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Introduction

Motivation:

I Integrate constrained Horn clause solving in broader logical context

I Connect to formula equations, 2nd order quantifier elimination
(Schröder 1890, Ackermann 1935, Behmann 1950, Boolean
Unification 1980ies, 1990ies, . . .)

Contribution:

I Solving constrained Horn clause set is special case of solving
formula equation

I Formulate fixed-point iteration in the logic

I Prove fixed-point theorem for Horn formula equations

I Several applications and corollaries
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Formula Equations

I Definition. A formula equation is a sentence of the form ∃X ϕ
where X are predicate variables and ϕ is first-order.

I Definition A formula equation ∃X ϕ is
I solvable if there is [X\ψ] s.t. |= ϕ[X\ψ]

“syntactically solvable” in [Rümmer, Hojjat, Kuncak ’13]
I valid if ∃X ϕ is valid

“semantically solvable” in [Rümmer, Hojjat, Kuncak ’13]
I satisfiable if ∃X ϕ is satisfiable

“satisfiable” in [Gurfinkel, Bjørner ’19]

I Equivalent to the form ∃X (ϕ1 ↔ ϕ2), hence “equation”.
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Constrained Horn Clauses and Formula Equations

I A constrained clause is a formula C of the form

ϕ ∨
n∨

i=1

¬Xi (ti ) ∨
k∨

j=1

Yj(sj)

where Xi ,Yj are predicate variables and ϕ is a formula without
predicate variables. C is called
I Horn if k ≤ 1
I dual Horn if n ≤ 1
I linear if k, n ≤ 1

I Definition. If S is a set of constrained Horn clauses, then

∃X ∀∗
∧
C∈S

C

is called Horn formula equation.

4/ 11



Example

I Let

A1 ≡ ∀u s(u) 6= 0 A2 ≡ ∀u∀v (s(u) = s(v)→ u = v)

and A ≡ A1 ∧ A2, then

A→ ∃X∃Y ∀u
(
X (0) ∧ (X (u)→ Y (s(u)))∧

(Y (u)→ X (s(u))) ∧ ¬(Y (u) ∧ X (u))
)

is logically equivalent to a Horn formula equation E .

I Proposition. E is valid but not (FOL-)solvable.

I Fixed-point semantics of logic program (iterate TP operator)
X (0), Y (s(0)), X (s2(0)), Y (s3(0)), X (s4(0)), . . .
least fixed point of TP is minimal model:
{X (sn(0)) | n ∈ N even} ∪ {Y (sn(0)) | n ∈ N odd}.

5/ 11



First-order logic with least fixed-point operator

I FO[LFP] central in finite model theory / descriptive complexity
(Immerman-Vardi theorem ’82)

I An occurrence of X in ϕ is positive if it occurs under an even
number of negations

I If X occurs only positively in ϕ(X , u), then

Fϕ : R 7→ {a ∈ Mk | M |= ϕ(R, a)}

is a monotone operator.

I Knaster-Tarski theorem ⇒ Fϕ has a least fixed-point

I Introduce syntax for new predicate symbols [lfpXϕ(X , u)] where

M |= [lfpXϕ(X , u)](t) iff tM ∈ lfp(Fϕ)

I Extension to simultaneous least fixed-points
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The fixed-point theorem

I Definition. A Horn formula equation ∃X ψ induces a tuple of
formulas Φψ (essentially first-order definition of TP -operator).

I Theorem. Let ∃X1 · · · ∃Xn ψ be a Horn formula equation and
µj := [lfpXj

Φψ] for j ∈ {1, . . . , n}, then

1. |= ∃X ψ ↔ ψ[X\µ] and
2. if M |= ψ[X\R] for a structure M and relations R1, . . . ,Rn in M,

then M |=
∧n

j=1(µj → Rj).

I Corollary. Dual version for dual Horn formula equations.

I Corollary. Linear version from combining Horn and dual Horn.

I Corollary. Horn / dual Horn / linear Horn formula equation is
valid iff it is FO[LFP]-solvable.
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Example

I Let

A1 ≡ ∀u s(u) 6= 0 A2 ≡ ∀u∀v (s(u) = s(v)→ u = v)

and A ≡ A1 ∧ A2, then

A→ ∃X∃Y ∀u
(
X (0) ∧ (X (u)→ Y (s(u)))∧

(Y (u)→ X (s(u))) ∧ ¬(Y (u) ∧ X (u))
)

is logically equivalent to a Horn formula equation E .

I Corollary. E has a solution in FO[LFP].

I ΦE = (ϕX , ϕY ) where

ϕX (X ,Y , u) ≡ A ∧ (u = 0 ∨ ∃v (Y (v) ∧ u = s(v)))

ϕY (X ,Y , u) ≡ A ∧ ∃v (X (v) ∧ u = s(v))

I The solution of E is µ = ([lfpXΦψ], [lfpY Φψ])
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Applications to program verification

I Hoare triples {ϕ}p{ψ} for imperative programming language

I Verification conditions written as

vc({ϕ}p{ψ}) ≡ ∃I∀∗ ṽc{ϕ}p{ψ}

are a linear Horn formula equation.

I Corollary. Partial correctness is expressible as FO[LFP]-formula.

I Corollary. wp and sp expressible as FO[LFP]-formulas.
[Blass, Gurevich ’87]
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Further Applications

I Linear Horn formula equations and interpolation

I Generalisation of result of [Ackermann ’35] on SOQE

I Algorithmic step in approach to inductive theorem proving by tree
grammars [Eberhard, H ’15]

I Future work: Decidability of affine solution problem [H, Zivota ’20]
(needs abstract fixed-point theorem)
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Conclusion

I Construction of least fixed point in the logic
=⇒ Fixed-point theorem for Horn formula equation

I Validity = FO[LFP]-solvability of Horn formula equations

I Expressibility of partial correctness, wp, and sp in FO[LFP]

I Efficacy of interpolation (linear Horn, loop invariant generation)

I Further corollaries in various topics in computational logic

Future Work

I Base fixed-point theorem on abstract interpretation

I More detailed results on relationship to interpolation

I Decidability of classes of (Horn) formula equations

I Relate algorithms for SOQE and Horn clause solving
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