Regular path clauses and their application

in solving loops

Bishoksan Kafle! ~ John P. Gallagher’:> Manuel Hermenegildo!:3

! Pedro Lépez-Garcia b José F. Morales!-3

Maximiliano Klemen
1IMDEA Software Institute, >Roskilde University, and 3T.U. Madrid (UPM)

HCVS’21, Virtual

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 1/ 24

Standard approach for solving loops:
@ extract recurrences from the loop, and

@ solve them to get a closed-form expression (possibly) using a
(combination of) Computer Algebra Systems (CASs).

Resource analysis: [Wegbreit Comm. of the ACM'74, Debray et al.
PLDI'90 and TOPLAS'93, Navas et al. ICLP'07, Albert et al. TOCL'13].

Invariant synthesis: [Farzan et al. FMCAD'15, Kincaid et al.
POPL'18-POPL'19, Humenberger et al. VMCAI'18].

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 2/ 24

Computer Algebra Systems (CASs)

Pros:

@ Can derive non-linear functions including polynomial, exponential,
logarithmic, ...

@ Can produce very precise solutions for some classes of recurrences.
Cons:

@ Can only solve a subset of all possible recurrences.

o Typically:

o Recurrences with a single recursive case.
o Recurrences involving univariate functions.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their applica in solving loops 3/ 24

Program recurrences and Computer Algebra Systems

Recurrences derived from programs may not be solvable by CASs:

@ Usually have multiple paths (if ...then ...else inside a loop) —
multiple recursive cases.

@ Manipulate multiple variables — multivariate recurrences.

Use CASs to solve program loops (infer loop invariants) by:

@ Systematically transforming programs, expressed as constrained Horn
clauses (CHCs), to obtain recurrences that are solvable by CASs

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 4/ 24

Example: a program and its CHC representation

int a, b; //input
while (a > 0) {
if (b > 0) then c:wh(a, b) <~ a>0,b>0, wh(a,b—1).
b——; c:wh(a, b)<—a>0,b<0, wh(a—1,b+ a).
else b=b+ g3 c:wh(a, b)« a < 0.
a——;}
(a) Ex. program. (b) CHCs (c; is a clause identifier).

o It exhibit a multi-path loop (with paths ¢; and ;).

@ It manipulates two variables, a, b.

— CASs cannot be directly applied.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 5/ 24

@ Multi-path loops — single-path loops

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Gal Regular path clauses and their appl on in solving loops 6/ 24

Removing multi-path loops: Procedure

Multi-path loops — single-path loops

Input: a CHC program P and its CFG (w/ entry and exit nodes).
Output: an “equivalent” CHC program P’ without multi-path loops.
Process sketch:
© Compute a regexp e describing all paths from entry to exit (using
Tarjan's alg.)
@ Transform e into an equivalent regexp e’ without + op. within a .

© Construct path clauses P’ using P and €’; return P’.

Related work:
o Merge paths: [Albert et al. TOCL'13, Farzan et al. FMCAD'15,
Kincaid et al. POPL'18-POPL'19].
@ Deal with each path separately and combine their polynomial ideals:
[Humenberger et al. VMCAI'18].

o Control-flow refinement: [Sharma et al. CAV'11, Puebla et al.
JLP'99, Doménech et al. TPLP'19].

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 7/ 24

Representing loops as regular expressions

@ Program paths can be described by regular expressions, eg.:

(¢1 + ¢2)*c3 describes all paths through the following loop
Cq1

ci:wh(a, b) <~ a>0,b>0, wh(a, b—1). C3
c2:wh(a, b)<—a>0,b <0, wh(a—1,b+ a).
c:wh(a, b)+ a < 0.

Co

@ Regular expressions can be transformed into other equivalent
expressions, e.g.:

(a+a@)ea=c(ad)a=d6g(ac) .

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 8/ 24

Construction of path clauses corresponding to * expression

Given ¢;: wh(a,b) <—a>0,b>0,a" =a,b' =b—1, wh(a', b'), the

¢
path clauses given by ¢ starting from node wh are:

pathc; (wh(a, b), wh(a, b)) < true. (note: e* = e"e)
pathc: (wh(a, b), wh(a"”, b)) < pathc: (wh(a, b), wh(a’, b')),
pathe, (wh(a', b"), wh(a”, b'")).

OR

pathc,.(wh(a, b), wh(a, b)) < true. (note: e* = ee™)
pathcl*(Wh(a7 b)7 Wh(a//a bu)) A pathcl(Wh(37 b)7 Wh(a/7 bl)):
pathc: (wh(a', b'), wh(a"”, b")).

where path., (wh(a, b), wh(a', b)) = ¢

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 9/ 24

Simplification and renaming of path clauses

Given

pathcx (wh(a, b), wh(a, b)) « true.
pathc: (wh(a, b), wh(a"”, b)) < pathc: (wh(a, b), wh(a’, b')),
pathc, (wh(a’, b"), wh(a”, b'")).

pathe, (wh(a', b'), wh(a", b")) < a’ > 0,b > 0,a" =a,b" = b — 1.

Renaming and simplifying we obtain:

who(a, b, a,b) + true.
why(a,b,a’,b’ — 1) < why(a,b,a’,b’), a’ >0, ' > 0.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 10/ 24

Construction of path clauses corresponding to an expr. e

c path_(p(x), q(x)) < ¢.,where clause p(x) < &, q(x’) € P has identifier c
€ path,(p(x), p(x)) + true.
0 no clause

ere path, ., (p(x), z) < path, (p(x), g(x’)), path,,(q(x'), z)., for each g € firstpred(e,)
e+ e pathel+82(p(x),z) « pathel(p(x),z).

pathe ¢, (P(x), z) < path,(p(x), z).

path,.(p(x), p(x)) < true.

path,. (p(x), p(x")) = path,.(p(x), p(x')), path(p(x'), p(x"))-

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 11/ 24

Path clauses for the example program

ci:wh(a, b) < a>0,b >0, wh(a,b—1).
c2:wh(a, b) < a>0,b<0, wh(a—1,b+ a).
c:wh(a, b) < a < 0.

Path clauses based on (cf(c2ci)*)cs

path(wh(a,b), true) < why(a,b,a’,b’), whs(a’,b’,a”,b"), a” < 0.

who(a, b, a,b) « true.
who(a,b,a’, b’ — 1) + why(a,b,a’,b’), a’ >0, b’ > 0.

whs(a, b, a,b) < true.
whs(a,b,a”,b"”) < whs(a,b,a’,b’), a’ >0, b’ <0,why(a’ —1,b" +a’,a",bv").

Result: multi-paths — nested single-paths

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 12/ 24

© Multi-argument functions — single-argument functions

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Gal Regular path clauses and their appl solving loops 13/ 24

Procedure

@ Instrument path clause with a counter k.
o Given pathe- (X, X2) < ¢(x1, X2), pathe= (X, X1).
o Path clauses with a counter k are:

pathe- (k, X, X2) < k > 0, ¢(x1,X2), pathe (k — 1,X, X1).
pathe«(k,x,x) <k = 0.

@ Then, given an input tuple x and k, set up equations for output
tuple x2 using the path clause, using methods such as in (Debray et
al., TOPLAS'93).

© Detect and remove symbolic constants from the equations; obtaining
single-argument functions.

@ Solve the resulting equations using CASs and replace k in the
solution with the value of the ranking function in the initial state of
the original loop clause.

Multi-args — single-arg: [Farzan et al. FMCAD'15, Albert et al. TOCL'13]

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 14/ 24

Given wh(xy,y1) ¢ x4 > 0,71 > 0,%X0 = X1 — 1,y2 = y1 + X1, wh(Xa, y2),
the path clauses with a counter k are:

path(k, x,y,%2,y2) < k>0k;i=k—1,x0=3%3 — 1,y = y1 + X,
path(ks, %, y,%1,¥1),
X1 > O,y1 > 0.

path(k, x,y,x,7) +— k=0.

The outputs xo, y» represent the values of x, y after k iterations of the
loop and is completely determined by the inputs k, x, y.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 15/ 24

Extracted Recurrences

Hence, given

path(k,x,y,%2,y2) ¢ k>0ki =k-1,x=x —1y2=y1+x,
path(khxvy’ X17Y1)7X1 > 07Y1 > 0.

we obtain the following recurrences

wh*(k —1,x,y)—1, for k>0,

Wik, X, y) = {x for k=0

hy(k —1 h*(k —1 fe k
Why(k’x,y) — w. (f 7X’.)/_) +W (7X7.y)7 or > O?
Y, or k=20

where wh'(k, x, y) defines the values of v after k iterations of the wh loop.

Since the recurrences involve multi-argument functions, they cannot be
solved by the CASs.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 16/ 24

Multi-args functions to single-arg functions

Using data-flow analysis (reaching definitions analysis), we can detect
that x, y are symbolic constants in the following equation.

wh*(k —1,x,y)—1, for k>0,

whx(k7x,y) = {X or k=0

since they cannot affect the solution of the equations
@ remove them as arguments, and

@ replace their occurrence elsewhere by a constant function returning
their values.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 17/ 24

Solving recurrences for wh*(k, x, y)

whx(k){wh(k—l)—l, for k>0,

@ Can be solved using existing CASs, obtaining wh*(k) = ¢x — k as a
closed-form solution.

@ This is also the solution of the original equation, thus we have
wh*(k,x,y) = x — k.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 18/ 24

Solving recurrences for wh¥(k, x, y)

whi(k —1,x,y) +wh*(k — 1,x,y), for k>0,

hyk’? -
wh?(k x, y) {y, for k=0

Reusing the solution of wh*(k, x, y), we obtain

why(k —1,x,y)+x—k+1, for k>0,

hyk7? =
wh7(k,x, y) {y, for k=0

Since x, y are symbolic constants, we get

wh(k) =

wh¥(k—1)+c —k+1, for k>0,
¢, for k=0

@ which can be solved to yield wh¥(k) = ¢, — 1/2k(k — 2x — 1) and
hence whY(k,x,y) =y — 1/2k?® + kx + 1/2k.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 19/ 24

Obtaining bounds on k

What is the value of the counter variable k7

@ Assuming the wh loop has a ranking function, k € [0, r] where r is
the value of ranking function in the initial state.

@ assume wh(x1,y1) is the call at the start of the loop. Then the loop
executes k € [0, x1] times.

@ Thus the final value of x; and x; resp. are [0, x;] and
y1 —1/2x%,y1 + 1/2x; + x]; obtained using interval arithmetic.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 20/ 24

Putting it all together

We achieved
@ Multi-path loops — Single-path loops (through transformation of
regular expressions).
e Multi-argument functions — single-argument functions (through
counter instrumentation and detection and removal of symbolic
constants).

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 21/ 24

Discussion and future work

Pros:

@ Besides overcoming these limitations of CASs, also ensures that the
resulting recurrences.

o Contain no mutual recursion.
o Contain only a decreasing argument(k).

Cons:
@ Shifts the problem to finding bounds on k.

@ Success of our method depends on external tools such as ranking
function synthesizers and CASs.

@ The use of interval arithmetic to infer bounds on variable values can
result in imprecision.

@ Transforming a given program into a multi-path loop could cause an
exponential blow-up in size.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 22/ 24

Discussion and future work

Future:
@ Investigate the choice of regular expressions.
@ Extend our approach to extract and solve recurrence inequations.

@ Extend it to handle non-linear loops.

Kafle, Gallagher, Hermenegildo, Klemen, Lépez-Garcia, Morales Regular path clauses and their application in solving loops 23/ 24

The end!

Thanks for your attention!

Kafle, Gallagher, Hermenegildo, Klemen, Lépe ia, Morales gular path clauses and their application in solving loops 24/

	Multi-path loops -3mu single-path loops
	Multi-argument functions -3mu single-argument functions

