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1 Introduction
Developing effective requirements is crucial for success in building a system. The more complete, consistent,

and feasible the requirements, the fewer problems system developers will encounter later. Current automation of
requirements engineering tasks attempt to ensure completeness, consistency, and feasibility. However, such auto-
mated support remains limited. In this work, we present novel automated techniques for aiding the development
of model-augmented requirements that are complete (to the extent possible), consistent, and feasible—where
consistency and feasibility are validated. Thus, we can have more confidence in the requirements. We limit
ourselves to requirements for cyber-physical systems, particularly those in avionics. We assume that require-
ments are generated within the MIDAS (Model-Assisted Decomposition and Specification) [5] environment,
and are expressed in CLEAR (Constrained Language Enhanced Approach to Requirements) [4], a constraint
natural requirement language based on EARS [6].

Our main contribution in this work is to show how the Event Calculus [8] (EC) and Answer Set Programming
(ASP) [3] can be used to formalize constrained natural language requirements for cyber-physical systems and
perform knowledge-assisted reasoning over them. ASP is a logic-based knowledge representation language that
has been prominently used in AI. Our work builds upon recent advances made within the s(CASP) system [1],
a query-driven (or goal-directed) implementation of predicate ASP that supports constraint solving over reals,
permitting the faithful representation of time as a continuous quantity. The s(CASP) system permits the modeling
of event calculus elegantly and directly [2]. A major advantage of using the event calculus—in contrast to
automata and Kripke structure-based approaches—is that it can directly model cyber-physical systems, thereby
avoiding “pollution" due to (often premature) design decisions that must be made otherwise. The event calculus
is a formalism—a set of axioms—for modeling dynamic systems and was proposed by artificial intelligence
researchers to solve the frame problem [8]. The primary goal of this work is to explore how constrained natural
language requirements, specified within MIDAS [5] using the CLEAR notation, can be automatically reasoned
about and analyzed using the event calculus and query-driven answer set programming. Specifically, we explore:

1. How to systematically capture design and intent within the MIDAS framework.

2. How ASP-based model checking (over dense time) can validate specified system behaviors wrt system
properties.
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3. How application of abductive reasoning can extend ASP-based model checking to incorporate domain
knowledge and real-world/environmental assumptions/concerns.

4. How knowledge-driven analysis can identify typical requirement specification errors, and/or requirement
constructs which exhibit areas of potential/probable risk.

The talk will be organized as follows. We will give motivation for our work and discuss the importance
of writing requirements that are consistent and complete. We will present how MIDAS enables a formal
flow-down of functional intent through different stages of design refinement. We will summarize the two faces
of requirements (outward and inward facing), as they support validation and verification objectives (respectively).
We will then discuss the enabling background technologies (EC and ASP), before presenting how they can be
integrated within the MIDAS platform to support our goals. We will illustrate our approach using an altitude
alerting case study from an actual aerospace system and discuss adjacent real-world examples to show how one
can use generalized knowledge within other system contexts. We will illustrate requirement defect discovery
using s(CASP) for property-based model-checking as well as discuss how more general knowledge of potential
requirements defects may detect defects that traditional techniques may not be able to find.

2 Mapping Requirements to the Event Calculus
We present the mapping of CLEAR-based requirements to the Extended Event Calculus formalization of

Shanahan[8]. We adopt the extended event calculus formalism because it enables events to have duration. For
cyber-physical real-time systems, response times are important, hence formally budgeting the allocation of time
throughout the levels of function & temporal decomposition are primary concerns.

Conceptually, the mapping of the extended event calculus to CLEAR is relatively straightforward, given that
EARS (on which CLEAR is based) already informally separates event and state semantics. To formalize the
mapping, we only need to formally bound the level of temporal abstraction over which the CLEAR requirements
are defined. The EARS keyword WHEN then needs to define the requirements in relation to the upward or
downward perspective, with the downward facing view having the form of state invariant constraints, and the
upward facing view declaring actionable behaviours. For actionable behaviours, the level of temporal abstraction
also guides which of the EARS keywords to apply to the specification as outlined below:

• WHEN: discrete event-driven specification is used when a single observation at the level of temporal
abstraction is sufficient to verify the required behavior. That is, WHEN establishes causal relationship.

• WHILE: continuous state-driven specification is used when multiple observations at the level of temporal
abstraction are needed to verify the required behavior. WHILE may also be used as a state qualifier for
event-driven specifications, in cases where there are stateful conditions guarding the event.

Within MIDAS, functional influence manifests as the stateful changes to objects that surround the functional
intent boundary. This maps very cleanly to the extended event calculus, once the state of the said objects at
the function boundary are encoded as fluents within the event calculus formalism. Hence, to map the MIDAS
CLEAR actionable requirements to the extended event calculus, we simply perform the following:

1. Declare each MIDAS OPM object state as a fluent.

2. Declare happens predicate that characterize the discrete changes in state that triggers the WHEN condition.

3. Declare initiates and terminates predicates to bind the happens predicates to the influenced
external state changes, with holdsAt state qualifiers for all WHILE preconditions .

4. Declare trajectory predicates to characterize continuous changes that evolve over multiple intervals
of the temporal precision.

We illustrate the mapping of an EARS complex requirement with an example:
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While the aircraft is on-ground, when the requested door position becomes open, the door control
system shall change the state of the cargo door from closed to open within 10 seconds.

Figure 1: EARS Templates

Mapping this to the EARS templates (Fig. 1) we see that the aircraft is on-ground is a precondition, the
requesting of the cargo door to open is the trigger, and the opening of the cargo door within 10 seconds is the
system response, requiring the change of environmental state, with an assumed level of temporal precision. In
this requirement the functional intent manifests as a change in the physical state of the cargo door, in response
to a change in state that reflects the pilot requesting the door to open. Hence, the event calculus formalism of
this requirement is as follows:

% Declare fluents for respective object states. Parametrized state fluents used for simpler encoding
fluent(door_requested_position(RP)).
fluent(door_state(DS)).
fluent(aircraft_state(AS)).
% Declare `happens' predicate to reflect the change of state trigger over the duration of the event
happens(pilot_requests_door_to_open, T) :-

-holdsAt(door_requested_position(open), T1),
holdsAt(door_requested_position(open), T2), T2 #=< T1+10, T1 #< T, T #=< T2.

% Declare `initiates' and `terminates' predicates that map the changes influenced by the system
% response over the duration of the event
initiates(pilot_requests_door_to_open, door_state(open), T) :-

holdsAt(aircraft_state(is_on_ground), T).
terminates(pilot_requests_door_to_open, door_state(closed),T) :-

holdsAt(aircraft_state(on_ground), T).
% A typical query for verifying a property (door operation behaves correctly) is shown below.
door_response_is_correct_condition :-

-holdsAt(door_requested_position(open), TB), -holdsAt(door_state(open), TB), TB #< TE,
holdsAt(aircraft_state(on_ground), TH), holdsAt(door_state(open), TE), TE #=< TB+10, TB #=< TH.

According to the semantics of the Extended Event Calculus [8], a fluent is considered to be initiated at any
time point during the event duration. This is semantically consistent with the within constraint of the CLEAR
requirement. Note also that the extended event calculus formalism does not distinguish between the sensing of
the environmental change and the resulting time of establishing environmental influence. This is also consistent
with the level of functional and temporal decomposition at the current level of abstraction. Hence, when
validating and discharging properties and constraints above this level of specification, i.e., the driving level
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of "the what", the event calculus model will explore the impact of the function influence starting at any point
within the event duration, which in our example is 10 seconds.

Note also that the initiated action, i.e., the changing of the door state, is guarded by the aircraft state of ‘on
ground’. Should this hold when the respective triggering event happens, the initiates predicate will fail, and
therefore there will be no external functional influence. The mapping of IF is the same as the WHEN, given that
they are both conditioned on events. The primary difference is that IF characterizes triggering off-nominal state
transitions such as component failure scenarios.

As noted above actionable WHILE requirements are used to characterize continuous behaviours and/or
constraints that need to be expressed over multiple intervals at the current level of temporal abstraction. Hence ,
these may lead to trajectories within the extended event calculus formalism. Consider the simple example below:-

While the door is opening, the rate of change in door position shall increase positively with a
maximum rate of 5 degrees per second.

At a temporal abstraction level of 1 second this becomes:
trajectory(door_opening,T1,door_position(B),T2) :-

holdsAt(door_position(A),T1),
holdsAt(door_position(B),T2), A #< B, B #=< A+5, T2 #= T1+1.

% Constraint on rate at which door opens is true throughout:
door_rate_ok :-

trajectory(door_opening,T1,door_position(P),T2),
holdsAt(door_opening,TH), T1 #=< TH, TH #=< T2.

ASP and the event calculus can also be used to test the completeness of the requirements to the extent
possible. In the case of avionics, the knowledge is simple and relates to Single Event Upsets (or SEUs) [7] which
can induce random resets of avionic software systems. We can model the destructive power of the SEU using
a reset event. The reset event overrides the constructed internal state of the system, forcing the initialization
state to be re-established. Our goal in introducing this reset is to move the designer to consider how robust the
system initialization logic is to such transient resets. In ASP, an extraneous event (e.g., reset) is represented as
an abducible (a reset may or may not happen). We would want to know if our system will still behave correctly
in presence of this extraneous event. The knowledge assumes that the reset event can only override the cyber
system (software state) and does not affect the continuous state of the physical world. We are unable to give
more details due to lack of space, however, abductive reasoning within ASP has significant potential in helping
establish the completeness of requirements for avionics cyber-physical systems.
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