
Reducing Higher-order Recursion Scheme Equivalence
to Coinductive Higher-Order Constrained Horn Clauses

Jerome Jochems

Department of Computer Science
University of Bristol

jerome.jochems@bristol.ac.uk

28 March 2021

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 1 / 20

Motivation

HoCHC is a recent approach to HO program verification [COR18]

How does it relate to existing approaches like HoRS model checking?

Decidability of the HoRS equivalence problem is open

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 2 / 20

Overview

1 Intro to Higher-order Constrained Horn Clauses (HoCHC + co-HoCHC)

2 Intro to Higher-order Recursion Schemes (HoRS)

3 Reduction

Eliminate non-termination from HoRS

Encode HoRS into HoCHC logic programs

Define two coinductive HoCHC instances

4 Correctness outline

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 3 / 20

Intro to HoCHC

Higher-order Constrained Horn Clauses

Fragment of higher-order logic

Horn clauses of HO logic with constraints from a FO background
theory

Unsolvability/unsatisfiability is semi-decidable for semi-decidable
background theories [PRO18, OW19]

∀x y z . z = x + y ⇒ Add x y z

∀f s n m. n ≤ 0 ∧m = s ⇒ Iter f s n m

∀f s n m. n > 0 ∧ ∃p. Iter f s (n − 1) p ∧ f n p m ⇒ Iter f s n m

∃nm. Iter Add 0 nm ∧ n > m

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 4 / 20

Intro to HoCHC

Higher-order Constrained Horn Clauses

Fragment of higher-order logic

Horn clauses of HO logic with constraints from a FO background
theory

Unsolvability/unsatisfiability is semi-decidable for semi-decidable
background theories [PRO18, OW19]

∀x y z . z = x + y ⇒ Add x y z

∀f s n m. n ≤ 0 ∧m = s ⇒ Iter f s n m

∀f s n m. n > 0 ∧ ∃p. Iter f s (n − 1) p ∧ f n p m ⇒ Iter f s n m

∃nm. Iter Add 0 nm ∧ n > m

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 4 / 20

Intro to HoCHC

Higher-order Constrained Horn Clauses

Fragment of higher-order logic

Horn clauses of HO logic with constraints from a FO background
theory

Unsolvability/unsatisfiability is semi-decidable for semi-decidable
background theories [PRO18, OW19]

Add = λx y z . z = x + y

Iter = λf s n m. (n ≤ 0 ∧m = s) ∨
(n > 0 ∧ ∃p. Iter f s (n − 1) p ∧ f n p m)

∃nm. Iter Add 0 nm ∧ n > m

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 4 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - definition

Simple sorts: σ ::= o | ι | σ → σ

Relational sorts: ρ ::= o | ι→ ρ | ρ→ ρ

We consider a monotone semantics

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

Axiomatised over a (first-order) background theory Th (with a
fixed/standard model)

G ::= ϕ | x | G ∨ G | G ∧ G | ∃x .G | G N | G H | λx .G

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 5 / 20

Intro to HoCHC - problem instance

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

A valuation β ∈MJ∆K is a model of P, written β � P, just if
β = TMP:∆(β).

A problem is solvable just if, for the standard model of the background
theory Th, there exists a valuation β of the variables in ∆ such that
β � P, and yet β 6� G .

A coinductive problem is is solvable just if, for the standard model of the
background theory Th, there exists a valuation β of the variables in ∆
such that β � P and β � G .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 6 / 20

Intro to HoCHC - problem instance

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

A valuation β ∈MJ∆K is a model of P, written β � P, just if
β = TMP:∆(β).

A problem is solvable just if, for the standard model of the background
theory Th, there exists a valuation β of the variables in ∆ such that
β � P, and yet β 6� G .

A coinductive problem is is solvable just if, for the standard model of the
background theory Th, there exists a valuation β of the variables in ∆
such that β � P and β � G .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 6 / 20

Intro to HoCHC - problem instance

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

A valuation β ∈MJ∆K is a model of P, written β � P, just if
β = TMP:∆(β).

A problem is solvable just if, for the standard model of the background
theory Th, there exists a valuation β of the variables in ∆ such that
β � P, and yet β 6� G .

A coinductive problem is is solvable just if, for the standard model of the
background theory Th, there exists a valuation β of the variables in ∆
such that β � P and β � G .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 6 / 20

Intro to HoCHC - problem instance

A higher-order constrained Horn clause problem is given by a pair 〈P,G 〉
in which:

` P : ∆ is a constrained logic program over relational variables ∆

∆ ` G is a constrained goal formula over ∆

A valuation β ∈MJ∆K is a model of P, written β � P, just if
β = TMP:∆(β).

A problem is solvable just if, for the standard model of the background
theory Th, there exists a valuation β of the variables in ∆ such that
β � P, and yet β 6� G .

A coinductive problem is is solvable just if, for the standard model of the
background theory Th, there exists a valuation β of the variables in ∆
such that β � P and β � G .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 6 / 20

Intro to HoRS

nth order tree grammars

Order 0 = regular trees, order = 1 algebraic trees, order 2 =
hyperalgebraic trees, etc.

Programs of a simply typed λY-calculus with uninterpreted function
symbols

HoRS model checking is decidable over MSO [Ong06]

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 7 / 20

Intro to HoRS

nth order tree grammars

Order 0 = regular trees, order = 1 algebraic trees, order 2 =
hyperalgebraic trees, etc.

Programs of a simply typed λY-calculus with uninterpreted function
symbols

HoRS model checking is decidable over MSO [Ong06]

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 7 / 20

Intro to HoRS

nth order tree grammars

Order 0 = regular trees, order = 1 algebraic trees, order 2 =
hyperalgebraic trees, etc.

Programs of a simply typed λY-calculus with uninterpreted function
symbols

HoRS model checking is decidable over MSO [Ong06]

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 7 / 20

Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥}, and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 8 / 20

Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥}, and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 8 / 20

Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥},

and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 8 / 20

Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥}, and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 8 / 20

Intro to HoRS - definition

A tuple G = 〈N ,Σ,R, S〉

Assume determinism

Sorts σ ::= ι | σ1 → σ2 interpreted by

HJιK := 〈TΣ⊥ ,v〉 HJσ1 → σ2K := HJσ1K⇒c HJσ2K

where TΣ⊥ denotes the set of all finite and infinite trees over
Σ ∪ {⊥}, and v is the least partial order such that C [⊥] v C [t] for
every tree context C and t ∈ TΣ⊥ with C [t] ∈ TΣ⊥ .

E.g. cons

⊥ ⊥

< cons

succ

⊥

⊥

< cons

succ

⊥

nil

< cons

succ

zero

nil

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 8 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

S2

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

⊥

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

F succ

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

⊥

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

F (B succ succ)

cons

succ

zero

⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

cons

B succ succ zero F (B succ succ) (B succ succ)

cons

succ

zero

cons

⊥ ⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

cons

succ

zero

cons

succ

succ

zero

F (B succ succ) (B succ succ)

cons

succ

zero

cons

succ

succ

zero

⊥

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - example

Order-2 HoRS G = 〈{S2,F ,B}, {cons, succ, zero},R, S2〉

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)
cons

succ

zero

cons

succ

succ

zero

cons

succ

succ

succ

succ

zero

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 9 / 20

Intro to HoRS - equivalence problem

Given (deterministic) HoRS G1 and G2, does JG1K = JG2K hold?

Open problem

Recursively equivalent to the λY-calculus Böhm tree equivalence problem
[CM13]

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 10 / 20

Intro to HoRS - equivalence problem

Given (deterministic) HoRS G1 and G2, does JG1K = JG2K hold?

Open problem

Recursively equivalent to the λY-calculus Böhm tree equivalence problem
[CM13]

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 10 / 20

Reduction - outline

HoRS equivalence problem 〈G1,G2〉

⇒

coinductive HoCHC problems P1 and P0

(with shared logic programs but
different goal clauses)

1 Eliminate non-termination from HoRS

2 Encode HoRS into HoCHC logic programs

3 Define two coinductive HoCHC instances

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 11 / 20

Reduction - outline

HoRS equivalence problem 〈G1,G2〉

⇒

coinductive HoCHC problems P1 and P0 (with shared logic programs but
different goal clauses)

1 Eliminate non-termination from HoRS

2 Encode HoRS into HoCHC logic programs

3 Define two coinductive HoCHC instances

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 11 / 20

Reduction - outline

HoRS equivalence problem 〈G1,G2〉

⇒

coinductive HoCHC problems P1 and P0 (with shared logic programs but
different goal clauses)

1 Eliminate non-termination from HoRS

2 Encode HoRS into HoCHC logic programs

3 Define two coinductive HoCHC instances

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 11 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = G zero

G = λx . cons (succ (H x)) (G (succ x))

H = λx .H (succ x)

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = G zero

G = λx . cons (succ (H x)) (G (succ x))

H = λx .H (succ x)

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = b (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = b (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = s (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Theorem ([BCOS10])

HoRS are reflective w.r.t. modal µ-calculus and MSO.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = s (G zero)

G = λx . cons (succ (H x)) (G (succ x))

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Theorem ([BCOS10])

HoRS are reflective w.r.t. modal µ-calculus and MSO.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 1: non-termination elimination

Lemma (Computability of ⊥-free transform of HoRS)

There is an algorithm that, given a HoRS G, returns a HoRS G′ – call it
the ⊥-free transform of G – that generates the ⊥-free conversion of JGK.

S1 = I (G zero)

G = λx . cons (succ (H x)) (G (succ x)) I = λx . x

H = λx . b (H (succ x))

cons

succ

⊥

cons

succ

⊥

. . .

7→ b

cons

succ

bω

cons

succ

bω

. . .

7→ s

cons

succ

bω

cons

succ

bω

. . .

7→ cons

succ

bω

cons

succ

bω

. . .

Theorem ([BCOS10])

HoRS are reflective w.r.t. modal µ-calculus and MSO.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 12 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Aim: given HoRS G, define a HoCHC logic program PG such that

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Background theory: Maher’s theory of finite and infinite trees [Mah88]

Equational theory

Complete and decidable

See Fabian Zaiser’s talk at 3pm

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 13 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Aim: given HoRS G, define a HoCHC logic program PG such that

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Background theory: Maher’s theory of finite and infinite trees [Mah88]

Equational theory

Complete and decidable

See Fabian Zaiser’s talk at 3pm

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 13 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each:

HoRS nonterminal F ∈ N to a HoCHC relational variable RF ∈ ∆G

HoRS rewrite rule F = R(F) to RF = pR(F)q

This gives us the constrained logic program ` PG : ∆G , which is essentially
the HoRS in continuation passing style.

E.g. the FO rewrite rule S1 = I (G zero) is mapped to

RS1 = λr .∃r1 r2.RI r1 r ∧ RG r2 r1 ∧ (zero = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 14 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each:

HoRS nonterminal F ∈ N to a HoCHC relational variable RF ∈ ∆G

HoRS rewrite rule F = R(F) to RF = pR(F)q

This gives us the constrained logic program ` PG : ∆G , which is essentially
the HoRS in continuation passing style.

E.g. the FO rewrite rule S1 = I (G zero) is mapped to

RS1 = λr .∃r1 r2.RI r1 r ∧ RG r2 r1 ∧ (zero = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 14 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each:

HoRS nonterminal F ∈ N to a HoCHC relational variable RF ∈ ∆G

HoRS rewrite rule F = R(F) to RF = pR(F)q

This gives us the constrained logic program ` PG : ∆G , which is essentially
the HoRS in continuation passing style.

E.g. the FO rewrite rule S1 = I (G zero) is mapped to

RS1 = λr .∃r1 r2.RI r1 r ∧ RG r2 r1 ∧ (zero = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 14 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Our second-order HoRS

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

maps to

RS2 = λr .RF (λy r1. succ y = r1) r

RF= λϕ′ r .∃r1 r2 r3. (cons r1 r2 = r) ∧ ϕ′ r3 r1 ∧ (zero = r3) ∧
RF (λy r ′.RB ϕ

′ ϕ′ y r ′) r2

RB= λϕ′ ψ′ x ′ r .∃r1 r2. ϕ′ r1 r ∧ ψ′ r2 r1 ∧ (x ′ = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 15 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Our second-order HoRS

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

maps to

RS2 = λr .RF (λy r1. succ y = r1) r

RF= λϕ′ r . ∃r1 r2 r3. (cons r1 r2 = r) ∧ ϕ′ r3 r1 ∧ (zero = r3) ∧
RF (λy r ′.RB ϕ

′ ϕ′ y r ′) r2

RB= λϕ′ ψ′ x ′ r .∃r1 r2. ϕ′ r1 r ∧ ψ′ r2 r1 ∧ (x ′ = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 15 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Our second-order HoRS

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

maps to

RS2 = λr .RF (λy r1. succ y = r1) r

RF = λϕ′ r .∃r1 r2 r3. (cons r1 r2 = r) ∧ ϕ′ r3 r1 ∧ (zero = r3) ∧
RF (λy r ′.RB ϕ

′ ϕ′ y r ′) r2

RB= λϕ′ ψ′ x ′ r .∃r1 r2. ϕ′ r1 r ∧ ψ′ r2 r1 ∧ (x ′ = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 15 / 20

Reduction - stage 2: HoRS to HoCHC encoding

Our second-order HoRS

S2 = F succ

F = λϕ. cons (ϕ zero) (F (B ϕϕ))

B = λϕψ x . ϕ (ψ x)

maps to

RS2 = λr .RF (λy r1. succ y = r1) r

RF = λϕ′ r .∃r1 r2 r3. (cons r1 r2 = r) ∧ ϕ′ r3 r1 ∧ (zero = r3) ∧
RF (λy r ′.RB ϕ

′ ϕ′ y r ′) r2

RB = λϕ′ ψ′ x ′ r . ∃r1 r2. ϕ′ r1 r ∧ ψ′ r2 r1 ∧ (x ′ = r2)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 15 / 20

Reduction - stage 3: two coinductive HoCHC instances

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2, S2〉 be deterministic HoRS

The HoCHC goal formulas

Eq1 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 = r2)

Eq0 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 6= r2)

give rise to coinductive HoCHC problems

P1 := 〈PG1 ∪ PG2 ,Eq1〉
P0 := 〈PG1 ∪ PG2 ,Eq0〉

over the Maher theory as the constraint language and the set TΣ⊥ of finite
and infinite trees as the designated model.

JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 16 / 20

Reduction - stage 3: two coinductive HoCHC instances

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2, S2〉 be deterministic HoRS

The HoCHC goal formulas

Eq1 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 = r2)

Eq0 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 6= r2)

give rise to coinductive HoCHC problems

P1 := 〈PG1 ∪ PG2 ,Eq1〉
P0 := 〈PG1 ∪ PG2 ,Eq0〉

over the Maher theory as the constraint language and the set TΣ⊥ of finite
and infinite trees as the designated model.

JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 16 / 20

Reduction - stage 3: two coinductive HoCHC instances

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2, S2〉 be deterministic HoRS

The HoCHC goal formulas

Eq1 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 = r2)

Eq0 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 6= r2)

give rise to coinductive HoCHC problems

P1 := 〈PG1 ∪ PG2 ,Eq1〉
P0 := 〈PG1 ∪ PG2 ,Eq0〉

over the Maher theory as the constraint language and the set TΣ⊥ of finite
and infinite trees as the designated model.

JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 16 / 20

Reduction - stage 3: two coinductive HoCHC instances

Let G1 = 〈N1,Σ,R1,S1〉 and G2 = 〈N2,Σ,R2, S2〉 be deterministic HoRS

The HoCHC goal formulas

Eq1 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 = r2)

Eq0 := ∃r1 r2. (RS1 r1 ∧ RS2 r2) ∧ (r1 6= r2)

give rise to coinductive HoCHC problems

P1 := 〈PG1 ∪ PG2 ,Eq1〉
P0 := 〈PG1 ∪ PG2 ,Eq0〉

over the Maher theory as the constraint language and the set TΣ⊥ of finite
and infinite trees as the designated model.

JG1K = JG2K iff P1 is solvable, and JG1K 6= JG2K iff P0 is solvable.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 16 / 20

Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N) and βn := TM n
PG :∆G

(>∆G), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 17 / 20

Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N) and βn := TM n
PG :∆G

(>∆G), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 17 / 20

Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N) and βn := TM n
PG :∆G

(>∆G), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 17 / 20

Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N) and βn := TM n
PG :∆G

(>∆G), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 17 / 20

Correctness proof - key points

Embed each HJσK into MJRel+(σ)K using iσ : HJσK→MJRel+(σ)K,
where iι(t) := λs. t v s for all t ∈ HJιK

Lemma

For all directed sets D ⊆ HJιK, iι (
⊔

D) =
d
{iι(d) | d ∈ D}.

Let αn := HJGKnN (⊥N) and βn := TM n
PG :∆G

(>∆G), so that

⊥N = α0 v α1 v . . . and >∆G = β0 w β1 w . . .

Corollary (Inclusion)

For all n ≥ 0, MJ∆G ` pSqK(βn) v iι(HJN ` SK(αn)).

Lemma (Nonemptiness)

There exists a ⊥-free tree t ∈MJιK such that MJ∆G ` pSqK (
d

n β
n) t.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 17 / 20

Contributions

Coinductive HoCHC framework

Eliminating non-termination from HoRS

Encoding from HoRS into HoCHC logic program

Reduction of HoRS equivalence to semi-decidability of co-HoCHC

(and therefore also the λY-calculus Böhm tree equivalence problem)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 18 / 20

Further directions

Semi-decidability of coinductive HoCHC over Maher’s theory of trees

(specifically: of the image of the the HoRS-to-HoCHC encoding)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 19 / 20

Further directions

Semi-decidability of coinductive HoCHC over Maher’s theory of trees

(specifically: of the image of the the HoRS-to-HoCHC encoding)

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 19 / 20

References

Christopher H. Broadbent, Arnaud Carayol, C.-H. Luke Ong, and Olivier Serre, Recursion schemes and logical reflection,

Proceedings of the 25th Annual IEEE Symposium on Logic in Computer Science, LICS 2010, 11-14 July 2010,
Edinburgh, United Kingdom, IEEE Computer Society, 2010, pp. 120–129.

Pierre Clairambault and Andrzej S. Murawski, Böhm Trees as Higher-Order Recursive Schemes, IARCS Annual

Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013) (Dagstuhl,
Germany) (Anil Seth and Nisheeth K. Vishnoi, eds.), Leibniz International Proceedings in Informatics (LIPIcs), vol. 24,
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2013, pp. 91–102.

Toby Cathcart Burn, C.-H. Luke Ong, and Steven J. Ramsay, Higher-order constrained Horn clauses for verification,

PACMPL 2 (2018), no. POPL, 11:1–11:28.

Michael J. Maher, Complete axiomatizations of the algebras of finite, rational and infinite trees, LICS, 1988, pp. 348–357.

C.-H. Luke Ong, On model-checking trees generated by higher-order recursion schemes, 21th IEEE Symposium on Logic

in Computer Science (LICS 2006), 12-15 August 2006, Seattle, WA, USA, Proceedings, 2006, pp. 81–90.

C.-H. Luke Ong and Dominik Wagner, HoCHC: A refutationally complete and semantically invariant system of

higher-order logic modulo theories, 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
2019, pp. 1–14.

Long Pham, Steven J. Ramsay, and C.-H. Luke Ong, Defunctionalization of higher-order constrained Horn clauses, CoRR

abs/1810.03598 (2018).

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need coinduction?

HoCHC individuals (datatypes) are unordered in MJιK, so that any trees
t1, t2 are incomparable

Let χt ∈MJι→ oK be the characteristic function of some tree t ∈MJιK.

This implies that:

Lemma

If f ∈MJι→ oK and f < χt , then f is the least (constant false) element
of MJι→ oK.

Thus, the ascending Kleene chain f = α0 v α1 v α2 v . . . must reach χt

in α1 or not at all (if α0 is a fixpoint).

Clearly, the chain cannot reach χt for an infinite t after a single step.

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Why do we need to eliminate ⊥ from HoRS?

Correctness requires us to distinguish ‘finished’ from ‘unfinished’ trees

This is due to the embedding iι(t) := λs. t v s for all t ∈ HJιK

If t is ⊥-free, then iι(t) = λs. (t = s) is the characteristic function of t.

Essentially, at the end of the ascending Kleene chain of HoRS semantics,
our inclusion in iι becomes equality.

This is key to our main theorem:

Theorem

MJ∆G ` RSK(gfp(TMPG :∆G
)) t = 1 if and only if t = JGK

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Intro to HoCHC - syntax

(GConstr) ∆ ` ϕ : o ∈ Fm
∆ ` ϕ : o

(GVar)
∆1, x : ρ,∆2 ` x : ρ

∆ ` G : o ∆ ` H : o(GCst) ∗ ∈ {∧,∨}
∆ ` G ∗ H : o

∆, x : σ ` G : o
(GEx) σ = ι or ρ

∆ ` ∃x :σ.G : o

∆ ` G : ι→ ρ
(GAppI) ∆ ` N : ι ∈ Tm

∆ ` G N : ρ

∆ ` G : ρ1 → ρ2 ∆ ` H : ρ1(GAppR)
∆ ` G H : ρ2

∆, x : σ ` G : ρ
(GAbs) x /∈ dom(∆)

∆ ` λx .G : σ → ρ

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Intro to HoCHC - semantics

We consider a monotone semantics with sort frame:

MJoK := B MJιK := Aι MJσ1 → σ2K :=MJσ1K⇒mMJσ2K

Goal terms are interpreted as follows:

MJ∆ ` ϕ : oK(β) := ThJϕK(β)

MJ∆1, x : ρ,∆2 ` x : ρK(β) := β(x)

MJ∆ ` G ∧ H : oK(β) := min{MJ∆ ` G : oK(β),MJ∆ ` H : oK(β)}
MJ∆ ` G ∨ H : oK(β) := max{MJ∆ ` G : oK(β),MJ∆ ` H : oK(β)}

MJ∆ ` ∃x : σ.G : oK(β) := max{MJ∆, x : σ ` G : oK(β[x 7→ x ′]) | x ′ ∈ MJσK}
MJ∆ ` λx : σ.G : σ → ρK(β) := λx ′ ∈ MJσK.MJ∆, x : σ ` G : ρK(β[x 7→ x ′])

MJ∆ ` G H : ρ2K(β) := MJ∆ ` G : ρ1 → ρ2K(β)(MJ∆ ` H : ρ1KJHK(β))

MJ∆ ` G N : ρK(β) := MJ∆ ` G : ι→ ρK(β)(ThJNK(β))

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each HoRS nonterminal F : σ ∈ N to HoCHC relational variable
RF : Rel+(σ),

where

Rel−(ι) := ι

Rel+(ι) := ι→ o

Rel+(σ1 → σ2) := Rel−(σ1 → σ2) := Rel−(σ1)→ Rel+(σ2),

This gives us the constrained logic program ` PG : ∆G defined by:

∆G :=
{
RF : Rel+(σ) | F : σ ∈ N

}
PG :=

{
RF : Rel+(σ) = pR(F)q | F : σ ∈ N

}

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each HoRS nonterminal F : σ ∈ N to HoCHC relational variable
RF : Rel+(σ), where

Rel−(ι) := ι

Rel+(ι) := ι→ o

Rel+(σ1 → σ2) := Rel−(σ1 → σ2) := Rel−(σ1)→ Rel+(σ2),

This gives us the constrained logic program ` PG : ∆G defined by:

∆G :=
{
RF : Rel+(σ) | F : σ ∈ N

}
PG :=

{
RF : Rel+(σ) = pR(F)q | F : σ ∈ N

}

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

Reduction - stage 2: HoRS to HoCHC encoding

We map each HoRS nonterminal F : σ ∈ N to HoCHC relational variable
RF : Rel+(σ), where

Rel−(ι) := ι

Rel+(ι) := ι→ o

Rel+(σ1 → σ2) := Rel−(σ1 → σ2) := Rel−(σ1)→ Rel+(σ2),

This gives us the constrained logic program ` PG : ∆G defined by:

∆G :=
{
RF : Rel+(σ) | F : σ ∈ N

}
PG :=

{
RF : Rel+(σ) = pR(F)q | F : σ ∈ N

}

Jerome Jochems (University of Bristol) Reducing HoRS Equivalence to co-HoCHC 28 March 2021 20 / 20

	Intro to Higher-order Constrained Horn Clauses (HoCHC + co-HoCHC)
	Intro to Higher-order Recursion Schemes (HoRS)
	Reduction
	Eliminate non-termination from HoRS
	Encode HoRS into HoCHC logic programs
	Define two coinductive HoCHC instances

	Correctness outline

