
Removing Algebraic Data Types
from Constrained Horn Clauses

Using Difference Predicates*

Emanuele De Angelis, CNR-IASI, Rome, Italy
Fabio Fioravanti, Univ. Chieti-Pescara, Italy

Alberto Pettorossi, Univ. Rome Tor Vergata, Italy
Maurizio Proietti, CNR-IASI, Rome, Italy

HCVS - Luxembourg (virtually), March 28, 2021

Paper presented at IJCAR 2020

Paris (virtually), July 4, 2020 IJCAR 2020 2

Overview

1. Constrained Horn clauses for verifying programs computing on
algebraic data types (ADTs);

2. ADT Removal: Transforming CHCs on ADTs into CHCs on basic types
(e.g., integers and booleans);

3. ADT removal with difference predicates (related to lemmas in proofs
by induction);

4. Experimental evaluation and comparison with induction-based
methods.

Paris (virtually), July 4, 2020 IJCAR 2020 3

1

Constrained Horn clauses

for program verification

Paris (virtually), July 4, 2020 IJCAR 2020 4

Constrained Horn clauses

● Constrained Horn clauses are a fragment of FOL

(body) ∀(A1 ⋀ … ⋀ An ⋀ c ⇒ A0) (head)

(1) A1, …, An, n≥0, are atoms, (2) c is a constraint in a first order theory T,
(3) A0 is an atom or false.

● Prolog syntax: A0 :- c, A1, … , An.

● Satisfiability: Given a set S of CHCs, has S ∪ T a model?

● Solution of S: A model of S ∪ T, expressed in T (if sat); the existence of a
solution implies satisfiability, not vice versa.

● Solvers compute solutions (if any) for CHCs over Linear Integer/Real
Arithmetic, Booleans, Arrays, Bit-vectors,...

Paris (virtually), July 4, 2020 IJCAR 2020 5

Program verification with CHCs

Hoare triple
{n0} x=0; y=0; while (x<n) { x=x+1; y=x+y} {yx}

Constrained Horn Clauses (Prolog syntax)
p(X, Y, N) :- N0, X=0, Y=0. %Init
p(X1, Y1, N) :- X<N, X1=X+1, Y1=X1+Y, p(X, Y, N). %Loop
false :- Y<X, XN, p(X, Y, N). %Exit

Translation

● Summing the first n non-negative integers

● Hoare triple valid iff CHCs satisfiable

● Solution of the CHCs: p(X, Y, N) ≡ (X0, YX, N0) % loop invariant

Paris (virtually), July 4, 2020 IJCAR 2020 6

● Statically typed, call-by-value, first order, functional language.
● Computing the sum and the maximum of the absolute values of the

elements of a list:

type list = Nil | Cons of int * list;;

let rec asum l = match l with
 | Nil → 0
 | Cons(x, xs) → (abs x) + asum xs;;

let rec listmax l = match l with
 | Nil → 0
 | Cons(x, xs) → max x (listmax xs);;

Programs on ADTs

% Property: ∀l. asum l >= listmax l

Paris (virtually), July 4, 2020 IJCAR 2020 7

Translation into CHCs

● The program and the property are translated into CHCs:

7

asum([],S) :- S=0.
asum([X|Xs],S) :- S=S1+A, abs(X,A), asum(Xs,S1).
listmax([],M) :- M=0.
listmax([X|Xs],M) :- max(A,M1,M), listmax(Xs,M1).
false :- S<M, asum(L,S), listmax(L,M). % Property

● The property holds iff the set of clauses is satisfiable;

● CHC solvers cannot compute a solution because the set of clauses has no
model expressible in the quantifier-free Theory of Lists and Linear Integer
Arithmetic (LIA).

f(x,y)
“f x evaluates to y”

Paris (virtually), July 4, 2020 IJCAR 2020 8

Solving CHCs on ADTs

● Approach 1 [Reynolds-Kuncak 2015, Unno-Torii-Sakamoto 2017]:
Extend CHC/SMT solvers with induction rules;

● Approach 2:
Transform CHCs S on ADTs into CHCs S’:

– S’ on basic types only (e.g., integers or booleans)

– The transformation is sound: S’ satisfiable ⇒ S satisfiable;

● Advantage of Approach 2: No need of extending CHC solvers.

● Related to techniques for eliminating data structures in FP and LP:

– Deforestation [Wadler ‘88],

– Existential Variable Elimination by Unfold/Fold [PP ‘91].

Paris (virtually), July 4, 2020 IJCAR 2020 9

2

Transforming constrained Horn clauses

Paris (virtually), July 4, 2020 IJCAR 2020 10

Unfold/Fold transformations of CHCs

● Unfold. (Linear Resolution)

replace H :- c, A, G. where: A1 :- d1,G1. ... Am :- dm,Gm.

by (H :- c, d1,G1, G.)ϑ1 ... (H :- c, dm,Gm, G.)ϑm

where ϑi is the most general unifier of A and Ai.

● Fold. (inverse Linear Resolution)

replace H :- d, Bϑ, G. where: K :- c, B. and T ⊨ d → cϑ

by H :- d, Kϑ, G.

Paris (virtually), July 4, 2020 IJCAR 2020 11

… Unfold/Fold transformations of CHCs

● Other rules: Delete clauses with unsat body, Apply functionality of
predicates.

● Under suitable conditions, unfold/fold transformations are sound.

Paris (virtually), July 4, 2020 IJCAR 2020 12

ADT Removal by Unfold/Fold

● Property:
 false :- S<M, asum(L,S), listmax(L,M). L: list S,M: int

Paris (virtually), July 4, 2020 IJCAR 2020 13

ADT Removal by Unfold/Fold

● Property:
 false :- S<M, asum(L,S), listmax(L,M). L: list S,M: int

● Define a new predicate (on integers):
 p(S,M) :- asum(L,S), listmax(L,M).

Paris (virtually), July 4, 2020 IJCAR 2020 14

ADT Removal by Unfold/Fold

● Property:
 false :- S<M, asum(L,S), listmax(L,M). L: list S,M: int

● Define a new predicate (on integers):
 p(S,M) :- asum(L,S), listmax(L,M).

● Unfold wrt asum and listmax:
 p(S,M) :- S=0, M=0.
 p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), asum(Xs,S1), listmax(Xs,M1).

Paris (virtually), July 4, 2020 IJCAR 2020 15

ADT Removal by Unfold/Fold

● Property:
 false :- S<M, asum(L,S), listmax(L,M). L: list S,M: int

● Define a new predicate (on integers):
 p(S,M) :- asum(L,S), listmax(L,M).

● Unfold wrt asum and listmax:
 p(S,M) :- S=0, M=0.
 p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), asum(Xs,S1), listmax(Xs,M1).

● Fold:
 p(S,M) :- S=0, M=0.
 p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), p(S1,M1).
 false :- S<M, p(S,M).

Variant of

Eliminate all lists

Paris (virtually), July 4, 2020 IJCAR 2020 16

Solving the transformed CHCs on LIA

● Solved by Eldarica (and Spacer/Z3) without induction rules.

● Eldarica computes the following model in LIA:

p(S,M) ≡ (S>=M, M>=0)

● Soundness guaranteed by unfold/fold rules
⇒ ∀l. asum l >= listmax l holds

p(S,M) :- S=0, M=0.
p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), p(S1,M1).
false :- S<M, p(S,M).

Paris (virtually), July 4, 2020 IJCAR 2020 17

ADT Removal Algorithm (Basic version)

Define new predicate(s)
by clauses without ADTs in their head

ADTs?

S

yesno

Fold to remove ADTs

Unfold

Clause deletion/Functionality (if possible)

S’

Paris (virtually), July 4, 2020 IJCAR 2020 18

Limitation of the basic ADT removal algorithm

● The algorithm does not support lemma generation, and will not
terminate when lemmas are needed.

● An extra transformation rule for lemma generation: introducing
difference predicates.

Paris (virtually), July 4, 2020 IJCAR 2020 19

3

ADT Removal with

Difference Predicates

Paris (virtually), July 4, 2020 IJCAR 2020 20

type list = Nil | Cons of int * list;;

let rec ins x l = match l with
 | Nil -> Cons(x,Nil)
 | Cons(y,ys) -> if x<=y then Cons(x,Cons(y,ys)) else Cons(y,ins x ys);;

let rec sort l = match l with
 | Nil -> Nil
 | Cons(x,xs) -> ins x (sort xs);;

let rec count x l = match l with
 | Nil -> 0
 | Cons(y,ys) -> if x=y then 1 + count x ys else count x ys;;

Insertion Sort

% Property: ∀l.∀x. (count x l) = (count x (sort l))

Paris (virtually), July 4, 2020 IJCAR 2020 21

Insertion Sort: Translation into CHCs

21

ins(A,[],[A]).
ins(A,[X|Xs],[A,X|Xs]) :- A=<X.
ins(A,[X|Xs],[X|Ys]) :- A>X, ins(A,Xs,Ys).
sort([],[]).
sort([X|Xs],S) :- sort(Xs,S1), ins(X,S1,S).
count(X,[],0).
count(X,[H|T],N) :- X=H, N=M+1, count(X,T,M).
count(X,[H|T],N) :- X=\=H, count(X,T,N).
false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2). % Property

● State-of-the-art CHC solvers cannot solve these clauses

Paris (virtually), July 4, 2020 IJCAR 2020 22

Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2). L,S: list, X,N1,N2: int

Paris (virtually), July 4, 2020 IJCAR 2020 23

Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

L,S: list, X,N1,N2: int

Paris (virtually), July 4, 2020 IJCAR 2020 24

Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

Unfold (and Rename Variables):
p1(X,0,0).
p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).
p1(X,N1,N2) :- X=\=Y, count(X,L,N1), sort(L,S), ins(Y,S,S2), count(X,S2,N2).

L,S: list, X,N1,N2: int

Paris (virtually), July 4, 2020 IJCAR 2020 25

Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

Unfold (and Rename Variables):
p1(X,0,0).
p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).
p1(X,N1,N2) :- X=\=Y, count(X,L,N1), sort(L,S), ins(Y,S,S2), count(X,S2,N2).

Fold impossible (ADT removal introduces new predicates and does not
terminate)

MATCH MISMATCH

L,S: list, X,N1,N2: int

Paris (virtually), July 4, 2020 IJCAR 2020 26

Insertion Sort: Difference predicate

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

MATCH MISMATCH

Paris (virtually), July 4, 2020 IJCAR 2020 27

Insertion Sort: Differential Replacement

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), count(X,S,N2), diff1(X,N2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

MATCH MATCH

ins(X,S,S2), count(X,S2,K)

Paris (virtually), July 4, 2020 IJCAR 2020 28

Insertion Sort: Fold

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, p1(X,N1,N2), diff1(X,N2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

% No lists

Fold

Paris (virtually), July 4, 2020 IJCAR 2020 29

Soundness of Differential Replacement

Replace ins(X,S,S2), count(X,S2,K) by count(X,S,N2), diff1(X,N2,K).
“Difference”

ins count
(X,S) (X,S2) K

(X,N2)

count diff1

Soundness: Suppose Cls U {C} → Cls U {D} by differential replacement,
where count is a total function and its output variable N2 does not occur in C.
If Cls U {D} is SAT then Cls U {C} is SAT.

Paris (virtually), July 4, 2020 IJCAR 2020 30

Insertion Sort: Final set of clauses without lists

● false :- N1=\=N2, p1(X,N1,N2).
p1(X,0,0).
p1(X,M,K) :- M=N1+1, p1(X,N1,N2), diff1(X,N2,K).
p1(X,N1,N2) :- X=\=Y, p1(Y,N1,N2b), diff2(X,Y,N2b,N2).
diff1(X,0,N2) :- N2=N1+1, p2(X,N1).
diff1(X,N1,N2) :- N2=M2+1, N1=M1+1, p3(X,M2,M1).
diff1(X,N1,N2) :- X=<Y, N2=N+1, X=\=Y, p4(X,Y,N,N1).
diff2(X,Y,0,0) :- Y=\=X.
diff2(X,Y,M,N) :- X=<Y, Y=\=X, M=K+1, p3(Y,N,K).
diff2(X,Y,M,N) :- X=<Z, Y=\=X, Y=\=Z, N=M, p5(Y,N).
diff2(X,Y,M,N) :- X>Y, N=H+1, M=K+1, diff2(X,Y,K,H).
p2(X,0).
p3(X,N1,N) :- N1=N+1, p5(X,N).
p4(X,Y,N,N) :- X=<Y, X=\=Y, p5(X,N).
p5(X,0).
p5(X,N1) :- N1=N+1, p5(X,N).

● New predicates introduced by ADT removal: diff2, p2, p3, p4, p5.

% No lists

Paris (virtually), July 4, 2020 IJCAR 2020 31

Insertion Sort: Satisfiability

● Eldarica computes a model in LIA:

● p1(A,B,C) ≡ (B=C, B>=0)

diff1(A,B,C) ≡ (C=B+1, B>=0)
diff2(A,B,C,D) ≡ (D=C, C>=0)

p2(A,B) ≡ (B = 0)
p3(A,B,C) ≡ (C=B-1, B>=1)
p4(A,B,C,D) ≡ (D=C, C>=0, B>=A+1)
p5(A,B) ≡ (B>=0)

● Property ∀l.∀x. (count x l) = (count x (sort l)) holds.

Paris (virtually), July 4, 2020 IJCAR 2020 32

Difference Predicates and Lemma Discovery

● Eldarica model of difference predicate (renamed variables):

diff1(X,N,K) ≡ (K=N+1, N>=0)

where diff1 is defined as:

diff1(X,N,K) :- count(X,S,N), ins(X,S,S1), count(X,S1,K).

● In functional notation can be rewritten as:

((∀ count x s) = n ⋀ (count x (ins x s)) = k → (k=n+1 ⋀ n>=0))

● Corresponds to a lemma in a proof by structural induction of the property.

Paris (virtually), July 4, 2020 IJCAR 2020 33

ADT Removal with Difference Predicates

Define new predicate(s)
by clauses without ADTs in their head

ADTs?

S

yesno

Fold to remove ADTs (if possible)
Difference Predicates & Replacement

Unfold

Clause deletion/Functionality (if possible)

S’

Paris (virtually), July 4, 2020 IJCAR 2020 34

Soundness of ADT Removal with
Difference Predicates

If the ADT removal algorithm terminates,

– S’ has no predicates on ADTs

– by the soundness of the transformation rules,
if S’ is satisfiable then S is satisfiable

Paris (virtually), July 4, 2020 IJCAR 2020 35

4

Experimental Evaluation

Paris (virtually), July 4, 2020 IJCAR 2020 36

Implementation

SMT-LIB

CHCs

CHCs without ADTs

SMT-LIB

Translator SMT-LIB to CHCs

ADT Removal

Translator CHCs to SMT-LIB

AdtRem
https://fmlab.unich.it/adtrem/

Satisfiable Unknown

CHC solver (Eldarica or Spacer/Z3)

Paris (virtually), July 4, 2020 IJCAR 2020 37

Comparison with CVC4+Induction

● Benchmark: 169 satisfiability problems on ADTs (in SMT-LIB format).

● CVC4+Ind: SMT solver CVC4 extended with induction [Reynolds-Kuncak 15]

ADT Removal

(dtt)

(N) = number of problem solved without difference predicates.

(dtt)= encoding of natural numbers as built-in SMT-LIB type Int (same as AdtRem encoding).

CVC4+Ind (dtt) with user-provided auxiliary lemmas 100
CVC4+Ind (dti) with double encoding of Nat and auxiliary lemmas 134

Paris (virtually), July 4, 2020 IJCAR 2020 38

Comparison with CVC4+Ind by Examples

∀x,y,z.

Paris (virtually), July 4, 2020 IJCAR 2020 39

Conclusions

• CHC transformations aid verification of programs that compute on ADTs;

• ADT-removal; Solving:

– much more effective than Solving CHCs on ADTs;

– competitive wrt Solving extended with Induction;

• Advantage of the transformation-based approach:
Separation of inductive reasoning from CHC solving;

• Future work: Find sufficient conditions for the termination of the
transformation (for classes of CHCs).

Paris (virtually), July 4, 2020 IJCAR 2020 40

Thanks!

Questions?

AdtRem system and benchmarks:

https://fmlab.unich.it/adtrem/

	Slide 1
	CHCs for Program Verification
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

