
Global Guidance for
Local Generalization in

Model Checking
Hari Govind V K, Yu-Ting Chen,

Sharon Shoham, Arie Gurfinkel

@HCVS 2021

Based on work published at CAV 2020

Hari Govind Vediramana Krishnan, YuTing Chen, Sharon Shoham, Arie Gurfinkel
Global Guidance for Local Generalization in Model Checking. CAV (2) 2020

• Safety of infinite state systems
• e.g., sequential programs

• Generate inductive loop invariants

• Solving Linear CHCs

Init => Inv; Inv && Tr => Inv;

Inv => Prop

• IC3-style Model Checking algorithms
• Generate predecessors to Bad states (POB)

• Block them and generalize (lemma)

• Stop when you get an invariant

a = 0;
b = 0;

while (nd()) {

a++;

b++;

}
assert (a < 5 ⇒ b < 5);

nd() returns a non deterministic Boolean value.

All variables are unbounded integers

a = b
2

Space Odyssey of Spacer Tom

Engines ON!

0 < a < 4 ∧ b = 4 a + b < 4

• Generalizing from single predecessors
results in limited exploration horizon

• Generalization typically relies on interpolation

• Interpolation can work wonders!
e.g., generate breakthrough terms like invariant a = b

3

Spacer Tom ONLY knows how to do

Local reasoning

• Not aware of the structure of the inductive proof so far

• Interpolant is very much dependent
on heuristics in the underlying SMT engine
• a + b < 4 is just as likely as a = b

• Much more crucial in infinite-state systems than in finite-state systems
• There are usually infinite generalizations to choose from

4

Ground Control to Spacer Tom:

We've got a PROBLEM!

5

Spacer Tom can be MISSGUIDED!

As illustrated by

Myopic generalization

Excessive generalization

Getting stuck in a rut

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

nd() returns a non-deterministic Boolean value. 6

Spacer Tom can be MISSGUIDED!

Myopic Generalization

7

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

a – c < 0
⇒ b – d < 0

8

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

a – c < 0
⇒ b – d < 0

a < c
⇒ b < d

9

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

a – c < 0
⇒ b – d < 0

a – c < 1
⇒ b – d < 1

a – c < -1
⇒ b – d < -1

10

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

a – c < 0
⇒ b – d < 0

a – c < 1
⇒ b – d < 1

a – c < -1
⇒ b – d < -1

a – c < 2
⇒ b – d < 2

a – c < -2
⇒ b – d < -2

11

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

a – c < 0
⇒ b – d < 0

a – c < 1
⇒ b – d < 1

a – c < -1
⇒ b – d < -1

a – c < 2
⇒ b – d < 2

a – c < -2
⇒ b – d < -2

a – c < 3
⇒ b – d < 3

a – c < -3
⇒ b – d < -3

12

a, c = 0;
b, d = 0;

while (nd()) {

inv: (a - c = b – d)

if (nd()) {a++; b++;}

else {c++; d++;}
}
assert (a < c ⇒ b < d);

POB Queue Lemma Trace

𝓞𝑖
⟨𝛼, 𝑖 + 1⟩

ℓ

⟨𝛼′, 𝑖⟩

⟨𝛾, 𝑡⟩

⟨𝜑, 𝑗⟩ ℒ ⊆ 𝓞k

𝜓

13

ℓ

Ground Control to Spacer Tom:

Global Guidance

14

Ground Control to Spacer Tom:

Global Guidance trinity

Subsume

Concretize Conjecture

15

1st Global Guidance to GSpacer Tom:

Subsume Rule

if (∃𝜓 ⋅ ∀ℓ ∈ ℒ ⋅ 𝜓 ⇒ ℓ) then
add 𝜓 to trace

16

1st Global Guidance to GSpacer Tom:

Subsume Rule

if (∃𝜓 ⋅ ∀ℓ ∈ ℒ ⋅ 𝜓 ⇒ ℓ) then
add 𝜓 to trace

17

1st Global Guidance to GSpacer Tom:

Subsume Rule

if (∃𝜓 ⋅ ∀ℓ ∈ ℒ ⋅ 𝜓 ⇒ ℓ) then
add 𝜓 to trace

18

1st Global Guidance to GSpacer Tom:

Subsume Rule

if (∃𝜓 ⋅ ∀ℓ ∈ ℒ ⋅ 𝜓 ⇒ ℓ) then
add 𝜓 to trace

a – c

b – d

19

a – c

a – c < 0
⇒ b – d < 0

a – c < 1
⇒ b – d < 1

a – c < -1
⇒ b – d < -1

ℓ2

ℓ3

ℓ1

Subsume Rule in Action:

Subsume Rule on LIA

a – c < 0
∧ b – d > 0

a – c < 1
∧ b – d > 1

a – c < -1
∧ b – d > -1

a – c

b – d

20

¬ℓ1

¬ℓ3

¬ℓ2

Subsume Rule in Action:

Subsume Rule on LIA

a – c

b – d

a – c < b - d
∧ b – d > -1
∧ a – c < 1

21

Subsume Rule in Action:

Subsume Rule on LIA

a – c

b – d

a – c < b - d

22

Subsume Rule in Action:

Subsume Rule on LIA

a – c

b – d

23

a – ca – c

𝜓

Subsume Rule in Action:

Subsume Rule on LIA

if (∀ℓ ∈ ℒ ⋅ ℓ partially blocks 𝜑) ∧
(∃𝛾 ⋅ 𝛾 ⇒ 𝜑 ∧ (𝛾 is not blocked by ℒ)) thenٿ

add 𝛾 to POB queue

24

2nd Global Guidance to GSpacer Tom:

Concretize Rule

25

2nd Global Guidance to GSpacer Tom:

Concretize Rule

if (∀ℓ ∈ ℒ ⋅ ℓ partially blocks 𝜑) ∧
(∃𝛾 ⋅ 𝛾 ⇒ 𝜑 ∧ (𝛾 is not blocked by ℒ)) thenٿ

add 𝛾 to POB queue

26

2nd Global Guidance to GSpacer Tom:

Concretize Rule

if (∀ℓ ∈ ℒ ⋅ ℓ partially blocks 𝜑) ∧
(∃𝛾 ⋅ 𝛾 ⇒ 𝜑 ∧ (𝛾 is not blocked by ℒ)) thenٿ

add 𝛾 to POB queue

27

2nd Global Guidance to GSpacer Tom:

Concretize Rule

if (∀ℓ ∈ ℒ ⋅ ℓ partially blocks 𝜑) ∧
(∃𝛾 ⋅ 𝛾 ⇒ 𝜑 ∧ (𝛾 is not blocked by ℒ)) thenٿ

add 𝛾 to POB queue

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

28

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

29

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

30

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

31

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

32

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

33

3rd Global Guidance to GSpacer Tom:

Conjecture Rule

if (𝜑 ≡ 𝛼 ∧ 𝛽) ∧
(∀ℓ ∈ ℒ ⋅ ℓ blocks 𝛽 but does not block 𝛼) then

add 𝛼 to POB queue

POB Queue Lemma Trace

𝓞𝑖
⟨𝛼, 𝑖 + 1⟩

ℓ

⟨𝛼′, 𝑖⟩

⟨𝛾, 𝑡⟩
⟨𝜑, 𝑗⟩ ℒ ⊆ 𝓞k

𝜓

34

ℓ

Ground Control to Spacer Tom:

Global Guidance

SubsumeConcretize
Conjecture

• As an extension to Spacer
https://github.com/hgvk94/z3/tree/gspacer-cav-ae

• Supports
• Linear Integer Arithmetic, Linear Real Arithmetic

• Linear and Non-linear CHCs

• Arrays and Fixed-Size Bit-Vectors*

• ADTs ongoing

• Evaluated on LIA instances from CHC-COMP

35

Implementation and Evaluation

*Hari Govind V. K., Grigory Fedyukovich, Arie Gurfinkel:
Word Level Property Directed Reachability. ICCAD 2020

https://github.com/hgvk94/z3/tree/gspacer-cav-ae

fw and bw are different interpolation strategies.

sc configuration disables interpolation.

36

GSpacer won 3 of the 4 tracks at CHC-COMP 2020

Results
No interpolation!

37

Data-driven, machine learning based

invariant inference algorithm

Evaluation showed promise on

a subset of SV-COMP benchmarks

Linear Arbitrary (LArb) from PLDI 18

38

• Could not compare on CHC-COMP instances as LArb solved

significantly fewer instances than even Spacer

• Compared on benchmarks from LArb paper

VB stands for virtual best

We compared GSpacer with LArb

• Global guidance technique to mitigate limitations of local reasoning

• Stable under different interpolation strategies

• Data driven guidance for MC is better than both invariant inference
and local reasoning

39

Conclusion

POB Queue Lemma Trace

Ground Control to Spacer Tom:

Global Guidance

SubsumeConcretize

Conjecture

a
–
c

40

Future Work

• Extend to theories where there is no interpolation
• ADT

• Arrays and Fixed Size Bit Vectors can be greatly improved

• Add more rules

• Symmetry breaking in distributed protocol verification

https://hgvk94.github.io/gspacer/

41

Thanks for listening

https://hgvk94.github.io/gspacer/

