Termination analysis of programs
with multiphase control-flow

Samir Genaim

Universidad Complutense de Madrid

Linear-Constraint
Abstraction

Complexity Bounds from Ranking Functions

Linear-Constraint Programs

S"'C(TZ - (Xl,...,Xn)

initial states WO:
a formula over x,,... X,

X<YAY<ZA
X=x+2 A yzy+l A Z=Z

Wi are conjunctions of linear constraints over the
variables x,...,X,,,X1,..., Xn

Single Path Linear-Constraint Loops

‘while (t!= null)
while (x<y and y<z){ t= tleft
X=X+ 2 _—
y=y+1
}

while (4*x2>y and y21)
X -(2*x+1)/5

X<YAY<SZA

X'=x+2 Ay=y+l A Z'=2 %

» In many cases the termination proof boils down to
termination of SLC loops.

— 4x>y/\y>1/\
5x' ¢ 2x+1 ABX' 22x-3 Ay =y

» Interesting questions of decidability of termination
in general for this setting.

Decidability Questions

Types of r'cmkmg functions -~

———

LRF| LLRF | MZRF |

e —_ : e

Special classes of linear
constraint programs.

> How hard is it to decide if there exists a RF of a specific
type, for a given class of programs?

> Develop synthesis algorithms (including loop bounds).

Linear Ranking Functions (by Ex.)

while (x <y) {
X=X+ 2
yizy+1

} 8

w={x¢ Y, X'=X+2, y':y+1 }

» f(x,y) = y-x is a linear ranking function (LRF)
- non-negative in all (enabled) states: f(x,y) > O

- strictly decreasing: f(x,y)-f(x'y) > 1

LRFs and Alternatives ...

> There are complete algorithms for synthesising
LRFs over rationals and integers, even for complex

control flow (PTIME / coNP-complete)

- Sohn and van Gelder (1991)

- Feautrier (1992)

- Colén and Sipma (2001)

— Podelski and Rybalchenko (2004)

- Mesnard and Serebrenik (2008)

- Alias, Darte, Feautrier, Gonnord (2010)
- Ben Amram and Genaim (2013)

> LRFs do not suffice for all loops... Lexicographic
Linear Ranking Functions (LLRFs) are a very
common alternative.

Types of LLRF

<f1,. f. fq> is a LLRF for a set of transitions T iff for
any X" (x x') e T thereis 1<i<d such that

1. f (x) > 0) non- nega‘hve .
2. fi(x)-fi(x)21 decreasing
3. vj<i. fj(x)-fi(x)>0 non- mcreasmg |

—— == —

- B6-LLRF [Ben-Amram and Genaim, JACM14]: Vjﬁi. fJ(;() >0

- ADFG-LLRF 1alias et al., sAS107: ... LLRF
- BMS"LLRF [Bradley et al., CAV'05]+ ... / T \

. . BG BMS M2RF
- MERF: vj«i. fj(x)-fj(x) 21 N ?

ADFG

Examples of programs with LLRFs

while (x 20 A y20){ WZQ Y1
if () {
X = x-1
=%
} else { wi={x20,y20, x=x-1}
y = y-l wo={x20,y20, x=x, y'=y-1}
} (BG,ADFG,BMS)-LLRF <x,y>
while (x2-y Ay<9 A l22z20){ -
X = x+y+10z-15 Ns%
Y:=Y-2

} BG-LLRF <x,y>

MZRFs and Multiphase Behaviour
while (x > -z) { Y while (x > 1) {

X 1T X+Y Ns% if (y<z){ q)
y iZ y+z y = y+l ﬁ@
z = z-1 } else { " @ V3
} X = x-1)
}
MERF <z)y x> '} LLRF <z-y-1,x-1>

> <z-y-1,x-1> is not a MZRF, but it induces a multiphase
behaviour since once a component is negative, it
cannot be used anymore.

> if we add y:=y+1 to the else branch, <z-y-1,x-1> would
be a MZRF as well.

Outline

> Algorithmic and complexity aspects of MZRFs

— Mainly for SLC Loops. \

— Inference algorithms. Based on works with

: . - Amir Ben-Amram and
— Complexity of decision problems. EsiSstusifte

> Using control-flow refinement (CFR) for termination
analysis of programs with multiphase behaviour
— Partial evaluation as a CFR technique.
— Applications of CFR to other analyses. \

= ... Based on works with

John Gallagher and
Jess Domenech

> Concluding remarks.

The (Bounded) MZRF Problems

> The MZRF problem seeks tuples of any length.

> The d-M2RF assume that the length d of the tuple
is part of the input or the problem.

> We are seeking complexity classification, and
corresponding synthesis algorithms for this problem.

d-M&RFs for SLC Loops

w Theorem [Ben Amr'am and Genaum CAV17]

<f1, fqrisa NLRF for a set of transitions T |ff
VX'eT= Af1(X")21 A

Af(X") + f1(X) 2 1/\ /\Afd("") fd 1(x) 1/\

fi(X) 20

> For SLC loops T is a polyhedron, so we can use Farkas' Lemma to
get a complete PTIME synthesis procedure for NLRFs [Leike and
Heizmann, LMCS 2015].

> It is also complete for general linear-constraint programs, but in
such case there is no equivalence to M2RFs.

e e ——

e e ——

e

Example of a NLRF

while (x > -2) {
X' = X+y

Y =y+z
z' = z-1 Y

) A

> The loop has the MERF <z,y x>, which is not a
NLRF since, for example, x if not non-negative
on all states.

> but it has a NLRF <z y+z,x+z>

M2RFs vs. LLRFs for SLC loops

|Theorem [Ben Ammm and Gencum CAV17] B

ﬂ‘MéRF of length d

while (x 2 -y Ay<9 Al12z20){
X' = x+y+10z-15 "

} Y =Yy-z A

> It has the LLRF <y,x> which is nhot a MZRF (y does
not decrease on all fransitions) ...
> ... but it has the MZRF <x+10y,25x+25y+6>

Loop Bounds from MERFs

while (x20){ * This loop has a MZRFs <y x>, can

X' = X+y we use it o obtain a loop bound?
y =y-1 2 > Can we infer loop bounds for SLC
} N‘% Ioops that have M2RFs in geneml?

Theorem [Ben Ammm and Genalm CAV17] 1’

‘> M2ZRFs imply linear Ioop bounds for LC Ioops (a
~ linear combination of its components). |

> NLRFs imply linear loop bounds for general Imear-

|
| cons’rra! nt programs. |

The UnBounded Version of MERF

One can apply the d-M2RF iteratively, which
guarantees finding a MZRF if one exists, but what
if it does not exist? When to stop?

Is there a theoretical bound on the length of the
M2RFs, given the loop?

We are not aware of any such length-bound, and,
moreover, unlike the case of BG6-LLRFs, it does
not depend only on the number of variables (or
constraints) [Ben-Amram and Genaim, CAV'17].

We are seeking a more direct algorithm, which is
not based on d-MZRF [Ben-Amram, Domenech,
and Genaim, SAS'19].

Synthesising B6-LLRFs

<f1,...fi..fdo> is a B6-LLRF for Qiff for each (x,xX') e Q
thereis 1<i<d such that

L vid f():0 non-negative
2. fi(x)-fi(x)21 decreasing

> f1(x) > 0 and f1(x)-f1(x') > O holds for any (x,x') € Q
> f1(X)-f1(X') 2 1 holds for some (X,X') € Q

> We continue with the SLC loop Qi1=QAf1(X)-f1(x') < O
> There is an optimal choice for fi

Synthesising MERFs

<f1,..fi..fa> is a MERF for Q iff for each (x,X) € Q
thereis 1<i<d such that

L f®0:0 non-negative
!’2‘ vy fi(x)-fi(x)>1 decreasing

> f1(X)-f1(X') 2 1 holds for any (x,X') € Q

> f1(X) 2 0 holds for some (X,x') € Q

> We continue with the SLC loop Qi1=QAf1(X) <O
> Is there an optimal choice for f:? Unfortunately no ...

Synthesising MERFs

From the equivalence of MZRF and NLRFs, we know|
that if a SLC loop Q has a MZRF, then it has one of
optimal length <fi,..,f4> where the f4 is non-negative on|
all enabled states, i.e., f4(x) > O for any (x,x) € Q

> g(x) 20 holds for any (x,x') € Q

> g(Xx)-g9(x') > 0 holds for some (x,X') € Q

> Continue with the SLC loop Q1=QAg(x)-g(x') < O

> If we succeed to build a MZRF 7 of length k for Qq,

then we can use g and t to get one of length k+1 for
Q (the last component is a combination of g and 7)

Synthesising MERFs

The set of all candidates g that satisfy g(x) > O
for all (x,X') € Q is a polyhedral cone, and thus it

is finitely generated by some function gi,...,g«.
Any such g can be written as Zai=gi for some a;>0.
If g(x)-g(x') > O holds for some (%,x') € Q then
gi(X)-gi(x') > O must hold for some g
Q1=QAg1(X)-g1(x") < OA...Agk(X)-gk(X') < O.

If we succeed to build a MERF 7 of length k for
Q1, then we can use gi,...,gk and 7 to build one of
length k+1 for Q.

(semi-)Deciding Existence MZRFs

decideMZRF(Q) {
- if Q is empty, return YES
- Compute the generators gi,.., gk of the cone of
non-negative function (over the enabled states)

- Q' = QAg1(X)-g1(X’) < OA...Agk(X)-gk(Xx") < O
- return decideMZRF(Q)
}

> If Q has a MZRF of optimal length d the
algorithm will make exactly d recursive calls.

> The algorithm diverges if Q has no MEZRF.

No Progress and Infinite Progress

decideMERF(Q) {
- if Q is empty, return YES

- Compute the generators gi,... g« of the cone of
non-negative function (over the enabled states)

- Q' = QA g1(x)-91(X') < OA...Agk(X)-gk(X') < O
-if Q' == Q, return Q is a recurrent set
- return decideMZRF(Q))

}

The algorithm can also make infinite progress, when
Q is terminating and when Q is non-terminating

QR=Qo> Q1> Q2> Q3> ..

Better understanding of MERFs

We have an algorithm that does not completely solve
the MZRF problem we wanted to solve, but ...

> Reveals an interesting relation between seeking
MZRFs and seeking (monotonic) recurrent sefts.

> We used its properties to find classes of
programs for which MZRF are enough, e.g.,
octagonal relations.

> If Qq is not empty, it explains why the loop does
not have a MZRF of length d (useful for
conditional termination).

> Left us with several new research directions and
open problems ...

What about General Programs?

> All what we have seen so far works only for the case
of SLC loops.

> The d-M2RFs problem for general linear-constraint
programs is decidable, and is at least NP-Hard,
unlike PTIME for SLC loops.

> NLRFs can still be used for general programs, but
for such case they are weaker than MERFs — there
are programs that have M2RFs but not NLRFs.

> How we can prove termination of programs that
need MERFs (or have multiphase behaviour)?

Encoding to SMT Formulas

> Leike and Heizmann [LMCS'15] encode the d-MERF
conditions as non-linear SMT formula:

— The first component decreases for all fransitions,
and if it is negative the second decreases, etc.

— Satisfiability implies existence of MERF of length
d (the models define the components).

— Complete for real variables

> Brockschmidt et al. [TACAS'17] do it incrementally

- Infer the components of the MEZRF one at a time
using conditional fermination and safety analyser

— Non-linear SMT formulas
— Not complete

Simplifying the Control-Flow

while (x 2 1) { while (x 21 Ay < z) {
if (y<z){ y = y+1
y = y+l } LRF: z-y-1
} else { S
x' = x-1 " while(x21Ay>2){
} X 1= x-1
} LLRF <z-y-1,x-1> } LRF: x-1

It is easier to prove termination of the one on the right,
and also prove that its runtime is linear

Control-Flow Refinement (CFR)

> Control-Flow refinement was already used, e.g., for
cost analysis and invariants generation

— Gulwani et al. [PLDI'09]
— Sharma et al. [CAV'11]

> These techniques develop program transformations
from scratch, and tailored to the very specific
application (cost, invariants, etc)

> We wanted to explore the use of a general purpose
program transformation techniques to refine the

control-flow in multiphase programs [Domenech,
Gallagher, and Genaim, TPLP'19]

CFR via Partial Evaluation

> We started from a partial evaluator for horn-clause
programs [John P. Gallagher [VPT 2019]

> Tt is based on performing unfolding and abstraction
— Unfolding is like executing parts of the program

— Abstraction is applied to loop head predicates,
using a finte set of abstract properties, to
guarantee termination of the process

> Our linear-constraint programs can be translated to
(linear) horn-clause programs (and back)

Example

while (x 2 1) { Properties for ni:
 (y <
| y Y: Yf‘l) { (I)I:{XZ].}
} else { $o={y>z}
x = x-1
}
} LLRF <z-y-1x-1> @
{x<0}
wo={x'=x y'=y,z'=z} (s)——(n) []
p1={x21,x'=x,y'=y,z'=z} (x5 1} l [d1] {x21}
P2= U"@
W3={y2z,x'=x-1y'=y,z'=z} {x<0 Y>7-} l {x21y>z}

Ya={x2l x=xy'=y,z=2} @‘_

[(1)2] [$2]

Inference of Properties

> We use several heuristics/schemes

— Extract them from constraints on outgoing/
incoming edges of loop heads

— Propagate conditions backwards/forwards from
loop bodies to loop heads

— Use concrete intervals for variables, such as x»>=1,

y<=100,... taken from outgoing/incoming edges of
loop heads

Granularity of CFR

> Applying CFR to the whole program is not practical
for large programs.

> We have incorporated CFR in a termination analyser
with different levels of granularity

— Apply to the whole program
— Apply at the level of SCCs

-~ Apply only to parts that we could not prove
terminating, etc.

Benefits of using CFR (experimentally)

> More precise termination analysis
— our tool could prove termination of programs in
the last termination competition, due to the use

of CFR, that no one could handle

— simpler ranking functions due to phase splitting
— more precise invariants due to case splitting

> More precise cost analysis (for the same reasons)

— We use off-the-shelf cost analyser, applied after
CFR of the whole program

> More precise assertions checker
— due to more precise invariants

iIRankFinder

All techniques are implemented in a termination
analyser that supports:

- LRF, different kinds of LLRFs, ME@RFs, tuples of
NLRFs (similar to polyranking of Bradley et al.)

— Non-termination using the MZRFs algorithm, but
applied to closed-walks instead of SLC loops

— Includes a CFR component

The CFR component can be used independently, so
other tools can take advantage of it.

Assertions checking, invariants generation, ...

All available at: http://loopkiller.com

Concluding Remarks

> Multiphase ranking functions (MZRFs)
— For SLC loops: algorithms, complexity, relation to
hon-termination, withesses, etc.
— For general linear-constraint programs we know
vert little, and further research is needed.

> Control-Flow Refinement of Multiphase programs
— A proof of concept that general purpose program
transformations can be use for CFR.
— Not only for termination.
— Future work should explore other applications,
and also the use of CFR for programs with non-
numerical variables.

Thank Youl

