
KNOWLEDGE-ASSISTED REASONING OF REQUIREMENTS
Using Event Calculus and Goal-Directed Answer Set Programming

1

OVERVIEW

• Our Motivation
• Requirement Challenges
• A Potential Paradigm Shift

• The MIDAS Approach
• Model-Augmented Requirement Context
• Constrained Natural Language Requirement Intent

• Formalizing MIDAS with Event Calculus and s(CASP)

• Example of Knowledge-Assisted Reasoning

2

MOTIVATION: UNDERSTANDING THE TRUE COSTS OF REQUIREMENT MATURITY ISSUES

3

Requirements and
Early Design Errors

Dominate Costs

Component
Software

Design

Software
Architectural

Design

System
Design

Requirements
Engineering

Unit
Test

Integration
Test

System
Test

Acceptance
Test

Code
Development

3.5% 1x70% 9% 40x

20.5% 110x

16% 5x20%

DO-178
Focus

80% late error discovery at
high rework cost

50.5% 16x10%

70% Requirements
& system/software
interaction errors

Move effort to here

Where errors are introduced
Where faults are found
The relative cost for error removal

Legend

* Data from AVSI SAVI Project

• Delivery delays not known
until late into project schedule

• Rework and certification
dominates development cost

DEVELOPMENT EVOLUTION

4

Common

• Limited integration of dynamic and static views
• Informal semantics
• Tool specific workflows

Document-centric design

Model-based design

Diagram Centric (e.g., SysML, Capella) Simulation Centric (e.g., Simulink)

• Text Focused
• No integration
• Limited simulation

• Static notations ‘alien’ to domain experts
• Limited simulation

• Limited provisions for software
factoring and operational scenario
support

Requirements still monolithic text and not formal
Knowledge-Enabled System Engineering

• Semantic-based models focused on formal Intent Capture
• Model-Augmented Requirements - Hybrid-Requirements

Required

Model Augmented
Formal Requirements

Constrained Natural Language

+

Information Model

ESTABLISHING REQUIREMENT CONTEXT: OBJECT–PROCESS METHODOLOGY (OPM)

• A language and methodology for modeling complex systems of any kind

• Recognized as ISO PAS 19450 standard

• Based on the minimal universal ontology of stateful objects
• Processes transform objects by:

– Creating new objects
– Consuming existing objects
– Changing states of existing objects

• Bimodal Representation
• Graphical and Textual Form of Information Model

• Objects and processes can be refined to any desired level of detail via refinement-abstraction
mechanisms:
• In-zooming & Out-zooming (primarily for processes)
• Unfolding & Folding (primarily for objects)

5

Charging changes Battery
from Depleted to Charged.

OPM Model Provides Visual and Ontological Context for the Boundary of Intent

DEFINING INTENT: EASY APPROACH TO REQUIREMENTS SYNTAX (EARS)

6

• A simple pragmatic requirements approach
developed by Alistair Mavin and a team whilst
working at Rolls Royce PLC

• Comprises constrained natural language
templates to help structure and target
requirements for better clarity and consistency

• Simple Keywords used to separate and
guide focus to different requirement
concerns
• Nominal & Off-Nominal Scenarios
• Event and State-Driven System Responses
• Feature-Driven Requirements
• System Invariants & Properties

SEPARATING WHAT FROM HOW: MIDAS DEFINITIONS AND THE Z-LADDER

7

Intent is an unambiguous statement of the intended interaction between
an entity’s boundary and its surrounding context

Design is the allocation of structure and behavior within a defined
boundary to satisfy one or more requirements.

“Left Rail” “Right Rail”“Rungs”

Requirements Architecture/Design

EARS Intent
(expressed over boundary)

EARS

Requirement (Intent) defined on Boundary

Requirement (Intent) defined on Boundary

Design (Solution) defined within Boundary

OPM Context Z-Ladder of Intent
Refinement

Boundaries relate to Conceptual Abstractions and may necessarily be Structural or Physical

For more details see: Hall, Brendan, Jan Fiedor, and Yogananda Jeppu. "Model Integrated Decomposition and Assisted Specification (MIDAS)." In INCOSE
International Symposium, vol. 30, no. 1, pp. 821-841. 2020.

FORMALIZING THE MIDAS MODEL

 Approach: Formalize the MIDAS Intent Model using the event calculus, implemented in goal-
directed Answer Set Programming (the s(CASP) system)

 Event calculus devised by AI researchers to model dynamic systems:
 Designed around events and fluents
 Axioms to model their interaction

• EARS and OPM can be mapped to event calculus directly
• Event triggers and state qualifies identified using EARS keywords
• State of the OPM objects map to fluents
• Level of Temporal Abstraction elegantly represented in the event calculus

 OPM Information model can also be used to capture physical world assumptions and additional
domain knowledge
 The OPM and Event Calculus formalism may also be Intuitive than other approaches such as

hybrid automata or Kripke structures
 Much smaller “semantic gap”; avoid “design” pollution
 Completeness (to the extent possible) can also be checked

8

THE INTEGRATED MIDAS INTENT MODEL

9

Z-Ladder of Intent Refinement

EVENT CALCULUS

• Actuator actions map to events (switch on the home heating system)

• Sensor readings map to fluents (room temperature)

• Conditions on sensors map to triggers (temperature exceeds 80oF)

• Basic Event Calculus Axioms

10

ANSWER SET PROGRAMMING & THE S(CASP) SYSTEM

• ASP is an extension of logic programming that supports negation-as-failure
– Based on stable model semantics (negation is sound)
– Possible world semantics
– Various implementations available based on use of SAT-solver technology

• s(CASP) system
– Current ASP systems have limitations

 programs must be grounded due to use of SAT solvers
– Current ASP systems cannot model time faithfully

 no support for constraints over reals
– s(CASP) system solves these problems by devising a goal-directed execution strategy

 Based on coinduction, support for constructive negation, and other innovations

• The event calculus can be elegantly coded in Answer Set Prolog and executed on s(CASP)
– The encoding can be used for checking for feasibility and consistency by executing appropriate

queries against this encoding
– Additional knowledge coded in ASP can be used for checking for completeness

11

EXAMPLE ENCODING: CONSISTENCY & FEASIBILITY OF REQUIREMENTS

• Modeling requirements using the event calculus (EC):

12

REASONING INTENT : CONSISTENCY & FEASIBILITY OF REQUIREMENTS

13

ALTITUDE ALERTING SYSTEM

14

• Fluents: Absolute Altitude Error, Capture Alert On/Off, Departure Alert
On/Off, Altitude Alert On/Off, Altitude Adjusting/Not Adjusting

• Events: Error Becomes > 200 ft, Error Becomes < 1020 ft, Init Capture
Alert, Init Departure Alert, Init Altitude Alert, Term All Alerts

CONSISTENCY & FEASIBILITY OF REQUIREMENTS

15

• Single event upset can cause system reset; they are easy to miss and maybe counterintuitive
– The destructive power of SEU modeled using a reset event
– The reset event overrides the constructed internal state of the system,

forcing the initialization state to be re-established
– Such a reset tests robustness of the system initialization logic
– Modeled as an abducible (reset may or may not happen) in ASP
– Reset event can only override the cyber system software state and

does not affect the continuous state of the physical world
– SEU terminates every fluent and initiates it to an initial value

– If designer fails to take into account that the altitude knob may be adjusting during SEU,
we can detect that (e.g., check altitude_alert turned on after 5 seconds)

?- happens(reset, T, T),T1 .>=. T + 5,altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

COMPLETENESS OF REQUIREMENTS: SINGLE EVENT UPSETS

16

FAILING RUN IN THE PRESENCE OF SEU

• If we change the assumption in REQ5, then we can show a failing run of the alerting system

• REQ5’ : Upon initialization/reset, the altitude alerting system shall consider the altitude
selection knob to be not adjusting (incorrect assumption)

• Scenario:
• Plane is cruising at 32,000 ft at time t
• Selected altitude value is 32, 300 ft, altitude not adjusting since t – 5
• By REQ3, “When altitude error goes above 300 ft, the altitude alert should be turned on”
• Under normal circumstances, the system issues the altitude alert
• Consider a reset at time t, which resets the internal state by turning the altitude alert off
• If REQ5’ is used then, the altitude alert never turns back on
• If REQ5 is used then, the altitude alert turns back on at t+5
• The query shown before checks for erroneous behaviour of alerting with SEU

?- happens(reset, T, T),T1 .>=. T + 5, altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

17

FUTURE WORK

• Building out MIDAS IDE within MBSE Tool Chain

• Working classes of knowledge to aid application domain knowledge
• E.g., Defeater Knowledge

– How systems fail
– Known specification gaps

• Architectural & Distributed System Reasoning
– E.g., Byzantine Vulnerability Detection

• Improving s(CASP) to search more efficiently
• Refine the s(CASP) algorithm

– Localize consistency checks to make the search more efficient
– Generate efficient dual rules for Event Calculus encodings

18

