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Overview

1. Constrained Horn clauses for verifying programs computing on  
algebraic data types (ADTs);

2. ADT Removal: Transforming CHCs on ADTs into CHCs on basic types 
(e.g., integers and booleans);

3. ADT removal with difference predicates (related to lemmas in proofs 
by induction);

4. Experimental evaluation and comparison with induction-based 
methods.
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1

Constrained Horn clauses 

for program verification
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Constrained Horn clauses

● Constrained Horn clauses are a fragment of FOL

(body)        ∀(A1 ⋀ … ⋀ An ⋀ c ⇒ A0)      (head)

(1) A1, …, An, n≥0, are atoms,  (2) c is a constraint in a first order theory T, 
(3) A0 is an atom or false.

● Prolog syntax: A0 :- c, A1, … , An.

● Satisfiability: Given a set S of CHCs, has S ∪ T a model?

● Solution of S:  A model of S ∪ T, expressed in T (if sat); the existence of a 
solution implies satisfiability, not vice versa.

● Solvers compute solutions (if any) for CHCs over Linear Integer/Real 
Arithmetic, Booleans, Arrays, Bit-vectors,...
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Program verification with CHCs

Hoare triple
{n0} x=0; y=0; while (x<n) { x=x+1; y=x+y} {yx}

Constrained Horn Clauses (Prolog syntax)
p(X, Y, N) :- N0, X=0, Y=0.                %Init
p(X1, Y1, N) :- X<N, X1=X+1, Y1=X1+Y, p(X, Y, N). %Loop
false :- Y<X, XN, p(X, Y, N).             %Exit

Translation

● Summing the first n non-negative integers

● Hoare triple valid iff CHCs satisfiable

● Solution of the CHCs:  p(X, Y, N)  ≡ (X0, YX, N0)        % loop invariant
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● Statically typed, call-by-value, first order, functional language.
● Computing the sum and the maximum of the absolute values of the

elements of a list:

type list = Nil | Cons of int * list;;

let rec asum l = match l with
  | Nil →  0
  | Cons(x, xs) → (abs x) + asum xs;;

let rec listmax l = match l with
  | Nil → 0
  | Cons(x, xs) → max x (listmax xs);;

Programs on ADTs

% Property: ∀l. asum l >= listmax l
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Translation into CHCs

● The program and the property are translated into CHCs:

7

asum([],S) :- S=0.
asum([X|Xs],S) :- S=S1+A, abs(X,A), asum(Xs,S1).
listmax([],M) :- M=0.
listmax([X|Xs],M) :- max(A,M1,M), listmax(Xs,M1).
false :- S<M, asum(L,S), listmax(L,M).            % Property

● The property holds iff the set of clauses is satisfiable;

● CHC solvers cannot compute a solution because the set of clauses has no 
model expressible in the quantifier-free Theory of Lists and Linear Integer 
Arithmetic (LIA).

f(x,y)  
“f x evaluates to y”
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Solving CHCs on ADTs

● Approach 1 [Reynolds-Kuncak 2015, Unno-Torii-Sakamoto 2017]: 
Extend CHC/SMT solvers with induction rules;

● Approach 2: 
Transform CHCs S on ADTs into CHCs S’: 

– S’ on basic types only (e.g., integers or booleans)

– The transformation is sound: S’ satisfiable ⇒ S satisfiable;

● Advantage of Approach 2: No need of extending CHC solvers.

● Related to techniques for eliminating data structures in FP and LP:

– Deforestation [Wadler ‘88], 

– Existential Variable Elimination by Unfold/Fold [PP ‘91].
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2

Transforming constrained Horn clauses
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Unfold/Fold transformations of CHCs

● Unfold. (Linear Resolution)

replace H :- c, A, G.                   where:  A1 :- d1,G1.  ...  Am :- dm,Gm.

by      (H :- c, d1,G1, G.)ϑ1  ...  (H :- c, dm,Gm, G.)ϑm

where ϑi is the most general unifier of A and Ai.

● Fold. (inverse Linear Resolution)

replace  H :- d, Bϑ, G.                     where:   K :- c, B.  and   T  ⊨ d → cϑ

by          H :- d, Kϑ, G.



Paris (virtually), July 4, 2020 IJCAR 2020 11

… Unfold/Fold transformations of CHCs

● Other rules: Delete clauses with unsat body, Apply functionality of 
predicates.

● Under suitable conditions, unfold/fold transformations are sound.



Paris (virtually), July 4, 2020 IJCAR 2020 12

ADT Removal by Unfold/Fold

● Property:
  false :- S<M, asum(L,S), listmax(L,M).         L: list   S,M: int
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ADT Removal by Unfold/Fold

● Property:
  false :- S<M, asum(L,S), listmax(L,M).         L: list   S,M: int

● Define a new predicate (on integers):
  p(S,M) :- asum(L,S), listmax(L,M).
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ADT Removal by Unfold/Fold

● Property:
  false :- S<M, asum(L,S), listmax(L,M).         L: list   S,M: int

● Define a new predicate (on integers):
  p(S,M) :- asum(L,S), listmax(L,M).

● Unfold wrt asum and listmax:
  p(S,M) :- S=0, M=0.
  p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), asum(Xs,S1), listmax(Xs,M1).
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ADT Removal by Unfold/Fold

● Property:
  false :- S<M, asum(L,S), listmax(L,M).         L: list   S,M: int

● Define a new predicate (on integers):
  p(S,M) :- asum(L,S), listmax(L,M).

● Unfold wrt asum and listmax:
  p(S,M) :- S=0, M=0.
  p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), asum(Xs,S1), listmax(Xs,M1).

● Fold:
  p(S,M) :- S=0, M=0.
  p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), p(S1,M1).
  false :- S<M, p(S,M).

Variant of

Eliminate all lists 
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Solving the transformed CHCs on LIA

● Solved by Eldarica (and Spacer/Z3) without induction rules. 

● Eldarica computes the following model in LIA:  

p(S,M)  ≡  (S>=M, M>=0)

● Soundness guaranteed by unfold/fold rules
⇒ ∀l. asum l >= listmax l holds

p(S,M) :- S=0, M=0.
p(S,M) :- S=S1+A, abs(X,A), max(X,M1,M), p(S1,M1).
false :- S<M, p(S,M).
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ADT Removal Algorithm (Basic version)

Define new predicate(s) 
by clauses without ADTs in their head

ADTs?

S

yesno

Fold to remove ADTs

Unfold 

Clause deletion/Functionality (if possible)

S’
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Limitation of the basic ADT removal algorithm

● The algorithm does not support lemma generation, and will  not 
terminate when lemmas are needed.

● An extra transformation rule for lemma generation: introducing 
difference predicates.
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3

ADT Removal with 

Difference Predicates
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type list = Nil | Cons of int * list;;

let rec ins x l = match l with
  | Nil -> Cons(x,Nil)
  | Cons(y,ys) -> if x<=y then Cons(x,Cons(y,ys)) else Cons(y,ins x ys);;

let rec sort l = match l with
  | Nil -> Nil
  | Cons(x,xs) -> ins x (sort xs);;

let rec count x l = match l with
  | Nil -> 0
  | Cons(y,ys) -> if x=y then 1 + count x ys else count x ys;;

Insertion Sort

% Property:  ∀l.∀x. (count x l) = (count x (sort l))
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Insertion Sort: Translation into CHCs

21

ins(A,[ ],[A]).
ins(A,[X|Xs],[A,X|Xs]) :- A=<X.
ins(A,[X|Xs],[X|Ys]) :- A>X, ins(A,Xs,Ys).
sort([ ],[ ]). 
sort([X|Xs],S) :- sort(Xs,S1), ins(X,S1,S).
count(X,[ ],0).
count(X,[H|T],N) :- X=H,  N=M+1, count(X,T,M).
count(X,[H|T],N) :- X=\=H, count(X,T,N).
false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).   % Property

● State-of-the-art CHC solvers cannot solve these clauses
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Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2). L,S: list, X,N1,N2: int
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Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

L,S: list, X,N1,N2: int
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Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

Unfold (and Rename Variables):
p1(X,0,0).
p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).
p1(X,N1,N2) :- X=\=Y, count(X,L,N1), sort(L,S), ins(Y,S,S2), count(X,S2,N2).

L,S: list, X,N1,N2: int
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Insertion Sort: ADT removal

false :- N1=\=N2, count(X,L,N1), sort(L,S), count(X,S,N2).

Define a new predicate (on integers):
p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

Unfold (and Rename Variables):
p1(X,0,0).
p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).
p1(X,N1,N2) :- X=\=Y, count(X,L,N1), sort(L,S), ins(Y,S,S2), count(X,S2,N2).

Fold impossible (ADT removal introduces new predicates and does not 
terminate)

MATCH MISMATCH

L,S: list, X,N1,N2: int
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Insertion Sort: Difference predicate

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), ins(X,S,S2), count(X,S2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

MATCH MISMATCH
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Insertion Sort: Differential Replacement

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, count(X,L,N1), sort(L,S), count(X,S,N2), diff1(X,N2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

MATCH MATCH

ins(X,S,S2), count(X,S2,K)
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Insertion Sort: Fold

p1(X,N1,N2) :- count(X,L,N1), sort(L,S), count(X,S,N2).

p1(X,M,K) :- M=N1+1, p1(X,N1,N2), diff1(X,N2,K).

Difference predicate (on integers):

diff1(X,N2,K) :- count(X,S,N2), ins(X,S,S2), count(X,S2,K).

% No lists

Fold
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Soundness of Differential Replacement

Replace  ins(X,S,S2), count(X,S2,K)   by   count(X,S,N2), diff1(X,N2,K).
“Difference”

ins count
(X,S) (X,S2) K

(X,N2)

count diff1

Soundness: Suppose Cls U {C}  → Cls U {D} by differential replacement,
where count is a total function and its output variable N2 does not occur in C. 
If Cls U {D} is SAT  then  Cls U {C} is SAT.
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Insertion Sort: Final set of clauses without lists

● false :- N1=\=N2, p1(X,N1,N2).
p1(X,0,0).
p1(X,M,K) :- M=N1+1, p1(X,N1,N2), diff1(X,N2,K).
p1(X,N1,N2) :- X=\=Y, p1(Y,N1,N2b), diff2(X,Y,N2b,N2).
diff1(X,0,N2)  :- N2=N1+1, p2(X,N1).
diff1(X,N1,N2) :- N2=M2+1, N1=M1+1, p3(X,M2,M1).
diff1(X,N1,N2) :- X=<Y, N2=N+1, X=\=Y, p4(X,Y,N,N1).
diff2(X,Y,0,0) :- Y=\=X.
diff2(X,Y,M,N) :- X=<Y, Y=\=X, M=K+1, p3(Y,N,K).
diff2(X,Y,M,N) :- X=<Z, Y=\=X, Y=\=Z, N=M, p5(Y,N).
diff2(X,Y,M,N) :- X>Y, N=H+1, M=K+1, diff2(X,Y,K,H).
p2(X,0).
p3(X,N1,N)  :- N1=N+1, p5(X,N).
p4(X,Y,N,N) :- X=<Y, X=\=Y, p5(X,N).
p5(X,0).
p5(X,N1) :- N1=N+1, p5(X,N).

● New predicates introduced by ADT removal: diff2, p2, p3, p4, p5.

% No lists
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Insertion Sort: Satisfiability

● Eldarica computes a model in LIA:

● p1(A,B,C) ≡ (B=C,  B>=0)

diff1(A,B,C) ≡ (C=B+1, B>=0)
diff2(A,B,C,D) ≡ (D=C, C>=0)

p2(A,B) ≡ (B = 0)
p3(A,B,C) ≡ (C=B-1, B>=1)
p4(A,B,C,D) ≡ (D=C, C>=0, B>=A+1)
p5(A,B) ≡ (B>=0)

● Property  ∀l.∀x. (count x l) = (count x (sort l))  holds.
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Difference Predicates and Lemma Discovery

● Eldarica model of difference predicate (renamed variables):

diff1(X,N,K) ≡ (K=N+1, N>=0)

where diff1 is defined as:

diff1(X,N,K) :- count(X,S,N), ins(X,S,S1), count(X,S1,K).

● In functional notation can be rewritten as:

((∀ count x s) = n ⋀ (count x (ins x s)) = k → (k=n+1 ⋀ n>=0))

● Corresponds to a lemma in a proof by structural induction of the property.
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ADT Removal with Difference Predicates

Define new predicate(s) 
by clauses without ADTs in their head

ADTs?

S

yesno

Fold to remove ADTs (if possible)
Difference Predicates & Replacement

Unfold

Clause deletion/Functionality (if possible)

S’
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Soundness of ADT Removal with 
Difference Predicates 

If the ADT removal algorithm terminates, 

– S’ has no predicates on ADTs

– by the soundness of the transformation rules, 
if S’ is satisfiable then S is satisfiable
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4

Experimental Evaluation
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Implementation

SMT-LIB

CHCs

CHCs without ADTs

SMT-LIB

Translator SMT-LIB to CHCs

ADT Removal

Translator CHCs to SMT-LIB

AdtRem
https://fmlab.unich.it/adtrem/

Satisfiable Unknown

CHC solver (Eldarica or Spacer/Z3)
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Comparison with CVC4+Induction

● Benchmark: 169 satisfiability problems on ADTs (in SMT-LIB format).

● CVC4+Ind: SMT solver CVC4 extended with induction [Reynolds-Kuncak 15]

ADT Removal

(dtt) 

(N) = number of problem solved without difference predicates.

(dtt)= encoding of natural numbers as built-in SMT-LIB type Int (same as AdtRem encoding).

CVC4+Ind (dtt) with user-provided auxiliary lemmas                                        100
CVC4+Ind (dti) with double encoding of Nat and auxiliary lemmas                  134
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Comparison with CVC4+Ind by Examples

∀x,y,z.
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Conclusions

• CHC transformations aid verification of programs that compute on ADTs;

• ADT-removal; Solving:

– much more effective than Solving CHCs on ADTs;

– competitive wrt Solving extended with Induction;

• Advantage of the transformation-based approach: 
Separation of inductive reasoning from CHC solving;

• Future work: Find sufficient conditions for the termination of the 
transformation (for classes of CHCs).
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Thanks!

Questions?

AdtRem system and benchmarks:

https://fmlab.unich.it/adtrem/
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