KNOWLEDGE-ASSISTED REASONING OF REQUIREMENTS

Using Event Calculus and Goal-Directed Answer Set Programming

Brendan Hall*, Sarat Chandra Varanasi!, Jan Fiedor?$, Joaquin Arias¥, Kinjal Basul,
Fang Li!, Devesh Bhatt*, Kevin Driscoll*, Elmer Salazar, Gopal Gupta'
*Honeywell Advanced Technology, Plymouth, USA
TDep;m:manl of Computer Science, The University of Texas at Dallas, Richardson, TX, USA
i Honeywell International s.r.o, Brno, Czech Republic
$Brno University of Technology, Brno, Czech Republic
YUniversidad Rey Juan Carlos, Madrid, Spain

OVERVIEW

¢ Qur Motivation
e Requirement Challenges
e A Potential Paradigm Shift

e The MIDAS Approach
¢ Model-Augmented Requirement Context
e Constrained Natural Language Requirement Intent

e Formalizing MIDAS with Event Calculus and s(CASP)

e Example of Knowledge-Assisted Reasoning

MOTIVATION: UNDERSTANDING THE TRUE COSTS OF REQUIREMENT MATURITY ISSUES

* Data from AVSI SAVI Project

Acceptance
Test
System
Test

Requirements and
Early Design Errors
Dominate Costs

80% late error discovery at

o .
70% Requirements high rework cost

& system/software

. ., interaction errors
Requirements .
Engineering

70% 3.5% 1x
*. Move effort to here
Design *,

DO-178
Focus

* Delivery delays not known
until late into project schedule

» Rework and certification
dominates development cost

Legend
Where errors are introduced
Where faults are found

‘g The relative cost for error removal

Code
Development 3

DEVELOPMENT EVOLUTION

2 |
2000

Diagram Centric (e.g., SysMLe, Sgpatuitic-based models focussch@ntformahimnieaigCantunek)
~e-t- - =*~*ions ‘alien’ to c.fol\n/!lg%eel}%gﬁgn ented Requirements; by BF KBS RS o

factoring and operational scenario

Document-centric design

PARADIGM ulatio .
SRIET gonstramed Natural Language

sypport
Common + # Model Augmented
* Lipfseridass# g 8ynamic and static ieWSFormaI Requirements

/ s « Informal semantics
» Tool specific workflows

. Knowledge-Enabled System Engineering
Requirements still monolithic text and not forma

ESTABLISHING REQUIREMENT CONTEXT: OBJECT-PROCESS METHODOLOGY (OPM)

A language and methodology for modeling complex systems of any kind
Recognized as ISO PAS 19450 standard
Based on the minimal universal ontology of stateful objects
® Processes transform objects by: N
— Creating new objects »
— Consuming existing objects Charging changes Battery

— Changing states of existing objects from Depleted to Charged.
Bimodal Representation

e Graphical and Textual Form of Information Model

Objects and processes can be refined to any desired level of detail via refinement-abstraction
mechanisms:

® |In-zooming & Out-zooming (primarily for processes)

e Unfolding & Folding (primarily for objects)

OPM Model Provides Visual and Ontological Context for the Boundary of Intent

DEFINING INTENT: EASY APPROACH TO REQUIREMENTS SYNTAX (EARS)

e Asimple pragmatic requirements approach e Simple Keywords used to separate and
developed by Alistair Mavin and a team whilst guide focus to different requirement
working at Rolls Royce PLC concerns

Nominal & Off-Nominal Scenarios

Event and State-Driven System Responses
Feature-Driven Requirements

System Invariants & Properties

e Comprises constrained natural language
templates to help structure and target
requirements for better clarity and consistency

1) Nominal scenarios

* Ubiquitous The shall [system response]
* Event-driven When then

- State-driven While {in a specific state]

+ Option Where [feature is included] e uld [sy Seineer onse]
2) Off-nominal
. If then
scenarios -

Reguired Behavior

SEPARATING WHAT FROM HOW: MIDAS DEFINITIONS AND THE Z-LADDER

Intent is an unambiguous statement of the intended interaction between

Design is the allocation of structure and behavior within a defined “Left Rail” “Rungs” “Right Rail”
boundary to satisfy one or more requirements.

@Ebeﬁgn (Solution) define_g,witﬁ'i“r; Boundary ® > @

@ > O
Requirement (Intent) defined on Boundary
v v
OPM Context Z-Ladder of Intent
Refinement

Boundaries relate to Conceptual Abstractions and may necessarily be Structural or Physical

For more details see: Hall, Brendan, Jan Fiedor, and Yogananda Jeppu. "Model Integrated Decomposition and Assisted Specification (MIDAS)." In INCOSE
International Symposium, vol. 30, no. 1, pp. 821-841. 2020.

7

FORMALIZING THE MIDAS MODEL

Approach: Formalize the MIDAS Intent Model using the event calculus, implemented in goal-
directed Answer Set Programming (the s(CASP) system)

Event calculus devised by Al researchers to model dynamic systems:
= Designed around events and fluents
= Axioms to model their interaction

EARS and OPM can be mapped to event calculus directly

e Event triggers and state qualifies identified using EARS keywords

e State of the OPM objects map to fluents

e Level of Temporal Abstraction elegantly represented in the event calculus

OPM Information model can also be used to capture physical world assumptions and additional
domain knowledge
® The OPM and Event Calculus formalism may also be Intuitive than other approaches such as
hybrid automata or Kripke structures
= Much smaller “semantic gap”; avoid “design” pollution
= Completeness (to the extent possible) can also be checked

THE INTEGRATED MIDAS INTENT MODEL

Environmental Context Behavioml Constra'"ts

b

System-Driven Validation
of Intent Model

Behaviors
Operator Models ~ World Models tate

Environmental Behavi
Models enhaviors

Y
Failure '

Behavioral Constraints
odole siawlodge System-Driven Verification
from Intent Model

Behaviors

Z-Ladder of Intent Refinement

EVENT CALCULUS

e Actuator actions map to events (switch on the home heating system)
e Sensor readings map to fluents (room temperature)

e Conditions on sensors map to triggers (temperature exceeds 80°F)

e Basic Event Calculus Axioms BECL Stoppedin(ts,f,tz) =
Jde,t (Happens(e,t) Aty <t < t2 A [Terminates(e, f,t) vV Releases(e, f,1)))

BEC2. Startedin(ty, f,ta) =
Je,t { Happens(e,) Aty <t < 1o A (Iniliates(e, [, 1)V Releases(e, f,1)))

BEC3. HoldsAL(f2,12) +
Happens(e, 1) A Initiates(e, f1,0) A Trajectory(f1, L1, f2,t2) A ~Stoppedin(ty, f1,02)

BEC4, HoldsAL(f,t) + ImitiallyP() A ~StoppedIn(0, [, t)
BECS. —HoldsAt(f,t) InitiallyN (f) A ~StartedIn(0, f,t)
BEC6. HoldsAL(f,t2) +
Happens(e, 11) A Initiates(e, [,01) Al < Lo A =Stoppedin(iy, f,12)
BEC7. —HoldsAL(f,t2) +
Happens(e, 1) A Terminates(e, f,11) A1 < bz A StartedIn(iy, f,t2)

10

ANSWER SET PROGRAMMING & THE s(CASP) SYSTEM

e ASP is an extension of logic programming that supports negation-as-failure
— Based on stable model semantics (negation is sound)
— Possible world semantics

— Various implementations available based on use of SAT-solver technology

e 5(CASP) system
— Current ASP systems have limitations
= programs must be grounded due to use of SAT solvers
— Current ASP systems cannot model time faithfully
= no support for constraints over reals
— s(CASP) system solves these problems by devising a goal-directed execution strategy
= Based on coinduction, support for constructive negation, and other innovations

The event calculus can be elegantly coded in Answer Set Prolog and executed on s(CASP)

— The encoding can be used for checking for feasibility and consistency by executing appropriate
queries against this encoding

— Additional knowledge coded in ASP can be used for checking for completeness

11

EXAMPLE ENCODING: CONSISTENCY & FEASIBILITY OF REQUIREMENTS

e Modeling requirements using the event calculus (EC):

While the aircrall is on-ground, when the requested
door position becomes open, the door control system
shall change the state of the cargo door from closed
to open within 10 seconds.

% Declare flwents for respective ocbject states
% We vse parametrized state fluents to simplify
% the encoding

fluent (door_requested position (RP)) .

fluent (door_state (DS)) .

fluent {aircraft_state (AS5)).

% Declare "happens'" predicate to reflect the change
% of state trigger over the deration of the event
happens (pilot_requests deor_to_open, T1, T2) :-

not holdsAt {door_requested_position(open), T1},

holdsiAt (door_requested_position (open), T2),

T2 .=<. T1 + 10.

% DPeclare “initiates' and “terminates" predicates that
% map the changes influenced by the system response
% over the duration of the event

initiates (pilot_reguests_door_to_open,
door_state (open), T) -
holdsAt (aircraft state(is on _ground), T).

terminates (pilot_requests_door_to_open,
door_state (closed),T) :—
holdsat {aircraft_state (on_ground), T).

% A typical query for verifying a property (door
% operation behawves correctly) is shown below.

door_response_is_correct_condition:
not holdsat (door_requested _peosition(open), TB),
not holdsat (deoor_state (open), TB),
TE .>. TB, TE .=<. TB+ 10,
TH .»>=. TB,
holdsht (aircraft_state (on_ground) , TH) ,
haldsAt (door_state (ocpen), TE}.

12

REASONING INTENT : CONSISTENCY & FEASIBILITY OF REQUIREMENTS

trajectory(door_opening,Tl,door_ position(B),T2) :-

. i ' i holdsat (door_position(a),Tl),
Wl]_l]_e the door i1s opening, ﬂm rale uI_ change in door hoddsat (Assr,_pealtion (D). T2) .
position shall increase positively with a maximum B —& .= 0,

B - A .=<. 5,
rate of 5 degrees per second. = e T

% Constraint on rate at which door opens

% is true throughout:

door_rate_ok :
trajectory{door_opening,T1l,door_position(P),T2),
holdsat {door_opening,TH), TH .>»>=. T1l, TH .=<. T2,

13

ALTITUDE ALERTING SYSTEM

Capture & Altitude
Alerts turn on
Outer Upper 1020 ft

Threshold \
Outer Lower __ 1000 ft

Departure & Altitude Caz::ri%uﬁr\:g:de
Alerts turn off /\ !
Threshold
Capture & Altitude Departure & Altitude
Alerts turn off Alerts turn on Capture & Altitude
Alerts turn off
Inner Upper 200 ft

Threshold
Inner Lower 180 ft
Threshold \/

Absolute Altitude Error = | Barometric Altitude — Selected Altitude |

* Fluents: Absolute Altitude Error, Capture Alert On/Off, Departure Alert
On/Off, Altitude Alert On/Off, Altitude Adjusting/Not Adjusting

e Events: Error Becomes > 200 ft, Error Becomes < 1020 ft, Init Capture
Alert, Init Departure Alert, Init Altitude Alert, Term All Alerts

14

CONSISTENCY & FEASIBILITY OF REQUIREMENTS

REQ1: When the absolute_aliitude _error becomes less than
1000 fi, the Altitude Alerting System shall initiate the cap-
ture_alert and altitude_alert within | second.
happens (init_capture_alert, T1, T2) :-
holds_ae_becomes_1t (1000, T1),
T2 .=<. T1 + 1.
holds_ae becomes_1t (1000, T) :-
holdsAt {(altitude_error(V1l), T1).
holdsAt {(altitude_error(V2), T2),
vl .»=. 1000, V2 .<. 1000,
infimum(TZ, T).

REQ2: When the absolute_aliitude_error becomes greater
than 200 f1, the Altitude Alerting System shall initiate the
departure_alert and altitude_alert within 1 second.
happens (init_departure_alert, Tl, T2) :-
holds_ae_becomes_gt (200, T1),
T2 .=<. Tl + 1.

REQS: Upon initialization, the Altitude Alerting System shall
consider the altitude_selection_knob to be ‘adjusting .
initiallyP(altitude adjuscing) .
initiates(reser, altitude adjuosting,; T).

REQ3: When the absolute_altitude_error becomes either less
than 180 fi or greater than 1020 ft, the Altitude Alerting System
shall terminaie all altitude_alerts within 1 second,
happens (term_all_alerts, T1l, T2) :-
holds_ae_becomes_lt_or_gt (180,1020,T1),
T2 .=<. Tl + 1.
holds_ae_becomes_lt_or_ gt (180, _, T) :-
holds_ae becomes_lt (180, T).
holds_ae_becomes_lt_or gt(_, 1020, T} :-
holds_ae becomes_ gt (1020, T).

REQ4: While the altitude selection knob has not been 'ad-
Justing’ within the previous 5 seconds, the Altitude Alerting
System shall determine absolute_altitude_error as the abso-
lute difference between the selected_altitude and the baromei-
ric_alfitude, otherwise absolute_altitude _error shall be 0,
trajectory({altitude_adjusting, TI1,

altitude error(0), T2)

T2 ,=¢ 5, T2 >, 0,
trajectory({altitude_not_adjusting 5sec, T1,

altitude_error(E}, T2)

T2 .>. 0,

holdsAt (barometric_altitude (B}, T2),

holdsAt (selected_altitude_walue(V), T2),

absolute_difference(B, V, E).

15

COMPLETENESS OF REQUIREMENTS: SINGLE EVENT UPSETS

Single event upset can cause system reset; they are easy to miss and maybe counterintuitive
— The destructive power of SEU modeled using a reset event

— The reset event overrides the constructed internal state of the system,

forcing the initialization state to be re-established
— Such a reset tests robustness of the system initialization logic
— Modeled as an abducible (reset may or may not happen) in ASP

— Reset event can only override the cyber system software state and

does not affect the continuous state of the physical world
— SEU terminates every fluent and initiates it to an initial value

terminates (reset, Fluent, T} :-
internal_state (Fluent).
initiates (reset, Default, T}

default (Fluent,

Default),

internal_state (Fluent) .

Query s(CASP) CLINGO
Query Q1 (Normal Run) 6 min 13 scc = 50 min
Query Q2 (Reset, REQS) 9 min 14 sec > 50 min

Query Q3 (Reset, REQS") 46 min 55 sec > 50 min

Table 1
Ql:I'ZRY EXECUTION TIMES

— If designer fails to take into account that the altitude knob may be adjusting during SEU,

we can detect that (e.g., check altitude_alert turned on after 5 seconds)
?- happens(reset, T, T),T1 .>=. T + 5,altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

16

FAILING RUN IN THE PRESENCE OF SEU

e |f we change the assumption in REQ5, then we can show a failing run of the alerting system

e REQ5’: Uponinitialization/reset, the altitude alerting system shall consider the altitude
selection knob to be not adjusting (incorrect assumption)

e Scenario:
Plane is cruising at 32,000 ft attimet
Selected altitude value is 32, 300 ft, altitude not adjusting since t—5
By REQ3, “When altitude error goes above 300 ft, the altitude alert should be turned on”
Under normal circumstances, the system issues the altitude alert
Consider a reset at time t, which resets the internal state by turning the altitude alert off
If REQ5’ is used then, the altitude alert never turns back on
If REQS is used then, the altitude alert turns back on at t+5
The query shown before checks for erroneous behaviour of alerting with SEU
?- happens(reset, T, T),T1 .>=. T + 5, altitude_trajectory(T1), holdsAt(altitude_alert_on, T1).

17

FUTURE WORK

¢ Building out MIDAS IDE within MBSE Tool Chain

e Working classes of knowledge to aid application domain knowledge
e E.g.,, Defeater Knowledge
— How systems fail
— Known specification gaps
e Architectural & Distributed System Reasoning
— E.g., Byzantine Vulnerability Detection

e Improving s(CASP) to search more efficiently
e Refine the s(CASP) algorithm
— Localize consistency checks to make the search more efficient
— Generate efficient dual rules for Event Calculus encodings

18

