
Regular path clauses and their application
in solving loops

Bishoksan Kafle1 John P. Gallagher1,2 Manuel Hermenegildo1,3

Maximiliano Klemen1 Pedro López-Garćıa 1 José F. Morales1,3

1IMDEA Software Institute, 2Roskilde University, and 3T.U. Madrid (UPM)

HCVS’21, Virtual

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 1/ 24



Motivation

Standard approach for solving loops:

extract recurrences from the loop, and

solve them to get a closed-form expression (possibly) using a
(combination of) Computer Algebra Systems (CASs).

Resource analysis: [Wegbreit Comm. of the ACM’74, Debray et al.
PLDI’90 and TOPLAS’93, Navas et al. ICLP’07, Albert et al. TOCL’13].

Invariant synthesis: [Farzan et al. FMCAD’15, Kincaid et al.
POPL’18-POPL’19, Humenberger et al. VMCAI’18].

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 2/ 24



Computer Algebra Systems (CASs)

Pros:

Can derive non-linear functions including polynomial, exponential,
logarithmic, . . .

Can produce very precise solutions for some classes of recurrences.

Cons:

Can only solve a subset of all possible recurrences.

Typically:

Recurrences with a single recursive case.
Recurrences involving univariate functions.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 3/ 24



Program recurrences and Computer Algebra Systems

Recurrences derived from programs may not be solvable by CASs:

Usually have multiple paths (if . . . then . . . else inside a loop) −→
multiple recursive cases.

Manipulate multiple variables −→ multivariate recurrences.

Goal

Use CASs to solve program loops (infer loop invariants) by:

Systematically transforming programs, expressed as constrained Horn
clauses (CHCs), to obtain recurrences that are solvable by CASs

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 4/ 24



Example: a program and its CHC representation

int a, b; //input
while (a > 0) {
if (b > 0) then

b −−;
else b = b + a;

a−−; }

c1:wh(a, b) ← a > 0, b > 0, wh(a, b − 1).
c2:wh(a, b)← a > 0, b ≤ 0, wh(a− 1, b + a).
c3:wh(a, b)← a ≤ 0.

(a) Ex. program. (b) CHCs (ci is a clause identifier).

It exhibit a multi-path loop (with paths c1 and c2).

It manipulates two variables, a, b.

−→ CASs cannot be directly applied.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 5/ 24



Overview

1 Multi-path loops −→ single-path loops

2 Multi-argument functions −→ single-argument functions

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 6/ 24



Removing multi-path loops: Procedure

Multi-path loops −→ single-path loops

Input: a CHC program P and its CFG (w/ entry and exit nodes).
Output: an “equivalent” CHC program P ′ without multi-path loops.
Process sketch:

1 Compute a regexp e describing all paths from entry to exit (using
Tarjan’s alg.)

2 Transform e into an equivalent regexp e′ without + op. within a ∗.
3 Construct path clauses P ′ using P and e′; return P ′.

Related work:

Merge paths: [Albert et al. TOCL’13, Farzan et al. FMCAD’15,
Kincaid et al. POPL’18-POPL’19].

Deal with each path separately and combine their polynomial ideals:
[Humenberger et al. VMCAI’18].

Control-flow refinement: [Sharma et al. CAV’11, Puebla et al.
JLP’99, Doménech et al. TPLP’19].

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 7/ 24



Representing loops as regular expressions

Program paths can be described by regular expressions, eg.:

(c1 + c2)∗c3 describes all paths through the following loop

c1:wh(a, b) ← a > 0, b > 0, wh(a, b − 1).
c2:wh(a, b)← a > 0, b ≤ 0, wh(a− 1, b + a).
c3:wh(a, b)← a ≤ 0.

wh true

c1

c2

c3

Regular expressions can be transformed into other equivalent
expressions, e.g.:

(c1 + c2)
∗c3 ≡ c∗1 (c2c

∗
1 )
∗c3 ≡ c∗2 (c1c

∗
2 )
∗c3.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 8/ 24



Construction of path clauses corresponding to ∗ expression

Given c1: wh(a, b) ← a > 0, b > 0, a′ = a, b′ = b − 1︸ ︷︷ ︸
φ

, wh(a′, b′), the

path clauses given by c∗1 starting from node wh are:

pathc∗1 (wh(a, b),wh(a, b)) ← true. (note: e∗ = e∗e)

pathc∗1 (wh(a, b),wh(a
′′, b′′)) ← pathc∗1 (wh(a, b),wh(a

′, b′)),

pathc1(wh(a
′, b′),wh(a′′, b′′)).

OR

pathc1∗(wh(a, b),wh(a, b)) ← true. (note: e∗ = ee∗)
pathc1∗(wh(a, b),wh(a

′′, b′′)) ← pathc1(wh(a, b),wh(a
′, b′)),

pathc∗1 (wh(a
′, b′),wh(a′′, b′′)).

where pathc1(wh(a, b),wh(a′, b′)) = φ

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 9/ 24



Simplification and renaming of path clauses

Given

pathc∗1 (wh(a, b),wh(a, b)) ← true.

pathc∗1 (wh(a, b),wh(a
′′, b′′)) ← pathc∗1 (wh(a, b),wh(a

′, b′)),

pathc1(wh(a
′, b′),wh(a′′, b′′)).

pathc1(wh(a
′, b′),wh(a′′, b′′))← a′ > 0, b′ > 0, a′′ = a′, b′′ = b′ − 1.

Renaming and simplifying we obtain:

wh2(a, b, a, b) ← true.
wh2(a, b, a

′, b′ − 1) ← wh2(a, b, a
′, b′), a′ > 0, b′ > 0.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 10/ 24



Construction of path clauses corresponding to an expr. e

c pathc(p(x), q(x′))← φ.,where clause p(x)← φ, q(x′) ∈ P has identifier c
ε pathε(p(x), p(x))← true.
∅ no clause
e1e2 pathe1e2(p(x), z)← pathe1(p(x), q(x′)), pathe2(q(x′), z)., for each q ∈ firstpred(e2)
e1 + e2 pathe1+e2(p(x), z)← pathe1(p(x), z).

pathe1+e2(p(x), z)← pathe2(p(x), z).
e∗ pathe∗(p(x), p(x))← true.

pathe∗(p(x), p(x′′))← pathe∗(p(x), p(x′)), pathe(p(x′), p(x′′)).

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 11/ 24



Path clauses for the example program

c1:wh(a, b) ← a > 0, b > 0, wh(a, b − 1).
c2:wh(a, b) ← a > 0, b ≤ 0, wh(a− 1, b + a).
c3:wh(a, b) ← a ≤ 0.

Path clauses based on (c∗1 (c2c
∗
1 )∗)c3

path(wh(a, b), true)← wh2(a, b, a
′, b′), wh5(a

′, b′, a′′, b′′), a′′ ≤ 0.

wh2(a, b, a, b)← true.
wh2(a, b, a

′, b′ − 1)← wh2(a, b, a
′, b′), a′ > 0, b′ > 0.

wh5(a, b, a, b)← true.
wh5(a, b, a

′′, b′′)← wh5(a, b, a
′, b′), a′ > 0, b′ ≤ 0, wh2(a

′ − 1, b′ + a′, a′′, b′′).

Result: multi-paths −→ nested single-paths

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 12/ 24



Overview

1 Multi-path loops −→ single-path loops

2 Multi-argument functions −→ single-argument functions

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 13/ 24



Procedure

1 Instrument path clause with a counter k .

Given pathe∗(x, x2)← φ(x1, x2), pathe∗(x, x1).
Path clauses with a counter k are:

pathe∗(k, x, x2)← k > 0, φ(x1, x2), pathe∗(k− 1, x, x1).
pathe∗(k, x, x)← k = 0.

2 Then, given an input tuple x and k , set up equations for output
tuple x2 using the path clause, using methods such as in (Debray et
al., TOPLAS’93).

3 Detect and remove symbolic constants from the equations; obtaining
single-argument functions.

4 Solve the resulting equations using CASs and replace k in the
solution with the value of the ranking function in the initial state of
the original loop clause.

Multi-args −→ single-arg: [Farzan et al. FMCAD’15, Albert et al. TOCL’13]

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 14/ 24



Example

Given wh(x1, y1)← x1 > 0, y1 > 0, x2 = x1 − 1, y2 = y1 + x1, wh(x2, y2),
the path clauses with a counter k are:

path(k, x, y, x2, y2) ← k > 0, k1 = k− 1, x2 = x1 − 1, y2 = y1 + x1,
path(k1, x, y, x1, y1),
x1 > 0, y1 > 0.

path(k, x, y, x, y) ← k = 0.

The outputs x2, y2 represent the values of x , y after k iterations of the
loop and is completely determined by the inputs k , x , y .

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 15/ 24



Extracted Recurrences

Hence, given

path(k, x, y, x2, y2) ← k > 0, k1 = k− 1, x2 = x1 − 1, y2 = y1 + x1,
path(k1, x, y, x1, y1), x1 > 0, y1 > 0.

we obtain the following recurrences

whx(k, x , y) =

{
whx(k − 1, x , y)− 1, for k > 0,

x , for k = 0

why(k, x , y) =

{
why(k − 1, x , y) + whx(k − 1, x , y), for k > 0,

y , for k = 0

where whv(k, x , y) defines the values of v after k iterations of the wh loop.

Since the recurrences involve multi-argument functions, they cannot be
solved by the CASs.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 16/ 24



Multi-args functions to single-arg functions

Using data-flow analysis (reaching definitions analysis), we can detect
that x , y are symbolic constants in the following equation.

whx(k , x , y) =

{
whx(k − 1, x , y)− 1, for k > 0,

x , for k = 0

since they cannot affect the solution of the equations

remove them as arguments, and

replace their occurrence elsewhere by a constant function returning
their values.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 17/ 24



Solving recurrences for whx(k , x , y)

whx(k) =

{
whx(k − 1)− 1, for k > 0,

cx , for k = 0

Can be solved using existing CASs, obtaining whx(k) = cx − k as a
closed-form solution.

This is also the solution of the original equation, thus we have
whx(k , x , y) = x − k.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 18/ 24



Solving recurrences for why(k , x , y)

why(k, x , y) =

{
why(k − 1, x , y) + whx(k − 1, x , y), for k > 0,

y , for k = 0

Reusing the solution of whx(k , x , y), we obtain

why(k , x , y) =

{
why(k − 1, x , y) + x − k + 1, for k > 0,

y , for k = 0

Since x , y are symbolic constants, we get

why(k) =

{
why(k − 1) + cx − k + 1, for k > 0,

cy , for k = 0

which can be solved to yield why(k) = cy − 1/2k(k − 2x − 1) and
hence why(k, x , y) = y − 1/2k2 + kx + 1/2k .

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 19/ 24



Obtaining bounds on k

What is the value of the counter variable k?

Assuming the wh loop has a ranking function, k ∈ [0, r ] where r is
the value of ranking function in the initial state.

assume wh(x1,y1) is the call at the start of the loop. Then the loop
executes k ∈ [0, x1] times.

Thus the final value of x1 and x2 resp. are [0, x1] and
[y1 − 1/2x21 , y1 + 1/2x1 + x21 ]; obtained using interval arithmetic.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 20/ 24



Putting it all together

We achieved

Multi-path loops −→ Single-path loops (through transformation of
regular expressions).

Multi-argument functions −→ single-argument functions (through
counter instrumentation and detection and removal of symbolic
constants).

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 21/ 24



Discussion and future work

Pros:

Besides overcoming these limitations of CASs, also ensures that the
resulting recurrences.

Contain no mutual recursion.
Contain only a decreasing argument(k).

Cons:

Shifts the problem to finding bounds on k .

Success of our method depends on external tools such as ranking
function synthesizers and CASs.

The use of interval arithmetic to infer bounds on variable values can
result in imprecision.

Transforming a given program into a multi-path loop could cause an
exponential blow-up in size.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 22/ 24



Discussion and future work

Future:

Investigate the choice of regular expressions.

Extend our approach to extract and solve recurrence inequations.

Extend it to handle non-linear loops.

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 23/ 24



The end!

Thanks for your attention!

Kafle, Gallagher, Hermenegildo, Klemen, López-Garćıa, Morales Regular path clauses and their application in solving loops 24/ 24


	Multi-path loops -3mu single-path loops
	Multi-argument functions -3mu single-argument functions

