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Zero-knowledge (ZK) protocols [36l2/4] enable one party, called prover, to
convince another one, called verifier, that a “statement” is true without revealing
any information beyond the veracity of the statement. Most ZK systems operate
on the model of arithmetic circuits, meaning that the language used to come
up with the statement is that of satisfiable arithmetic circuits. The gates of an
arithmetic circuit consist of additions and multiplications modulo p, where p is
typically a large prime number of approximately 254 bits [I]. The wires of an
arithmetic circuit are called signals, and can carry any value from the prime
finite field F,. In such context, there is a set of public inputs known both to
prover and verifier, and the prover proves that, with that public information,
she knows a valid assignment to the rest of signals of the circuit that makes
the circuit satisfiable (i.e., the statement is true). Most ZK systems use R1CS
(Rank-1 Constraint System) for encoding circuits and wire assignment. An R1CS
encodes a program as a set of quadratic constraints over its variables, so that
a correct execution of a circuit is equivalent to finding a satisfying variable
assignment (i.e., a solution of its R1CS representation). circom [5] is a low-level
language where the programmer has to describe the statement as an R1CS and
also provides an efficient way to obtain a satisfying assignment for given inputs.

Ezample 1. Let us consider the next circom program which defines an arith-
metic circuit (as a template), which decides whether the input value is zero.

template IsZero() {
signal input in;
signal output out;
signal inv;
inv <-- in!=0 ? 1/in : 0;
out <== - in * inv + 1;
in * out === 0;

}
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This template declares an input signal, in, an output signal, out, and an inter-
mediate signal, inv. In Line 5, we set inv to be the inverse of in if in is not 0,
and 0, otherwise. The use of <-- does not any new constraint to the R1CS, since
this computation is only used to obtain the satisfying assignment. Line 6 uses
== to add (a) the constraint out === -in * inv + 1 to the R1CS and (b)
the computation out <-- -in * inv + 1 to obtain the satisfying assignment.
Finally, Line 7 adds the constraint in * out === 0 to the R1CS.
Let us consider Fj,, with p = 11. Two valid assignments for this circuit are
{in — 2, inv — 6, out — 0} and {in — O, inv — 0, out — 1}.




Describing complex statements with conjunctions of quadratic constraints is not
easy and programmers tend to make mistakes and write code whose semantics
is not the intended. The interest of extending the language with HC arises in
such complex cases, e.g., when we need to express conditional statements which
are not easily encoded as conjunctions of quadratic constraints. In circom, in
order to enhance generic descriptions, we can use “if-then-else” instructions to
say which constraints belong to the circuit depending on a condition, but its
evaluation should be known at compilation time, and therefore they cannot be
used to encode a conditional relation among constraints. Still, programmers used
to work with high-level languages like C++ and Java often use the “if-then-else”
instruction erroneously as shown in the following example.

Ezxample 2. Suppose that our statement requires to establish a relation between
four input signals: in, x, y, and z, where x must be equal to the sum of y and z
whenever in is equal to one. To this end, a non-experienced circom programmer
(with a background on high-level languages) may easily write a code like this:

template WrongProgram() {
signal input in, x, y, z;
if( in ===1 )
x ==y + z;
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}
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This code is not accepted by circom as it is not asserting the conditional state-
ment but saying that the constraint is in the circuit or not depending on a signal
of the circuit itself. Thus, we would have a circuit that changes depending on
the values of the wires.

In order to encode such conditional relation in circom, we need to do it in a
much lower-level fashion (using only quadratic constraints). The following code
is a correct program that expresses the statement.

Ezample 3. This example shows the template ConditionalStatement, which is
a correct implementation of the previous example.

template ConditionalStatement () {
signal input in, x, y, zZ;
signal aux;
component isz = IsZero();
isz.in <== in - 1;
aux <== isz.out;
aux * (x -y - z) === 0;
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}

After declaring the four input signals and an intermediate signal aux, we declare
the component isz, as an instance of template IsZero. Next, we set the input
signal of isz, isz.in, to in - 1. Then, the intermediate signal aux is set to the
output signal of isz, isz.out, which values 1 only if in - 1 === 0 is satisfied,
and 0, otherwise. Thus, we assert the constraint aux * (x - y - z) === 0;
that guarantees that either aux === 0 is satisfied (and then, in - 1 === 0 is
not satisfied), or x - y - z === 0 is satisfied. All introduced constraints (using
=== and <==) are quadratic and describe the conditional example as a whole.




From the previous example, we realise that stating a Horn clause using only
conjunctions of quadratic constraints is involved and furthermore the resulting
constraints do not hint on the real meaning they have. We argue that adding
“Horn clauses” to the language would add the expressiveness we need to declare
such conditional statements without confusing the programmers in declaring
forbidden conditionals as it happens in languages including “if statements”.

Ezample 4. We use now the new Horn block instruction (and Prolog-like syntax
for the implication) on the example. If the constraint in === 1 is satisfied, then
the constraint x === y + z must be also satisfied when generating the ZK proof.

1 template ConditionalStatement () {
2 signal input in, x, y, z;

3 Horn block{

4 X ===y+2z :- in === 1;

5 3

6 ¥

An additional benefit of having Horn blocks is that they will allow simplifications,
what is key in the generation of the final R1CS that is used in the ZK-proof.

Regarding other clauses (non-Horn), where we have, for instance, C; = 0V
C5 = 0, there is less interest in including them in the new format as, on one hand,
are simpler to express with multiplication (e.g. with C7 x Cy = 0), and on the
other hand, and more importantly, they cannot be easily used for simplification
purposes (even if C; and Cy are linear). However, for efficiency purposes, it is
interesting to consider a compact way to express conditional statements that
include a condition and its complementary. Our idea is to use the Horn block
instruction also to implement the negation in the else branch by setting a priority
of evaluation of each Horn clause in the block according to order of appearance,
i.e., if the constraints in the premise of the first Horn clause are satisfied, then
the constraints in its conclusion must also be satisfied. However, if the premise
is not satisfied, then the following Horn clauses must be satisfied.

Ezample 5. Suppose that if constraint in === 1 is not satisfied, we want con-
straint in === 2 * z to be satisfied. We will implement these conditions in
circom thanks to the new Horn blocks, as we can see in the next piece of code:

1 template IfThenElseStatement () {
2 signal input in, x, y, z;
3 Horn block{
4 x ===y+2z :- in === 1;
5 X === 2%z :- _;
6 };
7 }
If the constraint in === 1 is satisfied, then the constraint x === y + z must

be also satisfied when generating the ZK proof. However, if the constraint, in
=== 1 is not satisfied, then the second Horn clause in the block is evaluated. Now,

_ is syntactic sugar for a tautology like 0 === 0, which means that no constraint
needs to be satisfied in the premise of the Horn clause. Thus, if constraint in
=== 1 is not satisfied, constraint x === 2 * z must be satisfied.
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