
KNOWLEDGE-ASSISTED REASONING OF REQUIREMENTS
Using Event Calculus and Goal-Directed Answer Set Programming

1

OVERVIEW

• Our Motivation
• Requirement Challenges
• A Potential Paradigm Shift

• The MIDAS Approach
• Model-Augmented Requirement Context
• Constrained Natural Language Requirement Intent

• Formalizing MIDAS with Event Calculus and s(CASP)

• Example of Knowledge-Assisted Reasoning

2

MOTIVATION: UNDERSTANDING THE TRUE COSTS OF REQUIREMENT MATURITY ISSUES

3

Requirements and
Early Design Errors

Dominate Costs

Component
Software

Design

Software
Architectural

Design

System
Design

Requirements
Engineering

Unit
Test

Integration
Test

System
Test

Acceptance
Test

Code
Development

3.5% 1x70% 9% 40x

20.5% 110x

16% 5x20%

DO-178
Focus

80% late error discovery at
high rework cost

50.5% 16x10%

70% Requirements
& system/software
interaction errors

Move effort to here

Where errors are introduced
Where faults are found
The relative cost for error removal

Legend

* Data from AVSI SAVI Project

• Delivery delays not known
until late into project schedule

• Rework and certification
dominates development cost

DEVELOPMENT EVOLUTION

4

Common

• Limited integration of dynamic and static views
• Informal semantics
• Tool specific workflows

Document-centric design

Model-based design

Diagram Centric (e.g., SysML, Capella) Simulation Centric (e.g., Simulink)

• Text Focused
• No integration
• Limited simulation

• Static notations ‘alien’ to domain experts
• Limited simulation

• Limited provisions for software
factoring and operational scenario
support

Requirements still monolithic text and not formal
Knowledge-Enabled System Engineering

• Semantic-based models focused on formal Intent Capture
• Model-Augmented Requirements - Hybrid-Requirements

Required

Model Augmented
Formal Requirements

Constrained Natural Language

+

Information Model

ESTABLISHING REQUIREMENT CONTEXT: OBJECT–PROCESS METHODOLOGY (OPM)

• A language and methodology for modeling complex systems of any kind

• Recognized as ISO PAS 19450 standard

• Based on the minimal universal ontology of stateful objects
• Processes transform objects by:

– Creating new objects
– Consuming existing objects
– Changing states of existing objects

• Bimodal Representation
• Graphical and Textual Form of Information Model

• Objects and processes can be refined to any desired level of detail via refinement-abstraction
mechanisms:
• In-zooming & Out-zooming (primarily for processes)
• Unfolding & Folding (primarily for objects)

5

Charging changes Battery
from Depleted to Charged.

OPM Model Provides Visual and Ontological Context for the Boundary of Intent

DEFINING INTENT: EASY APPROACH TO REQUIREMENTS SYNTAX (EARS)

6

• A simple pragmatic requirements approach
developed by Alistair Mavin and a team whilst
working at Rolls Royce PLC

• Comprises constrained natural language
templates to help structure and target
requirements for better clarity and consistency

• Simple Keywords used to separate and
guide focus to different requirement
concerns
• Nominal & Off-Nominal Scenarios
• Event and State-Driven System Responses
• Feature-Driven Requirements
• System Invariants & Properties

SEPARATING WHAT FROM HOW: MIDAS DEFINITIONS AND THE Z-LADDER

7

Intent is an unambiguous statement of the intended interaction between
an entity’s boundary and its surrounding context

Design is the allocation of structure and behavior within a defined
boundary to satisfy one or more requirements.

“Left Rail” “Right Rail”“Rungs”

Requirements Architecture/Design

EARS Intent
(expressed over boundary)

EARS

Requirement (Intent) defined on Boundary

Requirement (Intent) defined on Boundary

Design (Solution) defined within Boundary

OPM Context Z-Ladder of Intent
Refinement

Boundaries relate to Conceptual Abstractions and may necessarily be Structural or Physical

For more details see: Hall, Brendan, Jan Fiedor, and Yogananda Jeppu. "Model Integrated Decomposition and Assisted Specification (MIDAS)." In INCOSE
International Symposium, vol. 30, no. 1, pp. 821-841. 2020.

FORMALIZING THE MIDAS MODEL

 Approach: Formalize the MIDAS Intent Model using the event calculus, implemented in goal-
directed Answer Set Programming (the s(CASP) system)

 Event calculus devised by AI researchers to model dynamic systems:
 Designed around events and fluents
 Axioms to model their interaction

• EARS and OPM can be mapped to event calculus directly
• Event triggers and state qualifies identified using EARS keywords
• State of the OPM objects map to fluents
• Level of Temporal Abstraction elegantly represented in the event calculus

 OPM Information model can also be used to capture physical world assumptions and additional
domain knowledge
 The OPM and Event Calculus formalism may also be Intuitive than other approaches such as

hybrid automata or Kripke structures
 Much smaller “semantic gap”; avoid “design” pollution
 Completeness (to the extent possible) can also be checked

8

THE INTEGRATED MIDAS INTENT MODEL

9

Z-Ladder of Intent Refinement

EVENT CALCULUS

• Actuator actions map to events (switch on the home heating system)

• Sensor readings map to fluents (room temperature)

• Conditions on sensors map to triggers (temperature exceeds 80oF)

• Basic Event Calculus Axioms

10

ANSWER SET PROGRAMMING & THE S(CASP) SYSTEM

• ASP is an extension of logic programming that supports negation-as-failure
– Based on stable model semantics (negation is sound)
– Possible world semantics
– Various implementations available based on use of SAT-solver technology

• s(CASP) system
– Current ASP systems have limitations

 programs must be grounded due to use of SAT solvers
– Current ASP systems cannot model time faithfully

 no support for constraints over reals
– s(CASP) system solves these problems by devising a goal-directed execution strategy

 Based on coinduction, support for constructive negation, and other innovations

• The event calculus can be elegantly coded in Answer Set Prolog and executed on s(CASP)
– The encoding can be used for checking for feasibility and consistency by executing appropriate

queries against this encoding
– Additional knowledge coded in ASP can be used for checking for completeness

11

EXAMPLE ENCODING: CONSISTENCY & FEASIBILITY OF REQUIREMENTS

• Modeling requirements using the event calculus (EC):

12

REASONING INTENT : CONSISTENCY & FEASIBILITY OF REQUIREMENTS

13

ALTITUDE ALERTING SYSTEM

14

• Fluents: Absolute Altitude Error, Capture Alert On/Off, Departure Alert
On/Off, Altitude Alert On/Off, Altitude Adjusting/Not Adjusting

• Events: Error Becomes > 200 ft, Error Becomes < 1020 ft, Init Capture
Alert, Init Departure Alert, Init Altitude Alert, Term All Alerts

CONSISTENCY & FEASIBILITY OF REQUIREMENTS

15

• Single event upset can cause system reset; they are easy to miss and maybe counterintuitive
– The destructive power of SEU modeled using a reset event
– The reset event overrides the constructed internal state of the system,

forcing the initialization state to be re-established
– Such a reset tests robustness of the system initialization logic
– Modeled as an abducible (reset may or may not happen) in ASP
– Reset event can only override the cyber system software state and

does not affect the continuous state of the physical world
– SEU terminates every fluent and initiates it to an initial value

– If designer fails to take into account that the altitude knob may be adjusting during SEU,
we can detect that (e.g., check altitude_alert turned on after 5 seconds)

?- happens(reset, T, T),T1 .>=. T + 5,altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

COMPLETENESS OF REQUIREMENTS: SINGLE EVENT UPSETS

16

FAILING RUN IN THE PRESENCE OF SEU

• If we change the assumption in REQ5, then we can show a failing run of the alerting system

• REQ5’ : Upon initialization/reset, the altitude alerting system shall consider the altitude
selection knob to be not adjusting (incorrect assumption)

• Scenario:
• Plane is cruising at 32,000 ft at time t
• Selected altitude value is 32, 300 ft, altitude not adjusting since t – 5
• By REQ3, “When altitude error goes above 300 ft, the altitude alert should be turned on”
• Under normal circumstances, the system issues the altitude alert
• Consider a reset at time t, which resets the internal state by turning the altitude alert off
• If REQ5’ is used then, the altitude alert never turns back on
• If REQ5 is used then, the altitude alert turns back on at t+5
• The query shown before checks for erroneous behaviour of alerting with SEU

?- happens(reset, T, T),T1 .>=. T + 5, altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

17

FUTURE WORK

• Building out MIDAS IDE within MBSE Tool Chain

• Working classes of knowledge to aid application domain knowledge
• E.g., Defeater Knowledge

– How systems fail
– Known specification gaps

• Architectural & Distributed System Reasoning
– E.g., Byzantine Vulnerability Detection

• Improving s(CASP) to search more efficiently
• Refine the s(CASP) algorithm

– Localize consistency checks to make the search more efficient
– Generate efficient dual rules for Event Calculus encodings

18

