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Linear-Constraint Programs

ψi are conjunctions of linear constraints  over the 
variables x1,…,xn,x1’,…,xn’
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1 5initial states ψ0:

a formula over x1,…,xn

x ≤ y ⋀ y ≤ z ⋀ 

x′=x+2 ⋀ y′=y+1 ⋀ z′=z
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Single Path Linear-Constraint Loops

1

x ≤ y ⋀ y ≤ z ⋀ 

x′=x+2 ⋀ y′=y+1 ⋀ z′=z

while ( x ≤ y  and  y ≤ z ) {

  x := x + 2

  y := y + 1

}

while ( 4*x ≥ y  and  y ≥ 1 ) 

      x := (2*x + 1)/5

while ( t != null ) 

      t := t.left

4x ≥ y ⋀ y ≥ 1 ⋀ 

5x′ ≤ 2x+1 ⋀ 5x′ ≥ 2x-3 ⋀ y′ = y

t ≥ 0 ⋀ t′ ≤ t-1

ψ1

‣ In many cases the termination proof boils down to 
termination of SLC loops.


‣ Interesting questions of decidability of termination 
in general for this setting.



Decidability Questions
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‣ How hard is it to decide if there exists a RF of a specific 
type, for a given class of programs? 


‣ Develop synthesis algorithms (including loop bounds).
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Linear Ranking Functions (by Ex.)

while ( x ≤ y ) {

    x := x + 2

    y := y + 1

}


‣ f(x,y) = y-x is a linear ranking function (LRF)


– non-negative in all (enabled) states: f(x,y) ≥ 0


– strictly decreasing: f(x,y)-f(x′,y′) ≥ 1

ψ

ψ = { x ≤ y, x’=x+2, y’=y+1 }



‣ There are complete algorithms for synthesising 
LRFs over rationals and integers, even for complex 
control flow  (PTIME / coNP-complete)

- Sohn and van Gelder (1991)

- Feautrier (1992)

- Colόn and Sipma (2001)

- Podelski and Rybalchenko (2004)

- Mesnard and Serebrenik (2008)

- Alias, Darte, Feautrier, Gonnord (2010)

- Ben Amram and Genaim (2013) 

- …


‣ LRFs do not suffice for all loops… Lexicographic 
Linear Ranking Functions (LLRFs) are a very 
common alternative.

LRFs and Alternatives …



- BG-LLRF [Ben-Amram and Genaim, JACM’14]: ∀j≤i. fj(x⃗) ≥ 0


- ADFG-LLRF [Alias et al., SAS’10]: … 


- BMS-LLRF [Bradley et al., CAV’05]: … 


- MΦRF: ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 1

Types of LLRF
‹f1,…,fi,…,fd› is a LLRF for a set of transitions T iff for 
any x!’’=(x!,x!’) ∈ T there is  1 ≤ i ≤ d  such that

1.         fi(x⃗) ≥ 0              non-negative

2.        fi(x⃗)-fi(x⃗’) ≥ 1      decreasing 

3. ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 0     non-increasing       

BG MΦRF

ADFG

BMS

LLRF



Examples of programs with LLRFs

while (x ≥ 0 ⋀  y ≥ 0 ) {

   if (*) {

     x := x-1

     y := *

   } else {

     y := y-1

   }

}

ψ1ψ2

ψ1 = { x ≥ 0, y ≥ 0, x’=x-1 }

ψ2 = { x ≥ 0, y ≥ 0, x’=x, y’=y-1 }

(BG,ADFG,BMS)-LLRF <x,y>

while (x ≥ -y ⋀ y ≤ 9 ⋀ 1 ≥ z ≥ 0) {

   x := x+y+10z-15

   y := y-z

}

ψ

BG-LLRF <x,y>



MΦRFs and Multiphase Behaviour

‣ <z-y-1,x-1> is not a MΦRF, but it induces a multiphase 
behaviour since once a component is negative, it 
cannot be used anymore.


‣ if we add y:=y+1 to the else branch, <z-y-1,x-1> would 
be a MΦRF as well.

while (x ≥ -z) {

   x := x+y

   y := y+z


z := z-1

}    

      

                  MΦRF <z,y,x>

ψ while (x ≥ 1) {

   if ( y < z ) {

      y := y+1

   } else {

      x := x-1

   }

}                   LLRF <z-y-1,x-1>

ψ0

ψ2 ψ3ψ1

ψ4n1

n2

n3

n0



Outline
‣ Algorithmic and complexity aspects of MΦRFs


- Mainly for SLC Loops.

- Inference algorithms.

- Complexity of decision problems.

- …


‣ Using control-flow refinement (CFR) for termination 
analysis of programs with multiphase behaviour

- Partial evaluation as a CFR technique.

- Applications of CFR to other analyses.

- …


‣ Concluding remarks.

Based on works with 
Amir Ben-Amram and 
Jesús Domenech

Based on works with 
John Gallagher and 
Jesús Domenech



The (Bounded) MΦRF Problems

‣ The MΦRF problem seeks tuples of any length.


‣ The d-MΦRF assume that the length d of the tuple 
is part of the input or the problem.


‣ We are seeking complexity classification, and 
corresponding synthesis algorithms for this problem.

Instance: A set of transitions T
Question: Does there exist a MΦRF for T (of length d)?

Decision problems (d-)MΦRF



d-MΦRFs for SLC Loops

‹f1,…,fd› is a NLRF for a set of transitions T iff
 ∀ x⃗’’∈ T ⇒ Δf1(x⃗’’) ≥ 1 ⋀ 

Δf2(x⃗’’) + f1(x⃗) ≥ 1 ⋀…⋀Δfd(x⃗’’) + fd-1(x⃗) ≥ 1⋀

fd(x⃗) ≥ 0

‣ For SLC loops T is a polyhedron, so we can use Farkas’ Lemma to 
get a complete PTIME synthesis procedure for NLRFs [Leike and 
Heizmann, LMCS 2015].


‣ It is also complete for general linear-constraint programs, but in 
such case there is no equivalence to MΦRFs.

MΦRFs have the same power as Nested-Linear Ranking 
Functions (NLRFs) for SLC loops

Theorem [Ben-Amram and Genaim, CAV’17]

Notation: Δfi(x⃗’’)≣fi(x⃗)-fi(x⃗’)



Example of a NLRF

while (x ≥ -z) {

   x’ = x+y

   y’ = y+z


z’ = z-1

}

‣ The loop has the MΦRF ‹z,y,x›, which is not a 

NLRF since, for example, x if not non-negative 

on all states.


‣ but it has a NLRF ‹z,y+z,x+z› 

ψ



while (x ≥ -y ⋀ y ≤ 9 ⋀ 1 ≥ z ≥ 0) {

   x’ = x+y+10z-15

   y’ = y-z

}

If a SLC loop has a LLRF of length d, then it has a 
MΦRF of length d

Theorem [Ben-Amram and Genaim, CAV’17]

‣ It has the LLRF ‹y,x› which is not a MΦRF (y does 
not decrease on all transitions) …

‣ … but it has the MΦRF ‹x+10y,25x+25y+6› 

MΦRFs vs. LLRFs for SLC loops

ψ



Loop Bounds from MΦRFs

while (x ≥ 0) {

   x’ = x+y

   y’ = y-1

}

(x0,y0) -> (x0+y0,y0-1) -> (x0+y0+(y0-1),y0-2) ->…-> (x0+O(y02),-1)

‣ This loop has a MΦRFs ‹y,x›, can 
we use it to obtain a loop bound? 


‣ Can we infer loop bounds for SLC 
loops that have MΦRFs in general?

‣ MΦRFs imply linear loop bounds for SLC loops (a 
linear combination of its components).

‣ NLRFs imply linear loop bounds for general linear-

constraint programs.

Theorem [Ben-Amram and Genaim, CAV’17]

ψ



The UnBounded Version of MΦRF
‣ One can apply the d-MΦRF iteratively, which 

guarantees finding a MΦRF if one exists, but what 
if it does not exist? When to stop?


‣ Is there a theoretical bound on the length of the 
MΦRFs, given the loop? 


‣ We are not aware of any such length-bound, and, 
moreover, unlike the case of BG-LLRFs, it does 
not depend only on the number of variables (or 
constraints) [Ben-Amram and Genaim, CAV’17].


‣ We are seeking a more direct algorithm, which is 
not based on d-MΦRF [Ben-Amram, Domenech, 
and Genaim, SAS’19].



Synthesising BG-LLRFs

‹f1,…,fi,…,fd› is a BG-LLRF for Q iff for each (x⃗,x⃗’) ∈ Q 
there is  1 ≤ i ≤ d  such that

1. ∀j≤i  fj(x⃗) ≥ 0              non-negative

2.        fi(x⃗)-fi(x⃗’) ≥ 1      decreasing 

3. ∀j<i. fj(x⃗)-fj(x⃗’) ≥ 0     non-increasing       

‣ f1(x⃗) ≥ 0 and f1(x⃗)-f1(x⃗’) ≥ 0 holds for any (x⃗,x⃗’) ∈ Q 


‣ f1(x⃗)-f1(x⃗’) ≥ 1 holds for some (x⃗,x⃗’) ∈ Q 


‣ We continue with the SLC loop Q1≣Q⋀f1(x⃗)-f1(x⃗’) ≤ 0


‣ There is an optimal choice for f1



Synthesising MΦRFs

‹f1,…,fi,…,fd› is a MΦRF for Q iff for each (x⃗,x⃗’) ∈ Q 
there is  1 ≤ i ≤ d  such that

1.              fi(x⃗) ≥ 0              non-negative

2. ∀j≤i       fj(x⃗)-fj(x⃗’) ≥ 1      decreasing 

‣ f1(x⃗)-f1(x⃗’) ≥ 1 holds for any (x⃗,x⃗’) ∈ Q 


‣ f1(x⃗) ≥ 0 holds for some (x⃗,x⃗’) ∈ Q 


‣ We continue with the SLC loop Q1≣Q⋀f1(x⃗) ≤ 0


‣ Is there an optimal choice for f1 ? Unfortunately no …



Synthesising MΦRFs

From the equivalence of MΦRF and NLRFs, we know 
that if a SLC loop Q has a MΦRF, then it has one of 
optimal length ‹f1,…,fd› where the fd is non-negative on 
all enabled states, i.e., fd(x⃗) ≥ 0 for any (x⃗,x⃗’) ∈ Q 

‣ g(x⃗) ≥ 0 holds for any (x⃗,x⃗’) ∈ Q


‣ g(x⃗)-g(x⃗’) > 0 holds for some (x⃗,x⃗’) ∈ Q 


‣ Continue with the SLC loop Q1≣Q⋀g(x⃗)-g(x⃗’) ≤ 0


‣ If we succeed to build a MΦRF 𝝉 of length k for Q1, 
then we can use g and 𝝉 to get one of length k+1 for 
Q (the last component is a combination of g and 𝝉)



Synthesising MΦRFs

‣ The set of all candidates g that satisfy g(x⃗) ≥ 0 
for all (x⃗,x⃗’) ∈ Q is a polyhedral cone, and thus it 
is finitely generated by some function g1,…,gk.


‣ Any such g can be written as Σai*gi for some ai≥0.


‣ If g(x⃗)-g(x⃗’) > 0 holds for some (x!,x!’) ∈ Q then 
gi(x⃗)-gi(x⃗’) > 0 must hold for some gi.


‣ Q1≣Q⋀g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0.


‣ If we succeed to build a MΦRF 𝝉 of length k for 
Q1, then we can use g1,…,gk and 𝝉 to build one of 
length k+1 for Q.



(semi-)Deciding Existence MΦRFs

decideMΦRF(Q) {

- if Q is empty, return YES

- Compute the generators g1,…,gk of the cone of 

non-negative function (over the enabled states)

- Q’ = Q⋀g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0

- return decideMΦRF(Q’)


}

‣ If Q has a MΦRF of optimal length d the 
algorithm will make exactly d recursive calls.


‣ The algorithm diverges if Q has no MΦRF.



No Progress and Infinite Progress

decideMΦRF(Q) {

- if Q is empty, return YES

- Compute the generators g1,…,gk  of the cone of 

non-negative function (over the enabled states)

- Q’ = Q⋀ g1(x⃗)-g1(x⃗’) ≤ 0⋀…⋀gk(x⃗)-gk(x⃗’) ≤ 0


- if Q’ == Q, return Q is a recurrent set

- return decideMΦRF(Q’)


}
The algorithm can also make infinite progress, when 
Q is terminating and when Q is non-terminating

Q=Q0 ⊃ Q1 ⊃ Q2 ⊃ Q3 ⊃ …



Better understanding of MΦRFs

‣ Reveals an interesting relation between seeking 
MΦRFs and seeking (monotonic) recurrent sets.


‣ We used its properties to find classes of 
programs for which MΦRF are enough, e.g., 
octagonal relations. 


‣ If Qd is not empty, it explains why the loop does 
not have a MΦRF of length d (useful for 
conditional termination).


‣ Left us with several new research directions and 
open problems …

We have an algorithm that does not completely solve 
the MΦRF problem we wanted to solve, but …



What about General Programs?

‣ All what we have seen so far works only for the case 
of SLC loops.


‣ The d-MΦRFs problem for general linear-constraint 
programs is decidable, and is at least NP-Hard, 
unlike PTIME for SLC loops.


‣ NLRFs can still be used for general programs, but 
for such case they are weaker than MΦRFs — there 
are programs that have MΦRFs but not NLRFs. 


‣ How we can prove termination of programs that 
need MΦRFs (or have multiphase behaviour)?



Encoding to SMT Formulas
‣ Leike and Heizmann [LMCS‘15] encode the d-MΦRF 

conditions as non-linear SMT formula:


- The first component decreases for all transitions, 
and if it is negative the second decreases, etc.


- Satisfiability implies existence of MΦRF of length 
d (the models define the components).


- Complete for real variables


‣ Brockschmidt et al. [TACAS’17] do it incrementally 


- Infer the components of the MΦRF one at a time 
using conditional termination and safety analyser


- Non-linear SMT formulas


- Not complete



Simplifying the Control-Flow

It is easier to prove termination of the one on the right, 
and also prove that its runtime is linear

while (x ≥ 1) {

   if ( y < z ) {

      y := y+1

  } else {

     x’ := x-1

  }  

}        

while (x ≥ 1 ⋀ y < z) {

     y := y+1

}  

                 

while (x ≥ 1 ⋀ y ≥ z) {

     x := x-1

}                      LLRF <z-y-1,x-1>

LRF: z-y-1

LRF: x-1



Control-Flow Refinement (CFR)
‣ Control-Flow refinement was already used, e.g., for 

cost analysis and invariants generation


- Gulwani et al. [PLDI’09]


- Sharma et al. [CAV’11]


‣ These techniques develop program transformations 
from scratch, and tailored to the very specific 
application (cost, invariants, etc)


‣ We wanted to explore the use of a general purpose 
program transformation techniques to refine the 
control-flow in multiphase programs [Domenech, 
Gallagher, and Genaim, TPLP’19]



CFR via Partial Evaluation

‣ We started from a partial evaluator for horn-clause 
programs [John P. Gallagher [VPT 2019] 


‣ It is based on performing unfolding and abstraction


- Unfolding is like executing parts of the program


- Abstraction is applied to loop head predicates, 
using a finte set of abstract properties, to 
guarantee termination of the process


‣ Our linear-constraint programs can be translated to 
(linear) horn-clause programs (and back)



n2

n1

n0

n3

n1

n1

Example

ψ0

ψ2 ψ3ψ1

ψ4n1

n2

n3

n0

n2

n2

n1

[]
[ɸ1]

{x≥1}

[ɸ2]

{x≥1}

{x≥1,y≥z}

[ɸ2]

{x≤0}
ψ0={x’=x,y’=y,z’=z}

ψ1={x≥1,x’=x,y’=y,z’=z}

ψ3={y≥z,x’=x-1,y’=y,z’=z}

ψ2={y<z,x’=x,y’=y+1,z’=z}

ψ4={x≥1,x’=x,y’=y,z’=z}

ɸ1={x≥1}
ɸ2={y≥z}

Properties for n1:while (x ≥ 1) {

   if ( y < z ) {

      y := y+1

  } else {

     x’ := x-1

  }

} LLRF <z-y-1,x-1>

n3

{x≤0,y≥z}



Inference of Properties 

‣ We use several heuristics/schemes


- Extract them from constraints on outgoing/
incoming edges of loop heads


- Propagate conditions backwards/forwards from 
loop bodies to loop heads


- Use concrete intervals for variables, such as x>=1, 
y<=100,… taken from outgoing/incoming edges of 
loop heads




Granularity of CFR

‣ Applying CFR to the whole program is not practical 
for large programs.


‣ We have incorporated CFR in a termination analyser 
with different levels of granularity


- Apply to the whole program


- Apply at the level of SCCs


- Apply only to parts that we could not prove 
terminating, etc.



Benefits of using CFR (experimentally)

‣ More precise termination analysis

- our tool could prove termination of programs in 

the last termination competition, due to the use 
of CFR, that no one could handle


- simpler ranking functions due to phase splitting

- more precise invariants due to case splitting


‣ More precise cost analysis (for the same reasons)

- We use off-the-shelf cost analyser, applied after 

CFR of the whole program


‣ More precise assertions checker 

- due to more precise invariants



iRankFinder

‣ All techniques are implemented in a termination 
analyser that supports:


- LRF, different kinds of LLRFs, MΦRFs, tuples of 
NLRFs (similar to polyranking of Bradley et al.)


- Non-termination using the MΦRFs algorithm, but 
applied to closed-walks instead of SLC loops


- Includes a CFR component


‣ The CFR component can be used independently, so 
other tools can take advantage of it.


‣ Assertions checking, invariants generation, …


‣ All available at: http://loopkiller.com



Concluding Remarks
‣ Multiphase ranking functions (MΦRFs)


- For SLC loops: algorithms, complexity, relation to 
non-termination,  witnesses, etc.


- For general linear-constraint programs we know 
vert little, and further research is needed.


‣ Control-Flow Refinement of Multiphase programs

- A proof of concept that general purpose program 

transformations can be use for CFR.

- Not only for termination. 

- Future work should explore other applications, 

and also the use of CFR for programs with non-
numerical variables.



Thank You!



