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(Extended Abstract)

1 Introduction

In many program verification techniques (a la Floyd [9] and Hoare [[12]]) program meaning is specified
by contracts, that is pairs of precondition and postcondition formulas. A program is said to be partially
correct with respect to a given contract if the precondition holds before program execution, and the pro-
gram terminates, then the postcondition holds. Many programming languages (e.g., Ada [3]], Ciao [11]],
Eiffel [19], Scala [21]], and Solidity [24]) provide support for contract specification.

Programmers use contracts to specify invariant properties of entire programs or program fragments
(such as functions, methods, and loops) and these contracts are used by verifiers (e.g., BOOGIE [1]],
LEON [25], WHY3 [8]], DAFNY [[17]], and STAINLESS [[10]]) to generate suitable verification conditions,
i.e., formulas whose validity guarantees program correctness.

Verification conditions are usually checked by using theorem provers or, more often, Satisfiability
Modulo Theory (SMT) solvers [2, 4, 13, 20] and Constrained Horn Clause (CHC) solvers, such as El-
darica [[13]] and SPACER [15]], that support a wide range of logical theories, from basic data types, such
as Integers and Booleans, to non-basic data types, such as Lists and Trees.

In the case of programs manipulating complex data structures, such as Algebraic Data Types (ADTs),
the loop invariants may be quite complicated, and their verification may need the extension of solvers
with extra machinery, including inductive proof rules 23} |26} 27|, tree automata-based techniques [16],
and suitable CHC abstractions [[14]].

We follow an approach to the verification of programs that manipulate ADTs which is based on
the translation of the contract verification problem into an equivalent satisfiability problem for CHCs.
Then, we build upon previous methods [3} (6] for transforming a given set of clauses into a new set
of clauses where all ADT terms are removed. These methods are sound, that is, the satisfiability of the
transformed clauses implies the satisfiability of the original set of clauses, and, under suitable hypotheses,
it is complete, that is, the original and the transformed set of clauses are equisatisfiable [5, [7]. In this
way, we separate the concern of dealing with ADTs (at transformation time) from the concern of dealing
with simpler, non-inductive constraint theories (at solving time), thus avoiding the complex interaction
between inductive reasoning and constraint solving.

The transformational approach compares well with induction-based solvers in many cases [3} 7],
but it still suffers from problems similar to the ones faced when automating mathematical induction
proofs. In particular, during ADT removal, the transformation process is not guaranteed to terminate if
the lemmas which need be discovered, are not found.
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2 Program Verification using Catamorphisms and CHC Transformations

In this extended abstract we focus on contracts that are specified by means of catamorphisms [18]]
(actually, an extended notion of them), that is, functions defined by a simple recursion schema on the
ADTs manipulated by the program. In Figure [l| we present the catamorphism schema h acting on lists.
In that figure, £ is assumed to be a catamorphism defined by an instance of that same schema, (ii) the
second arguments of h and f are of sort list, while all other arguments are of basic sort, and (iii) the
predicate c defines a total function from its first four arguments to its last one.

h(X,[],Res) :- Res=b.
h(X,[HIT],Res) :- £f(X,T,Rf), h(X,T,R), c(X,H,Rf,R,Res).

Figure 1: The list catamorphism schema h in CHC syntax.

Examples of catamorphisms are functions that compute list length or tree size, and functions that check
sortedness properties for lists or for various kinds of trees such as binary search trees and heaps. Cata-
morphisms allow us to define a significant class of program properties, and indeed have been used in
some approaches that combine verification procedures with specific algorithms for checking satisfiabil-
ity in ADT theories [22} 25]]. The interest in this kind of properties is shown also by a recent paper [[14]]
that presents a technique for solving CHCs defined on ADTs and catamorphisms.

We have developed a transformation algorithm that is guaranteed to terminate when contracts are
specified by catamorphisms, and produces clauses acting on basic types only, whose satisfiability implies
the satisfiability of the original set of clauses. The satisfiability of the transformed clauses is then checked
by using CHC solvers such as Eldarica and SPACER, without using the theory of the ADTs at hand.

2 Verifying catamorphism-based contracts using CHC transformation

We present our technique by means of an example. Let us consider the functional Scala program Reverse
for computing the reversal of a list depicted in Figure 2] where function preconditions and postconditions
are specified by require and ensuring assertions, respectively. Here and in the following, some code
fragments are not shown, for reasons of space. The contract for the function rev states that, if a list 1
of integers is sorted in ascending order (w.r.t. <) then the list rev(1l) is sorted in descending order
(w.r.t. >). The ascending (or descending) order for the list 1 is checked by the function is_asorted(1)
(or is_dsorted (1), respectively). The contract for the function snoc(1,x), which appends the element
x to the end of the list 1, states that if the list 1 is in descending order and 1eq_all(x,1) holds (that is x is
less than or equal to every element of 1), then also snoc(1,x) is in descending order. STAINLESS, which
is a verifier for Scala programs [10], is not able to check the validity of the contract for rev, because it

fails to establish the precondition for the function call snoc (rev(xs) ,x) (see the Cons case for rev).
The translation of functions to CHC predicates is based on the call-by-value semantics and we have

that the set ReverseCHCs of clauses that encode program Reverse is satisfiable if and only if the contracts
for rev and snoc are valid (see Figure 3). For example, function rev is translated to a predicate rev such
that rev(X,Y) holds iff the function rev(X) evaluates to Y. In order to prove that a contract for a given
function £ is valid, we need to prove that Vx. precond(x) — postcond(x,f(x)). In Figure[3] contracts
for the functions rev and snoc are encoded by the constrained goals GR and GS (that is, clauses which
have the head false), respectively.

Our transformation algorithm T¢,,, not shown in this extended abstract, works by introducing new
predicate symbols with basic types only, corresponding to existentially quantified conjunctions of a
predicate translating a program function (such as rev) and some catamorphism predicates (such as
is_asorted). If contracts are indeed specified using catamorphisms, such as those used in our example,
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def rev(l: List[Int]): List[Int] = {
require(is_asorted (1))
1 match {case Nil() => Nil(Q)
case Cons(x,xs) => snoc(rev(xs),x)
} } ensuring{ res => is_dsorted(res) }
def snoc(l: List[Int], x:Int): List[Int] = {
require(is_dsorted(l) && leq_all(x,1))
1 match {case Nil() => Cons(x,Nil())
case Cons(y,ys) => Cons(y,snoc(ys,x))
} } ensuring{ res => is_dsorted(res) }
def leq_all(x: Int, 1: List[Int]): Boolean = {
1 match { case Nil() => true
case Cons(y, ys) => if (x > y) {false} else {leq_all(x, ys)} } }
def is_asorted(l: List[Int]): Boolean = {
1 match {case Nil() => true
case Cons(x,xs) => is_empty(xs) || (x =< hd(xs) && is_asorted(xs)) } }
def is_dsorted(l: List[Int]): Boolean = {
1 match {case Nil() => true
case Cons(x,xs) => is_empty(xs) || (x >= hd(xs) && is_dsorted(xs)) } }

Figure 2: Program Reverse with the contracts for the functions rev and snoc.

rev([1,[1).
rev([H|T],R) :- rev(T,S), snoc(S,H,R).
snoc([1,X, [X1).
snoc([X|Xs],Y, [X|Zs]) :- snoc(Xs,Y,Zs).
is_asorted([],Res) :- Res.
is_asorted([X|Xs],Res) :- Res = (IsDefXs => (X=<HdXs & ResXs)),
hd(Xs,IsDefXs,HdXs), is_asorted(Xs,ResXs).
is_dsorted([],Res) :- Res.
is_dsorted([X|Xs],Res) :- Res = (IsDefXs => (X>=HdXs & ResXs)),
hd(Xs,IsDefXs,HdXs), is_dsorted(Xs,ResXs).
hd([],IsDef,Hd) :- ~IsDef & Hd=0.
hd([H|T],IsDef,Hd) :- IsDef & Hd=H.
leq_all(N,[],B) :- B.
leq_all(N, [X|Xs],B) :- leq_all(N,Xs,B1), B = (N=<X & B1).
GR. false :- (BL & "“BR), rev(L,R), is_asorted(L,BL), is_dsorted(R,BR).
GS. false :- (BX & BA & “BC), snoc(A,X,C), is_dsorted(A,BA),
leq_all(X,A,BX), is_dsorted(C,BC).

Figure 3: The set ReverseCHCs of clauses for the program Reverse. In constraint formulas we use integer

and boolean variables, the predicate ‘=" (equality) and the operators ‘=’ (negation), ‘&’ (conjunction), and
‘=>’ (implication). The predicates is_asorted, is_dsorted, hd, and leq_all are catamorphisms.

Tcaa always terminates and produces clauses where only new predicate symbols occur. For instance,
Tcarq introduces the following predicate for the contract for rev (goal GR):

new3(BR,N,B,IsDef,Hd,BL) :- is_asorted(L,BL), hd(L,IsDef,Hd), rev(L,R),
is_dsorted(R,BR), leq_all(N,R,B).

and derives the following clauses:

new7(A,B,C,D,E,F,G,H,D,I,J) :- A & B=D & C=(K=>((D>=L)&M)) & E & "F & G=0 & H &
& J=((I=<D)&N) & M & "K & L=0 & N.

new7(A,B,C,D,E,F,G,H,D,I,J) :- (A & B=K & C=(L=>((K>=M)&N)) & E=((D=<K)&T) & F &
& G=K & H=(P=>((X>=Q)&R)) & J=((I=<K)&S) & (R&T)=>N),
new7(L,M,N,D,T,P,Q,R,D,I,S).
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new3(A,B,C,D,E,F) :- A& C & "D & E=0 & F.
new3(A,B,C,D,E,F) :- (D & E=G & F=(H=>((G=<I)&J)) & J=>K & (K&L)=>A),
new3(X,G,L,H,I,J), new7(M,N,A,G,L,T,P,K,G,B,C).

false :- (A & “B), new3(B,C,D,E,F,A).

State-of-the-art CHC solvers, such as Eldarica and SPACER, fail to prove the satisfiability of ReverseCHCs
but are able prove the satisfiability of the transformed, ADT-free clauses.

The results of the experiments we performed using a prototype implementation of the transformation
algorithm TCamE]show that our approach is effective on a large (about 190), significant class of properties,
among which there are properties of programs that sort lists and perform various tree manipulations, such
as tree insertion, deletion, and traversal. Similarly to our Reverse example, in most verification problems
of our benchmark, Eldarica and SPACER fail to terminate on the original clauses with ADTs while they
prove satisfiability of the transformed clauses.

Currently, we are refining our tool and, in the near future, we plan to conduct a more extensive exper-
imental comparison with other solvers for CHCs on ADTs, and in particular ADTIND [27]], RACER [14],
and REGINV [16], and also with program verifiers like the already mentioned DAFNY, STAINLESS, and
WHY3. For that purpose, we need to develop automatic translators between benchmarks, which at the
moment are not available for some of those tools.
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