For each SMT instance generated from a CHC model we
executed the selected SMT solvers in proof production mode. The number of
proofs produced by each SMT solver can be seen in Table 5. Since proof pro-
duction adds an overhead to solver execution, the number of proofs produced is
expected to be lower than the amount of UNSAT results reported in tables 3
and 4. Concretely, the combined percentage of proofs produced in relation to the
13 See https://github.com/usi-verification-and-security/opensmt/issues/613.

https://github.com/usi-verification-and-security/opensmt/issues/613


CHC Model Validation with Proof Guarantees 13

Table 5: Number of proofs produced by the selected SMT solvers; cvc5 has
separate results for its two proof formats. Each column shows the amount of
proofs produced from a given instance set, with the total amount of instances in
each set shown below the CHC solver that produced the models for it.

Proofs Produced

LIA-lin LIA-nonlin

Eldarica
(5050)

Golem
(5268)

Spacer
(16232)

Eldarica
(6216)

Golem
(22458)

Spacer
(36402)

cvc5-Alethe 4992 5169 12719 6116 22282 35419
cvc5-LFSC 5028 5226 14873 6216 22454 36234
OpenSMT 4970 5268 700 2493 22458 961

SMTInterpol 5010 5222 9548 6062 22299 33486
veriT 0 0 0 0 0 0

Z3 5047 5268 14807 6216 22458 36230

previous UNSAT results, for the six instance sets, is: 95.59% for cvc5-Alethe,
99.27% for cvc5-LFSC, 100% for OpenSMT, 96.05% for SMTInterpol, 0%
for veriT, and 99.76% for Z3. The reduction in performance is overall small,
with OpenSMT showing no performance degradation and cvc5-LFSC and Z3
having less than 1% reduction. Two points of note are that Alethe proofs led to
more than six times the overhead than LFSC proofs in cvc5, and that veriT
was not able to produce any proofs. The reason for the behaviour observed with
veriT is that the define_fun construct of the SMT-LIB standard, present in
the models produced by all CHC solvers, is supported by veriT in its default
configuration, but not in its proof production mode. In addition, 117 new errors
were observed with cvc5, which only happened in proof production mode, due
to an unexpected free assumption leading to a fatal failure14.

The proof formats used by each SMT solver can be quite different, not
only in shape, but also in the amount of information stored, with the choice
of finer or coarser proofs potentially having a significant effect on proof size.
The sizes of all proofs produced in our evaluation can be seen in Figure 4. Over-
all, cvc5 produced the largest proofs, in both of its proof formats, in some
cases with an order of magnitude difference with the proofs produced by the
solver with the third largest proofs. The ranking between OpenSMT, SMT-
Interpol, and Z3 depends on which CHC solver’s models the instances are
generated from. A large number of Z3 proofs, all with a size of 50 B, consisted
simply of (proof (asserted false)), showcasing how coarse proofs can be;
although very compact, these extreme examples make checking essentially de-
generate into solving the instance again. Regarding the CHC solvers themselves,
Eldarica’s models led to the majority of the largest proofs for LIA-lin instances

14 See https://github.com/cvc5/cvc5/issues/9770.

https://github.com/cvc5/cvc5/issues/9770


14 R. Otoni et al.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 1 K 2 K 3 K 4 K 5 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(a) Proofs for LIA-lin Eldarica.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 1 K 2 K 3 K 4 K 5 K 6 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(b) Proofs for LIA-nonlin Eldarica.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 1 K 2 K 3 K 4 K 5 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(c) Proofs for LIA-lin Golem.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 4 K 8 K 12 K 16 K 20 K 24 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(d) Proofs for LIA-nonlin Golem.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 3 K 6 K 9 K 12 K 15 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(e) Proofs for LIA-lin Spacer.

10 B

100 B

1 KB

10 KB

100 KB

1 MB

10 MB

100 MB

1 GB

0 6 K 12 K 18 K 24 K 30 K 36 K

CVC5-Alethe

CVC5-LFSC

OpenSMT

SMTInterpol

Z3

(f) Proofs for LIA-nonlin Spacer.

Fig. 4: Sizes of the SMT proofs. The proofs are ordered according to their size,
the x-axis indicates their position in the order and the y-axis indicates their size;
the scale of the x-axis changes between the plots, due to the high variation on
the number of proofs produced.

and Spacer’s models led to the majority of the largest proofs for LIA-nonlin
instances. The single largest proof produced, by cvc5-Alethe from an instance
generated from a Spacer LIA-nonlin model, had a size of 699 MB, which is a
good illustration of the need of compact proofs.



CHC Model Validation with Proof Guarantees 15

Table 6: Results for checking the proofs produced by solving the SMT instances
generated for the LIA-lin benchmarks; LFSC and SMTInterpol stand for
their respective checkers. In addition to the raw number of proofs verified, the
percentage relation to the total number of proofs is presented in parentheses.

Valid Invalid Timeout Memout Error

LIA-lin
Eldarica

Carcara 4992 (100%) 0 0 0 0
LFSC 5026 (99.9%) 0 2 0 0

SMTInterpol 5010 (100%) 0 0 0 0
TSWC 4970 (100%) 0 0 0 0

LIA-lin
Golem

Carcara 5038 (97.4%) 131 0 0 0
LFSC 5214 (99.7%) 0 7 3 2

SMTInterpol 5222 (100%) 0 0 0 0
TSWC 5268 (100%) 0 0 0 0

LIA-lin
Spacer

Carcara 1478 (11.6%) 109 0 0 11132
LFSC 11295 (75.9%) 0 7 3570 1

SMTInterpol 9542 (99.9%) 0 6 0 0
TSWC 700 (100%) 0 0 0 0

To check the proofs we used the available automated checkers suitable for
each proof format, namely Carcara and TSWC for the proofs produced by
cvc5-Alethe and OpenSMT, and the LFSC and SMTInterpol checkers for
the proofs produced by cvc5-LFSC and SMTInterpol. The results for the
proofs produced for the LIA-lin and LIA-nonlin instance sets can be seen in ta-
bles 6 and 7, respectively. Overall, the four checkers were able to validate most
of the proofs produced, with the LFSC checker being the only tool to be signif-
icantly affected by the resource constraints, specifically the memory limit of 5
gigabytes. An important discovery is that cvc5-Alethe produced 562 invalid
proofs, due to incorrect proof steps15. While not implying that the UNSAT re-
sults the proofs are supposed to validate are incorrect, since the problem can be
in the proof production itself, this is a serious issue. Still in regards to Alethe
proofs, Carcara had 44282 number of errors when checking proofs produced
for SMT instances generated from Spacer models, due to the presence of at-
tribute annotations in models containing quantifiers16. Lastly, 3 errors were also
observed with the LFSC checker, due to a type mismatch17.

6 Conclusions

We presented a novel two-layered approach for CHC model validation that relies
on SMT proofs to provide additional correctness guarantees. The approach is
15 See https://github.com/cvc5/cvc5/issues/9760.
16 See https://github.com/ufmg-smite/carcara/issues/12.
17 See https://github.com/cvc5/LFSC/issues/87.

https://github.com/cvc5/cvc5/issues/9760
https://github.com/ufmg-smite/carcara/issues/12
https://github.com/cvc5/LFSC/issues/87


16 R. Otoni et al.

Table 7: Results for checking the proofs produced by solving the SMT instances
generated for the LIA-nonlin benchmarks; LFSC and SMTInterpol stand for
their respective checkers. In addition to the raw number of proofs verified, the
percentage relation to the total number of proofs is presented in parentheses.

Valid Invalid Timeout Memout Error

LIA-nonlin
Eldarica

Carcara 6115 (99.9%) 1 0 0 0
LFSC 6216 (100%) 0 0 0 0

SMTInterpol 6062 (100%) 0 0 0 0
TSWC 2493 (100%) 0 0 0 0

LIA-nonlin
Golem

Carcara 21999 (98.7%) 283 0 0 0
LFSC 22453 (99.9%) 0 1 0 0

SMTInterpol 22299 (100%) 0 0 0 0
TSWC 22458 (100%) 0 0 0 0

LIA-nonlin
Spacer

Carcara 2231 (6.2%) 38 0 0 33150
LFSC 36222 (99.9%) 0 3 9 0

SMTInterpol 33468 (99.9%) 0 18 0 0
TSWC 961 (100%) 0 0 0 0

supported by a modular evaluation framework, ATHENA, that enables models
to be validated by many different SMT solvers and the SMT solving results to be
validated by available proof checkers. A large scale evaluation was conducted us-
ing all LIA benchmarks from CHC-COMP 2022 to compare three CHC solvers,
five SMT solvers, and four proof checkers. The results indicate that the ap-
proach is feasible in practice, with potential to benefit CHC-based verification
tools, and also highlight model and proof sizes as a crucial practicality factor.
A final important point is that many bugs were found in the tools compared,
including invalid models being produced by two state-of-the-art CHC solvers,
which confirms the need to provide modern verification tooling with additional
correctness guarantees.

Directions for future work include (i) evaluating the approach with other
FOL theories, (ii) embedding the approach into CHC-based verification tooling,
and (iii) designing a complementary approach to validate CHC proofs. For the
first direction, enhancements can be made to the framework’s implementation
to cater to theories other than LIA, with a point of interest being the checker
support for SMT proofs not involving arithmetics. For the second direction,
the use of proof-backed model validation in CHC-based model checkers is a
direct application. For the third direction, one possibility is to use the Alethe
format to represent and check CHC proofs, since it is rich enough to describe
the necessary proof steps. An important unknown regarding potential Alethe
CHC proofs is the correct level of granularity, as it is unclear if coarse proofs can
be efficiently checked, either by Carcara or any future checker, or if additional
burden needs to be put on the solvers to produce fine-grained proofs.



CHC Model Validation with Proof Guarantees 17

Acknowledgements Rodrigo Otoni’s work was supported by the Swiss Na-
tional Science Foundation, via grant 200021_197353. Martin Blicha’s work was
supported by the Czech Science Foundation, via grant 23-06506 S. The authors
thank Fedor Gromov for his assistance in preparing the SMT instance generator.

References

1. Alt, L., Blicha, M., Hyvärinen, A.E.J., Sharygina, N.: SolCMC: Solidity Compiler’s
Model Checker. In: Proceedings of the 34th International Conference on Computer
Aided Verification. pp. 325–338 (2022)

2. Andreotti, B., Lachnitt, H., Barbosa, H.: Carcara: An Efficient Proof Checker and
Elaborator for SMT Proofs in the Alethe Format. In: Proceedings of the 29th In-
ternational Conference on Tools and Algorithms for the Construction and Analysis
of Systems. pp. 367–386 (2023)

3. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A Modular
Integration of SAT/SMT Solvers to Coq through Proof Witnesses. In: Proceedings
of the 1st International Conference on Certified Programs and Proofs. pp. 135–150
(2011)

4. Baek, S., Carneiro, M., Heule, M.J.H.: A Flexible Proof Format for SAT Solver-
Elaborator Communication. In: Proceedings of the 27th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 59–75
(2021)

5. Barbosa, H., Barrett, C., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mo-
hamed, A., Mohamed, M., Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M.,
Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: CVC5: A Versatile and Industrial-
Strength SMT Solver. In: Proceedings of the 28th International Conference on
Tools and Algorithms for the Construction and Analysis of Systems. pp. 415–442
(2022)

6. Barbosa, H., Blanchette, J.C., Fleury, M., Fontaine, P.: Scalable Fine-Grained
Proofs for Formula Processing. Journal of Automated Reasoning 64(3), 485–510
(2020)

7. Barbosa, H., Hoenicke, J., Bobot, F.: SMT-COMP 2022: Competition Report.
https://smt-comp.github.io/2022/slides-smtworkshop.pdf (2022)

8. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. https:
//smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf (2021)

9. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability Modulo Theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability. IOS Press (2021)

10. Beyer, D.: Competition on Software Verification and Witness Validation: SV-
COMP 2023. In: Proceedings of the 29th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. pp. 495–522 (2023)

11. Beyer, D., Strejček, J.: Case Study on Verification-Witness Validators: Where We
Are and Where We Go. In: Proceedings of the 29th International Symposium on
Static Analysis. pp. 160–174 (2022)

12. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn Clause Solvers
for Program Verification. Fields of Logic and Computation II. Lecture Notes in
Computer Science 9300, 24–51 (2015)

13. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible Isar Proofs from Machine-Generated Proofs. Journal of Automated
Reasoning 56(2), 155–200 (2016)

https://smt-comp.github.io/2022/slides-smtworkshop.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smtlib.cs.uiowa.edu/papers/smt-lib-reference-v2.6-r2021-05-12.pdf


18 R. Otoni et al.

14. Blicha, M., Britikov, K., Sharygina, N.: The Golem Horn Solver. In: Proceed-
ings of the 35th International Conference on Computer Aided Verification (2023),
[to be published]

15. Böhme, S., Weber, T.: Fast LCF-Style Proof Reconstruction for Z3. In: Proceedings
of the 1st International Conference on Interactive Theorem Proving. pp. 179–194
(2010)

16. Bouton, T., Caminha B. de Oliveira, D., Déharbe, D., Fontaine, P.: veriT: An Open,
Trustable and Efficient SMT-Solver. In: Proceedings of the 22nd International
Conference on Automated Deduction. pp. 151–156 (2009)

17. Bury, G.: Dolmen: A Validator for SMT-LIB and Much More. In: Proceedings
of the 19th International Workshop on Satisfiability Modulo Theories. pp. 32–39
(2021)

18. Calzavara, S., Grishchenko, I., Maffei, M.: HornDroid: Practical and Sound Static
Analysis of Android Applications by SMT Solving. In: Proceedings of the 1st IEEE
European Symposium on Security and Privacy. pp. 47–62 (2016)

19. Christ, J., Hoenicke, J., Nutz, A.: SMTInterpol: An Interpolating SMT Solver. In:
Proceedings of the 19th International SPIN Workshop. pp. 248–254 (2012)

20. Cruz-Filipe, L., Heule, M.J.H., Hunt, W.A., Kaufmann, M., Schneider-Kamp, P.:
Efficient Certified RAT Verification. In: Proceedings of the 26th International Con-
ference on Automated Deduction. pp. 220–236 (2017)

21. De Angelis, E., Govind V K, H.: CHC-COMP 2022: Competition Report. In: Pro-
ceedings of the 9th Workshop on Horn Clauses for Verification and Synthesis. pp.
44–62 (2022)

22. De Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Proceedings of the
14th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 337–340 (2008)

23. Ekici, B., Mebsout, A., Tinelli, C., Keller, C., Katz, G., Reynolds, A., Barrett,
C.: SMTCoq: A Plug-In for Integrating SMT Solvers into Coq. In: Proceedings of
the 29th International Conference on Computer Aided Verification. pp. 126–133
(2017)

24. Ernst, G.: Korn - Software Verification with Horn Clauses (Competition Contri-
bution). In: Proceedings of the 29th International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems. pp. 559–564 (2023)

25. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + Au-
tomation + Soundness: Towards Combining SMT Solvers and Interactive Proof
Assistants. In: Proceedings of the 12th International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems. pp. 167–181 (2006)

26. Gario, M., Micheli, A.: PySMT: a Solver-agnostic Library for Fast Prototyping of
SMT-based Algorithms. In: Proceedings of the 13th International Workshop on
Satisfiability Modulo Theories. pp. 1–10 (2015)

27. Grebenshchikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing Soft-
ware Verifiers from Proof Rules. In: Proceedings of the 33rd ACM SIGPLAN Con-
ference on Programming Language Design and Implementation. p. 405–416 (2012)

28. Gurfinkel, A., Bjørner, N.: The Science, Art, and Magic of Constrained Horn
Clauses. In: Proceedings of the 21st International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing. p. 6–10 (2019)

29. Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The SeaHorn Verification
Framework. In: Proceedings of the 27th International Conference on Computer
Aided Verification. pp. 343–361 (2015)



CHC Model Validation with Proof Guarantees 19

30. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Trimming While Checking Clausal Proofs.
In: Proceedings of the 13th Conference on Formal Methods in Computer-Aided
Design. pp. 181–188 (2013)

31. Heule, M., Hunt, W., Kaufmann, M., Wetzler, N.: Efficient, Verified Checking
of Propositional Proofs. In: Proceedings of the 8th International Conference on
Interactive Theorem Proving. pp. 269–284 (2017)

32. Heule, M.J.H., Hunt, W.A., Wetzler, N.: Verifying Refutations with Extended Res-
olution. In: Proceedings of the 24th International Conference on Automated De-
duction. pp. 345–359 (2013)

33. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications
of the ACM 12(10), 576–580 (1969)

34. Hoenicke, J., Schindler, T.: A Simple Proof Format for SMT. In: Proceedings of the
20th International Workshop on Satisfiability Modulo Theories. pp. 54–70 (2022)

35. Hojjat, H., Rümmer, P., Subotic, P., Yi, W.: Horn Clauses for Communicating
Timed Systems. In: Proceedings of the 1st Workshop on Horn Clauses for Verifi-
cation and Synthesis. pp. 39–52 (2014)

36. Hojjat, H., Rümmer, P.: The Eldarica Horn Solver. In: Proceedings of the 18th
Conference on Formal Methods in Computer-Aided Design. pp. 1–7 (2018)

37. Hyvärinen, A.E.J., Marescotti, M., Alt, L., Sharygina, N.: OpenSMT2: An SMT
Solver for Multi-core and Cloud Computing. In: Proceedings of the 19th Interna-
tional Conference on Theory and Applications of Satisfiability Testing. pp. 547–553
(2016)

38. Kahsai, T., Rümmer, P., Sanchez, H., Schäf, M.: JayHorn: A Framework for Ver-
ifying Java programs. In: Proceedings of the 28th International Conference on
Computer Aided Verification. pp. 352–358 (2016)

39. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based Model Checking for Recur-
sive Programs. Formal Methods in System Design 48(3), 175–205 (2016)

40. Kroening, D., Strichman, O.: Decision Procedures - An Algorithmic Point of View.
Springer Berlin, Heidelberg, 2 edn. (2016)

41. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: A Verified Implemen-
tation of ML. In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. p. 179–191 (2014)

42. Lammich, P.: Efficient Verified (UN)SAT Certificate Checking. Journal of Auto-
mated Reasoning 64(3), 513–532 (2020)

43. Matsushita, Y., Tsukada, T., Kobayashi, N.: RustHorn: CHC-Based Verification
for Rust Programs. ACM Transactions on Programming Languages and Systems
43(4), 1–54 (2021)

44. de Moura, L., Bjørner, N.: Proofs and Refutations, and Z3. In: Proceedings of the
7th International Workshop on the Implementation of Logics. pp. 123–132 (2008)

45. Otoni, R., Blicha, M., Eugster, P., Hyvärinen, A.E.J., Sharygina, N.: Theory-
Specific Proof Steps Witnessing Correctness of SMT Executions. In: Proceedings
of the 58th ACM/IEEE Design Automation Conference. pp. 541–546 (2021)

46. Otoni, R., Marescotti, M., Alt, L., Eugster, P., Hyvärinen, A., Sharygina, N.: A
Solicitous Approach to Smart Contract Verification. ACM Transactions on Privacy
and Security 26(2), 1–28 (2023)

47. Reeves, J.E., Kiesl-Reiter, B., Heule, M.J.H.: Propositional Proof Skeletons. In:
Proceedings of the 29th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. pp. 329–347 (2023)

48. Rümmer, P., Hojjat, H., Kuncak, V.: On Recursion-Free Horn Clauses and Craig
Interpolation. Formal Methods In System Design 47(1), 1–25 (2015)



20 R. Otoni et al.

49. Sandberg Ericsson, A., Myreen, M.O., Åman Pohjola, J.: A Verified Generational
Garbage Collector for CakeML. In: Proceedings of the 8th International Conference
on Interactive Theorem Proving. pp. 444–461 (2017)

50. Schurr, H.J., Fleury, M., Barbosa, H., Fontaine, P.: Alethe: Towards a Generic
SMT Proof Format. In: Proceedings of the 7th Workshop on Proof eXchange for
Theorem Proving. pp. 49–54 (2021)

51. Sinz, C., Biere, A.: Extended Resolution Proofs for Conjoining BDDs. In: Pro-
ceedings of the 1st International Symposium on Computer Science in Russia. pp.
600–611 (2006)

52. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT Proof Check-
ing Using a Logical Framework. Formal Methods in System Design 42(1), 91–118
(2013)

53. Tange, O.: GNU Parallel - The Command-Line Power Tool. ;login: The USENIX
Magazine 36(1), 42–47 (2011)

54. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: Efficient Checking and Trim-
ming Using Expressive Clausal Proofs. In: Proceedings of the 17th International
Conference on Theory and Applications of Satisfiability Testing. pp. 422–429 (2014)


	CHC Model Validation with Proof Guarantees

