
Termination analysis of programs
with multiphase control-flow

Samir Genaim

 Universidad Complutense de Madrid

Automatic Termination Analysis

Proofs by

Ranking Functions

Lexico.
LinearLinear

Abstract and then
Prove Termination

Linear-Constraint
Abstraction

Multiphase
Linear

Complexity Bounds from Ranking Functions

Linear-Constraint Programs

ψi are conjunctions of linear constraints over the
variables x1,…,xn,x1’,…,xn’

4

2

3

1 5initial states ψ0:

a formula over x1,…,xn

x ≤ y ⋀ y ≤ z ⋀

x′=x+2 ⋀ y′=y+1 ⋀ z′=z

ψ1

ψ3

ψ4

ψ5

ψ6

ψ2state = (x1,...,xn)

Single Path Linear-Constraint Loops

1

x ≤ y ⋀ y ≤ z ⋀

x′=x+2 ⋀ y′=y+1 ⋀ z′=z

while (x ≤ y and y ≤ z) {

 x := x + 2

 y := y + 1

}

while (4*x ≥ y and y ≥ 1)

 x := (2*x + 1)/5

while (t != null)

 t := t.left

4x ≥ y ⋀ y ≥ 1 ⋀

5x′ ≤ 2x+1 ⋀ 5x′ ≥ 2x-3 ⋀ y′ = y

t ≥ 0 ⋀ t′ ≤ t-1

ψ1

‣ In many cases the termination proof boils down to
termination of SLC loops.

‣ Interesting questions of decidability of termination
in general for this setting.

Decidability Questions

Rat
Real

Int

‣ How hard is it to decide if there exists a RF of a specific
type, for a given class of programs?

‣ Develop synthesis algorithms (including loop bounds).

PTIME

PTIME

PTIME ?

?

?

?

?

?

ψ

ψ1 ψ3

ψ4 ψ5

ψ6

ψ7

ψ2

ψ2

ψ1

LRF LLRF
Sp

ec
ia
l
cl
as

se
s

of
 l
in
ea

r
co

ns
tr

ai
nt

 p
ro

gr
am

s.

Types of ranking functions
MΦRF

…

…

…

…

… … … … …

Linear Ranking Functions (by Ex.)

while (x ≤ y) {

 x := x + 2

 y := y + 1

}

‣ f(x,y) = y-x is a linear ranking function (LRF)

– non-negative in all (enabled) states: f(x,y) ≥ 0

– strictly decreasing: f(x,y)-f(x′,y′) ≥ 1

ψ

ψ = { x ≤ y, x’=x+2, y’=y+1 }

‣ There are complete algorithms for synthesising
LRFs over rationals and integers, even for complex
control flow (PTIME / coNP-complete)

- Sohn and van Gelder (1991)

- Feautrier (1992)

- Colόn and Sipma (2001)

- Podelski and Rybalchenko (2004)

- Mesnard and Serebrenik (2008)

- Alias, Darte, Feautrier, Gonnord (2010)

- Ben Amram and Genaim (2013)

- …

‣ LRFs do not suffice for all loops… Lexicographic
Linear Ranking Functions (LLRFs) are a very
common alternative.

LRFs and Alternatives …

- BG-LLRF [Ben-Amram and Genaim, JACM’14]: ∀j≤i. fj(x⃗) ≥ 0

- ADFG-LLRF [Alias et al., SAS’10]: …

- BMS-LLRF [Bradley et al., CAV’05]: …

- MΦRF: ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 1

Types of LLRF
‹f1,…,fi,…,fd› is a LLRF for a set of transitions T iff for
any x!’’=(x!,x!’) ∈ T there is 1 ≤ i ≤ d such that

1. fi(x⃗) ≥ 0 non-negative

2. fi(x⃗)-fi(x⃗’) ≥ 1 decreasing

3. ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 0 non-increasing

BG MΦRF

ADFG

BMS

LLRF

Examples of programs with LLRFs

while (x ≥ 0 ⋀ y ≥ 0) {

 if (*) {

 x := x-1

 y := *

 } else {

 y := y-1

 }

}

ψ1ψ2

ψ1 = { x ≥ 0, y ≥ 0, x’=x-1 }

ψ2 = { x ≥ 0, y ≥ 0, x’=x, y’=y-1 }

(BG,ADFG,BMS)-LLRF <x,y>

while (x ≥ -y ⋀ y ≤ 9 ⋀ 1 ≥ z ≥ 0) {

 x := x+y+10z-15

 y := y-z

}

ψ

BG-LLRF <x,y>

MΦRFs and Multiphase Behaviour

‣ <z-y-1,x-1> is not a MΦRF, but it induces a multiphase
behaviour since once a component is negative, it
cannot be used anymore.

‣ if we add y:=y+1 to the else branch, <z-y-1,x-1> would
be a MΦRF as well.

while (x ≥ -z) {

 x := x+y

 y := y+z

z := z-1

}

 MΦRF <z,y,x>

ψ while (x ≥ 1) {

 if (y < z) {

 y := y+1

 } else {

 x := x-1

 }

} LLRF <z-y-1,x-1>

ψ0

ψ2 ψ3ψ1

ψ4n1

n2

n3

n0

Outline
‣ Algorithmic and complexity aspects of MΦRFs

- Mainly for SLC Loops.

- Inference algorithms.

- Complexity of decision problems.

- …

‣ Using control-flow refinement (CFR) for termination
analysis of programs with multiphase behaviour

- Partial evaluation as a CFR technique.

- Applications of CFR to other analyses.

- …

‣ Concluding remarks.

Based on works with
Amir Ben-Amram and
Jesús Domenech

Based on works with
John Gallagher and
Jesús Domenech

The (Bounded) MΦRF Problems

‣ The MΦRF problem seeks tuples of any length.

‣ The d-MΦRF assume that the length d of the tuple
is part of the input or the problem.

‣ We are seeking complexity classification, and
corresponding synthesis algorithms for this problem.

Instance: A set of transitions T
Question: Does there exist a MΦRF for T (of length d)?

Decision problems (d-)MΦRF

d-MΦRFs for SLC Loops

‹f1,…,fd› is a NLRF for a set of transitions T iff
 ∀ x⃗’’∈ T ⇒ Δf1(x⃗’’) ≥ 1 ⋀

Δf2(x⃗’’) + f1(x⃗) ≥ 1 ⋀…⋀Δfd(x⃗’’) + fd-1(x⃗) ≥ 1⋀

fd(x⃗) ≥ 0

‣ For SLC loops T is a polyhedron, so we can use Farkas’ Lemma to
get a complete PTIME synthesis procedure for NLRFs [Leike and
Heizmann, LMCS 2015].

‣ It is also complete for general linear-constraint programs, but in
such case there is no equivalence to MΦRFs.

MΦRFs have the same power as Nested-Linear Ranking
Functions (NLRFs) for SLC loops

Theorem [Ben-Amram and Genaim, CAV’17]

Notation: Δfi(x⃗’’)≣fi(x⃗)-fi(x⃗’)

Example of a NLRF

while (x ≥ -z) {

 x’ = x+y

 y’ = y+z

z’ = z-1

}

‣ The loop has the MΦRF ‹z,y,x›, which is not a

NLRF since, for example, x if not non-negative

on all states.

‣ but it has a NLRF ‹z,y+z,x+z›

ψ

while (x ≥ -y ⋀ y ≤ 9 ⋀ 1 ≥ z ≥ 0) {

 x’ = x+y+10z-15

 y’ = y-z

}

If a SLC loop has a LLRF of length d, then it has a
MΦRF of length d

Theorem [Ben-Amram and Genaim, CAV’17]

‣ It has the LLRF ‹y,x› which is not a MΦRF (y does
not decrease on all transitions) …

‣ … but it has the MΦRF ‹x+10y,25x+25y+6›

MΦRFs vs. LLRFs for SLC loops

ψ

Loop Bounds from MΦRFs

while (x ≥ 0) {

 x’ = x+y

 y’ = y-1

}

(x0,y0) -> (x0+y0,y0-1) -> (x0+y0+(y0-1),y0-2) ->…-> (x0+O(y02),-1)

‣ This loop has a MΦRFs ‹y,x›, can
we use it to obtain a loop bound?

‣ Can we infer loop bounds for SLC
loops that have MΦRFs in general?

‣ MΦRFs imply linear loop bounds for SLC loops (a
linear combination of its components).

‣ NLRFs imply linear loop bounds for general linear-

constraint programs.

Theorem [Ben-Amram and Genaim, CAV’17]

ψ

The UnBounded Version of MΦRF
‣ One can apply the d-MΦRF iteratively, which

guarantees finding a MΦRF if one exists, but what
if it does not exist? When to stop?

‣ Is there a theoretical bound on the length of the
MΦRFs, given the loop?

‣ We are not aware of any such length-bound, and,
moreover, unlike the case of BG-LLRFs, it does
not depend only on the number of variables (or
constraints) [Ben-Amram and Genaim, CAV’17].

‣ We are seeking a more direct algorithm, which is
not based on d-MΦRF [Ben-Amram, Domenech,
and Genaim, SAS’19].

Synthesising BG-LLRFs

‹f1,…,fi,…,fd› is a BG-LLRF for Q iff for each (x⃗,x⃗’) ∈ Q
there is 1 ≤ i ≤ d such that

1. ∀j≤i fj(x⃗) ≥ 0 non-negative

2. fi(x⃗)-fi(x⃗’) ≥ 1 decreasing

3. ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 0 non-increasing

‣ f1(x⃗) ≥ 0 and f1(x⃗)-f1(x⃗’) ≥ 0 holds for any (x⃗,x⃗’) ∈ Q

‣ f1(x⃗)-f1(x⃗’) ≥ 1 holds for some (x⃗,x⃗’) ∈ Q

‣ We continue with the SLC loop Q1≣Q⋀f1(x⃗)-f1(x⃗’) ≤ 0

‣ There is an optimal choice for f1

Synthesising MΦRFs

‹f1,…,fi,…,fd› is a MΦRF for Q iff for each (x⃗,x⃗’) ∈ Q
there is 1 ≤ i ≤ d such that

1. fi(x⃗) ≥ 0 non-negative

2. ∀j≤i fj(x⃗)-fj(x⃗’) ≥ 1 decreasing

‣ f1(x⃗)-f1(x⃗’) ≥ 1 holds for any (x⃗,x⃗’) ∈ Q

‣ f1(x⃗) ≥ 0 holds for some (x⃗,x⃗’) ∈ Q

‣ We continue with the SLC loop Q1≣Q⋀f1(x⃗) ≤ 0

‣ Is there an optimal choice for f1 ? Unfortunately no …

Synthesising MΦRFs

From the equivalence of MΦRF and NLRFs, we know
that if a SLC loop Q has a MΦRF, then it has one of
optimal length ‹f1,…,fd› where the fd is non-negative on
all enabled states, i.e., fd(x⃗) ≥ 0 for any (x⃗,x⃗’) ∈ Q

‣ g(x⃗) ≥ 0 holds for any (x⃗,x⃗’) ∈ Q

‣ g(x⃗)-g(x⃗’) > 0 holds for some (x⃗,x⃗’) ∈ Q

‣ Continue with the SLC loop Q1≣Q⋀g(x⃗)-g(x⃗’) ≤ 0

‣ If we succeed to build a MΦRF 𝝉 of length k for Q1,
then we can use g and 𝝉 to get one of length k+1 for
Q (the last component is a combination of g and 𝝉)

Synthesising MΦRFs

‣ The set of all candidates g that satisfy g(x⃗) ≥ 0
for all (x⃗,x⃗’) ∈ Q is a polyhedral cone, and thus it
is finitely generated by some function g1,…,gk.

‣ Any such g can be written as Σai*gi for some ai≥0.

‣ If g(x⃗)-g(x⃗’) > 0 holds for some (x!,x!’) ∈ Q then
gi(x⃗)-gi(x⃗’) > 0 must hold for some gi.

‣ Q1≣Q⋀g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0.

‣ If we succeed to build a MΦRF 𝝉 of length k for
Q1, then we can use g1,…,gk and 𝝉 to build one of
length k+1 for Q.

(semi-)Deciding Existence MΦRFs

decideMΦRF(Q) {

- if Q is empty, return YES

- Compute the generators g1,…,gk of the cone of

non-negative function (over the enabled states)

- Q’ = Q⋀g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0

- return decideMΦRF(Q’)

}

‣ If Q has a MΦRF of optimal length d the
algorithm will make exactly d recursive calls.

‣ The algorithm diverges if Q has no MΦRF.

No Progress and Infinite Progress

decideMΦRF(Q) {

- if Q is empty, return YES

- Compute the generators g1,…,gk of the cone of

non-negative function (over the enabled states)

- Q’ = Q⋀ g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0

- if Q’ == Q, return Q is a recurrent set

- return decideMΦRF(Q’)

}
The algorithm can also make infinite progress, when
Q is terminating and when Q is non-terminating

Q=Q0 ⊃ Q1 ⊃ Q2 ⊃ Q3 ⊃ …

Better understanding of MΦRFs

‣ Reveals an interesting relation between seeking
MΦRFs and seeking (monotonic) recurrent sets.

‣ We used its properties to find classes of
programs for which MΦRF are enough, e.g.,
octagonal relations.

‣ If Qd is not empty, it explains why the loop does
not have a MΦRF of length d (useful for
conditional termination).

‣ Left us with several new research directions and
open problems …

We have an algorithm that does not completely solve
the MΦRF problem we wanted to solve, but …

What about General Programs?

‣ All what we have seen so far works only for the case
of SLC loops.

‣ The d-MΦRFs problem for general linear-constraint
programs is decidable, and is at least NP-Hard,
unlike PTIME for SLC loops.

‣ NLRFs can still be used for general programs, but
for such case they are weaker than MΦRFs — there
are programs that have MΦRFs but not NLRFs.

‣ How we can prove termination of programs that
need MΦRFs (or have multiphase behaviour)?

Encoding to SMT Formulas
‣ Leike and Heizmann [LMCS‘15] encode the d-MΦRF

conditions as non-linear SMT formula:

- The first component decreases for all transitions,
and if it is negative the second decreases, etc.

- Satisfiability implies existence of MΦRF of length
d (the models define the components).

- Complete for real variables

‣ Brockschmidt et al. [TACAS’17] do it incrementally

- Infer the components of the MΦRF one at a time
using conditional termination and safety analyser

- Non-linear SMT formulas

- Not complete

Simplifying the Control-Flow

It is easier to prove termination of the one on the right,
and also prove that its runtime is linear

while (x ≥ 1) {

 if (y < z) {

 y := y+1

 } else {

 x’ := x-1

 }

}

while (x ≥ 1 ⋀ y < z) {

 y := y+1

}

while (x ≥ 1 ⋀ y ≥ z) {

 x := x-1

} LLRF <z-y-1,x-1>

LRF: z-y-1

LRF: x-1

Control-Flow Refinement (CFR)
‣ Control-Flow refinement was already used, e.g., for

cost analysis and invariants generation

- Gulwani et al. [PLDI’09]

- Sharma et al. [CAV’11]

‣ These techniques develop program transformations
from scratch, and tailored to the very specific
application (cost, invariants, etc)

‣ We wanted to explore the use of a general purpose
program transformation techniques to refine the
control-flow in multiphase programs [Domenech,
Gallagher, and Genaim, TPLP’19]

CFR via Partial Evaluation

‣ We started from a partial evaluator for horn-clause
programs [John P. Gallagher [VPT 2019]

‣ It is based on performing unfolding and abstraction

- Unfolding is like executing parts of the program

- Abstraction is applied to loop head predicates,
using a finte set of abstract properties, to
guarantee termination of the process

‣ Our linear-constraint programs can be translated to
(linear) horn-clause programs (and back)

n2

n1

n0

n3

n1

n1

Example

ψ0

ψ2 ψ3ψ1

ψ4n1

n2

n3

n0

n2

n2

n1

[]
[ɸ1]

{x≥1}

[ɸ2]

{x≥1}

{x≥1,y≥z}

[ɸ2]

{x≤0}
ψ0={x’=x,y’=y,z’=z}

ψ1={x≥1,x’=x,y’=y,z’=z}

ψ3={y≥z,x’=x-1,y’=y,z’=z}

ψ2={y<z,x’=x,y’=y+1,z’=z}

ψ4={x≥1,x’=x,y’=y,z’=z}

ɸ1={x≥1}
ɸ2={y≥z}

Properties for n1:while (x ≥ 1) {

 if (y < z) {

 y := y+1

 } else {

 x’ := x-1

 }

} LLRF <z-y-1,x-1>

n3

{x≤0,y≥z}

Inference of Properties

‣ We use several heuristics/schemes

- Extract them from constraints on outgoing/
incoming edges of loop heads

- Propagate conditions backwards/forwards from
loop bodies to loop heads

- Use concrete intervals for variables, such as x>=1,
y<=100,… taken from outgoing/incoming edges of
loop heads

Granularity of CFR

‣ Applying CFR to the whole program is not practical
for large programs.

‣ We have incorporated CFR in a termination analyser
with different levels of granularity

- Apply to the whole program

- Apply at the level of SCCs

- Apply only to parts that we could not prove
terminating, etc.

Benefits of using CFR (experimentally)

‣ More precise termination analysis

- our tool could prove termination of programs in

the last termination competition, due to the use
of CFR, that no one could handle

- simpler ranking functions due to phase splitting

- more precise invariants due to case splitting

‣ More precise cost analysis (for the same reasons)

- We use off-the-shelf cost analyser, applied after

CFR of the whole program

‣ More precise assertions checker

- due to more precise invariants

iRankFinder

‣ All techniques are implemented in a termination
analyser that supports:

- LRF, different kinds of LLRFs, MΦRFs, tuples of
NLRFs (similar to polyranking of Bradley et al.)

- Non-termination using the MΦRFs algorithm, but
applied to closed-walks instead of SLC loops

- Includes a CFR component

‣ The CFR component can be used independently, so
other tools can take advantage of it.

‣ Assertions checking, invariants generation, …

‣ All available at: http://loopkiller.com

Concluding Remarks
‣ Multiphase ranking functions (MΦRFs)

- For SLC loops: algorithms, complexity, relation to
non-termination, witnesses, etc.

- For general linear-constraint programs we know
vert little, and further research is needed.

‣ Control-Flow Refinement of Multiphase programs

- A proof of concept that general purpose program

transformations can be use for CFR.

- Not only for termination.

- Future work should explore other applications,

and also the use of CFR for programs with non-
numerical variables.

Thank You!

