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Motivation

HoCHC is a recent approach to HO program verification [COR18]

How does it relate to existing approaches like HoRS model checking?

Decidability of the HoRS equivalence problem is open
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Overview

1 Intro to Higher-order Constrained Horn Clauses (HoCHC + co-HoCHC)

2 Intro to Higher-order Recursion Schemes (HoRS)

3 Reduction

Eliminate non-termination from HoRS

Encode HoRS into HoCHC logic programs

Define two coinductive HoCHC instances

4 Correctness outline
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Intro to HoCHC

Higher-order Constrained Horn Clauses

Fragment of higher-order logic

Horn clauses of HO logic with constraints from a FO background
theory

Unsolvability/unsatisfiability is semi-decidable for semi-decidable
background theories [PRO18, OW19]

∀x y z . z = x + y ⇒ Add x y z

∀f s n m. n ≤ 0 ∧m = s ⇒ Iter f s n m

∀f s n m. n > 0 ∧ ∃p. Iter f s (n − 1) p ∧ f n p m ⇒ Iter f s n m

∃nm. Iter Add 0 nm ∧ n > m
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Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20



Intro to HoCHC - problem instance

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

A valuation β ∈MJ∆K is a model of P, written β � P, just if
β = TMP:∆(β).

A problem is solvable just if, for the standard model of the background
theory Th, there exists a valuation β of the variables in ∆ such that
β � P, and yet β 6� G .

A coinductive problem is is solvable just if, for the standard model of the
background theory Th, there exists a valuation β of the variables in ∆
such that β � P and β � G .
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Intro to HoRS

nth order tree grammars

Order 0 = regular trees, order = 1 algebraic trees, order 2 =
hyperalgebraic trees, etc.

Programs of a simply typed λY-calculus with uninterpreted function
symbols

HoRS model checking is decidable over MSO [Ong06]
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Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥}, and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil
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Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

S2

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

⊥

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

F succ

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

⊥

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

F (B succ succ)

cons

succ

zero

⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

cons

B succ succ zero F (B succ succ) (B succ succ)

cons

succ

zero

cons

⊥ ⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

cons

succ

succ

zero

F (B succ succ) (B succ succ)

cons

succ

zero

cons

succ

succ

zero

⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)
cons

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20



Intro to HoRS - equivalence problem

Given (deterministic) HoRS G1 and G2, does JG1K = JG2K hold?

Open problem

Recursively equivalent to the λY-calculus Böhm tree equivalence problem
[CM13]
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Reduction - outline

HoRS equivalence problem 〈G1,G2〉

⇒

coinductive HoCHC problems P1 and P0

(with shared logic programs but
different goal clauses)

1 Eliminate non-termination from HoRS

2 Encode HoRS into HoCHC logic programs

3 Define two coinductive HoCHC instances
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Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = G zero

G = λx . cons (succ (H x)) (G (succ x))

H = λx .H (succ x)

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20



Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = G zero

G = λx . cons (succ (H x)) (G (succ x))

H = λx .H (succ x)

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20



Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = b (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20



Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = b (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20



Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = s (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Theorem ([BCOS10])

HoRS are reflective w.r.t. modal µ-calculus and MSO.
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S1 = I (G zero)

G = λx . cons (succ (H x)) (G (succ x)) I = λx . x

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Theorem ([BCOS10])

HoRS are reflective w.r.t. modal µ-calculus and MSO.
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Reduction - stage 2: HoRS to HoCHC encoding

Aim: given HoRS G, define a HoCHC logic program PG such that

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Background theory: Maher’s theory of finite and infinite trees [Mah88]

Equational theory

Complete and decidable

See Fabian Zaiser’s talk at 3pm

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 13 / 20



Reduction - stage 2: HoRS to HoCHC encoding

Aim: given HoRS G, define a HoCHC logic program PG such that

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Background theory: Maher’s theory of finite and infinite trees [Mah88]

Equational theory

Complete and decidable

See Fabian Zaiser’s talk at 3pm

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 13 / 20



Reduction - stage 2: HoRS to HoCHC encoding

We map each:

HoRS nonterminal F ∈ N to a HoCHC relational variable RF ∈ ∆G

HoRS rewrite rule F = R(F ) to RF = pR(F )q

This gives us the constrained logic program ` PG : ∆G , which is essentially
the HoRS in continuation passing style.

E.g. the FO rewrite rule S1 = I (G zero) is mapped to

RS1 = λr .∃r1 r2.RI r1 r ∧ RG r2 r1 ∧ (zero = r2)
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Reduction - stage 2: HoRS to HoCHC encoding

Our second-order HoRS

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

maps to

RS2 = λr .RF (λy r1. succ y = r1) r

RF= λϕ′ r .∃r1 r2 r3. (cons r1 r2 = r) ∧ ϕ′ r3 r1 ∧ (zero = r3) ∧
RF (λy r ′.RB ϕ

′ ϕ′ y r ′) r2

RB= λϕ′ ψ′ x ′ r .∃r1 r2. ϕ′ r1 r ∧ ψ′ r2 r1 ∧ (x ′ = r2)
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Reduction - stage 3: two coinductive HoCHC instances

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2, S2〉 be deterministic HoRS

The HoCHC goal formulas

Eq1 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 = r2)

Eq0 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 6= r2)

give rise to coinductive HoCHC problems

P1 := 〈PG1 ∪ PG2 ,Eq1〉
P0 := 〈PG1 ∪ PG2 ,Eq0〉

over the Maher theory as the constraint language and the set TΣ⊥ of finite
and infinite trees as the designated model.

JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.
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Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N ) and βn := TM n
PG :∆G

(>∆G ), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.
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Contributions

Coinductive HoCHC framework

Eliminating non-termination from HoRS

Encoding from HoRS into HoCHC logic program

Reduction of HoRS equivalence to semi-decidability of co-HoCHC

(and therefore also the λY-calculus Böhm tree equivalence problem)
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Further directions

Semi-decidability of coinductive HoCHC over Maher’s theory of trees

(specifically: of the image of the the HoRS-to-HoCHC encoding)
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Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.
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Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK
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Intro to HoCHC - syntax

(GConstr) ∆ ` ϕ : o ∈ Fm
∆ ` ϕ : o

(GVar)
∆1, x : ρ,∆2 ` x : ρ

∆ ` G : o ∆ ` H : o(GCst) ∗ ∈ {∧,∨}
∆ ` G ∗ H : o

∆, x : σ ` G : o
(GEx) σ = ι or ρ

∆ ` ∃x :σ.G : o

∆ ` G : ι→ ρ
(GAppI) ∆ ` N : ι ∈ Tm

∆ ` G N : ρ

∆ ` G : ρ1 → ρ2 ∆ ` H : ρ1(GAppR)
∆ ` G H : ρ2

∆, x : σ ` G : ρ
(GAbs) x /∈ dom(∆)

∆ ` λx .G : σ → ρ
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Intro to HoCHC - semantics

We consider a monotone semantics with sort frame:

MJoK := B MJιK := Aι MJσ1 → σ2K :=MJσ1K⇒mMJσ2K

Goal terms are interpreted as follows:

MJ∆ ` ϕ : oK(β) := ThJϕK(β)

MJ∆1, x : ρ,∆2 ` x : ρK(β) := β(x)

MJ∆ ` G ∧ H : oK(β) := min{MJ∆ ` G : oK(β),MJ∆ ` H : oK(β)}
MJ∆ ` G ∨ H : oK(β) := max{MJ∆ ` G : oK(β),MJ∆ ` H : oK(β)}

MJ∆ ` ∃x : σ.G : oK(β) := max{MJ∆, x : σ ` G : oK(β[x 7→ x ′]) | x ′ ∈ MJσK}
MJ∆ ` λx : σ.G : σ → ρK(β) := λx ′ ∈ MJσK.MJ∆, x : σ ` G : ρK(β[x 7→ x ′])

MJ∆ ` G H : ρ2K(β) := MJ∆ ` G : ρ1 → ρ2K(β)(MJ∆ ` H : ρ1KJHK(β))

MJ∆ ` G N : ρK(β) := MJ∆ ` G : ι→ ρK(β)(ThJNK(β))
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Reduction - stage 2: HoRS to HoCHC encoding

We map each HoRS nonterminal F : σ ∈ N to HoCHC relational variable
RF : Rel+(σ),

where

Rel−(ι) := ι

Rel+(ι) := ι→ o

Rel+(σ1 → σ2) := Rel−(σ1 → σ2) := Rel−(σ1)→ Rel+(σ2),

This gives us the constrained logic program ` PG : ∆G defined by:

∆G :=
{
RF : Rel+(σ) | F : σ ∈ N

}
PG :=

{
RF : Rel+(σ) = pR(F )q | F : σ ∈ N

}
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