
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Solving Constrained Horn Clauses over ADTs by
Finite Model Finding

Yurii Kostyukov
y.kostyukov@2015.spbu.ru

Saint Petersburg State University
Russia

Dmitry Mordvinov
dmitry.mordvinov@jetbrains.com
Saint Petersburg State University

Russia

Grigory Fedyukovich
grigory@cs.fsu.edu

Florida State University
Tallahassee, USA

Abstract
First-order logic is a natural way of expressing the properties
of computation, traditionally used in various program logics
for expressing the correctness properties and certificates.
Subsequently, modern methods in the automated inference
of program invariants progress towards the construction
of first-order definable invariants. Although the first-order
representations are very expressive for some theories, they
fail to express many interesting properties of algebraic data
types (ADTs).
Thus we propose to represent program invariants regu-

larly with tree automata. We show how to automatically infer
such regular invariants of ADT-manipulating programs us-
ing finite model finders. We have implemented our approach
and evaluated it against the state-of-art engines for the in-
variant inference in first-order logic for ADT-manipulating
programs. Our evaluation shows that automata-based repre-
sentation of invariants is more practical than the one based
on first-order logic since invariants are capable of express-
ing more complex properties of the computation and their
automatic construction is less expensive.

1 Introduction
Specifying and proving properties of programs is tradition-
ally achieved with the help of first-order logic (FOL). It
is widely used in various techniques for verification, from
Floyd-Hoare logic [20, 24] to constrainedHorn clauses (CHC) [6]
and refinement types [50]. The language of FOL allows to
describe the desired properties precisely and make the ver-
ification technology accessible to the end user. Similarly,
verification proofs, such as inductive invariants, procedure
summaries, or ranking functions are produced and returned
to the user also in FOL, thus facilitating the explainability of
a program and its behaviors.
Algebraic Data Types (ADT) enjoy a variety of decision

procedures [4, 39, 42, 47] andCraig interpolation algorithms [25,
28], but still many practical tasks cannot be solved by state-
of-the-art solvers for Satisfiability Modulo Theory (SMT)
such as Z3, CVC4 [2] and Princess [45].

This presentation-only submission is based on the material concurrently
submitted to another peer-reviewed conference.

With the recent growth of the use of SMT solvers, it is
often tempting to formulate verification conditions using the
combination of different theories. Specifically in the ADT
case, verification conditions could be expressed using the
combination of ADT and the theory of Equality and Un-
interpreted Functions (EUF). Although SMT solvers claim
to support EUF, in reality the proof search process often
hangs back attempting to conduct structural induction and
discovering helper lemmas [51].

In this paper, we introduce a new automata-based class of
representations of inductive invariants. The basic idea is to
find a finite model of the verification condition and convert
this model into a finite automaton. The resulting represen-
tations of invariants are regular in a sense that they can
“scan” the ADT term to the unbounded depth, which cannot
be reached by the representations by first-order formulas
(called elementary throughout the paper).

Our contribution is the demonstration that regular invari-
ants of ADT-manipulating programs could be constructed
from finite models of the verification condition. Intuitively,
the invariant generation problem can be reduced to the
satisfiability problem of a formula constructed from the
FOL-encoding of the program with pre- and post-conditions
where uninterpreted symbols are used instead of ADT con-
structors. Although becoming an over-approximation of the
original verification condition, it can be handled by existing
finite model finders, such as Mace4 [38], Finder [46], Para-
dox [12], or CVC4 [44]. If satisfiable, the detected model is
used to construct regular solutions of the original problem.

We have implemented a tool called RegInv for automated
inference of the regular invariants of ADT-manipulating pro-
grams and evaluated it against state-of-art inductive invari-
ant generators, namely Z3/Spacer [30] and Eldarica [26] —
the only CHC solvers supporting ADT, to the best of our
knowledge. It managed to find non-trivial invariants of vari-
ous problems, including the inhabitance checking for STLC.

2 Motivating Example
In this section we demonstrate one verification problem
which is intractable for state-of-art solvers but is naturally
handled by our approach. Basically, this case study demon-
strates the expressiveness of regular representations in com-
parison to FOL-based ones. We believe that this case may

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

, , Y. Kostyukov, D. Mordvinov, G. Fedyukovich

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

∀Γ,Γ′,𝑒,𝑡,𝑣 .
(
Γ = 𝑐𝑜𝑛𝑠 (𝑣, 𝑡, Γ′) ∧ 𝑒 = 𝑣𝑎𝑟 (𝑣) → 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒, 𝑡)

)
∧

∀Γ,Γ′,𝑒,𝑡,𝑡 ′,𝑣,𝑣 ′.
(
Γ = 𝑐𝑜𝑛𝑠 (𝑣 ′, 𝑡 ′, Γ′) ∧ 𝑒 = 𝑣𝑎𝑟 (𝑣) ∧ (𝑣 ≠ 𝑣 ′ ∨ 𝑡 ≠ 𝑡 ′) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ′, 𝑒, 𝑡) → 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒, 𝑡)

)
∧

∀Γ,𝑒,𝑒 ′,𝑡,𝑡 ′,𝑢,𝑣 .
(
𝑒 = 𝑎𝑏𝑠 (𝑣, 𝑒 ′) ∧ 𝑡 = 𝑎𝑟𝑟𝑜𝑤 (𝑡 ′, 𝑢) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (𝑐𝑜𝑛𝑠 (𝑣, 𝑡 ′, Γ), 𝑒 ′, 𝑢) → 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒, 𝑡)

)
∧

∀Γ,𝑒,𝑒1,𝑒2,𝑡,𝑢.
(
𝑒 = 𝑎𝑝𝑝 (𝑒1, 𝑒2) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒2, 𝑢) ∧ 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒1, 𝑎𝑟𝑟𝑜𝑤 (𝑢, 𝑡)) → 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (Γ, 𝑒, 𝑡)

)
∧

∀𝑒∃𝑎,𝑏.
(
𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 (𝑒𝑚𝑝𝑡𝑦, 𝑒, 𝑎𝑟𝑟𝑜𝑤 (𝑎𝑟𝑟𝑜𝑤 (𝑎, 𝑏), 𝑎)) → ⊥

)
Figure 1. Verification conditions𝑉𝐶 of the 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 program.

be interesting from theoretical point of view for type theory
experts.

Consider the following program sketch:

Var ::= ...
Type ::= arrow(Type, Type)

| ... <primitive types> ...
Expr ::= var(Var) | abs(Var, Expr)

| app(Expr, Expr)
Env ::= empty | cons(Var, Type, Env)

fun typeCheck(Γ: Env, e: Expr, t: Type): bool =
match Γ, e, t with
| cons(v, t, _), var(v), t -> true
| cons(_, _, Γ′), var(_), _ ->

typeCheck(Γ′, e, t)
| _, abs(v, e'), arrow(t, u) ->

typeCheck(cons(v, t, Γ), e', u)
| _, app(e1, e2), _ ->
∃u : Type, typeCheck(Γ, e2, u) ∧

typeCheck(Γ, e1, arrow(u, t))
| _ -> false
end

assert ¬(∃e : Expr, ∀a, b : Type,
typeCheck(empty, e, arrow(arrow(a, b), a)))

This program checks that there is no closed simply typed
lambda calculus (STLC) term inhabiting the type (𝑎 → 𝑏) →
𝑎. It is well-known that this type is uninhabited, so this
program is safe.

Suppose, wewish to infer an inductive invariant of typeCheck
proving the validity of the assertion. Using, for example, the
weakest liberal precondition calculus [16], we may obtain
the verification conditions 𝑉𝐶 of this program, presented in
the Figure 1.
𝑉𝐶 is satisfiable modulo theory of algebraic data types

Var, Type, Expr and Env, if and only if the program is safe.
Moreover, the interpretations of 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 satisfying 𝑉𝐶
are the inductive invariants of the source program.
The strongest inductive invariant of the program is the

least fixed point of a step operator, which is the set of all
tuples (Γ, 𝑒, 𝑡), such that Γ ⊢ 𝑒 : 𝑡 in STLC typing rules.
One needs a very expressive assertion language, supporting
type theory-specific reasoning, to define this invariant. For
example, this way is usually used in interactive theorem

proving, when the STLC typing is defined in a sufficiently
powerful type system of a proof assistant [10].
Instead, our goal is to verify this program automatically,

using the generic-purpose tools. So it is natural to look for
coarser invariants. But does this program have weaker in-
ductive invariants than {⟨Γ, 𝑒, 𝑡⟩ | Γ ⊢ 𝑒 : 𝑡}, still proving the
validity of the assertion1?

It turns out that the answer is yes, but it is not a simple task
to compose this invariant. One surprisingly simple invariant
ℐ (see below) was discovered by our tool RegInv based on
finite model finding engine in CVC4 (see Sec. 4) completely
automatically in less than a second.

Every STLC type can be viewed as propositional formula,
where type variables correspond to atomic variables, and
arrows correspond to implications. Given type 𝑡 , its propo-
sitional interpretation 𝑀 is a map from atomic variables of
𝑡 to {0, 1}. We write𝑀 |= 𝑡 to denote that the propositional
interpretation 𝑀 satisfies the propositional formula corre-
sponding to type 𝑡 . We also say that type 𝑢 is in Γ ∈ 𝐸𝑛𝑣 , if
Γ = 𝑐𝑜𝑛𝑠 (. . . , 𝑐𝑜𝑛𝑠 (·, 𝑢, . . . )) . . . ).
Consider the following relation:
ℐ ≡ {⟨Γ, 𝑒, 𝑡⟩ | for all𝑀 , either𝑀 |= 𝑡 , or

𝑀 ̸ |= 𝑢 for some type 𝑢 in Γ}.
In the following, we explain the idea behind this invariant.
From the Curry-Howard correspondence we know that

the STLC type is inhabited if and only if the propositional
formula defined by the type is a tautology of intuitionistic
logic. But every intuitionistic tautology is the tautology of
classical logic as well. So if the type 𝑡 is inhabited, then
𝑀 |= 𝑡 for all propositional interpretations𝑀 . Thus, clearly,
ℐ over-approximates the strongest inductive invariant of
the program. Also, in our example (𝑎 → 𝑏) → 𝑎 is not
a propositional tautology, and Γ is empty, so interpreting
𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 with ℐ satisfies the last clause of 𝑉𝐶 .

One could attempt to interpret 𝑡𝑦𝑝𝑒𝐶ℎ𝑒𝑐𝑘 with relation
𝒥 ≡ {⟨Γ, 𝑒, 𝑡⟩ | 𝑡 corresponds to a classical tautology },

but it fails because 𝒥 is not inductive: for instance, it violates
the first clause. Conversely, ℐ satisfies all clauses. The first
clause is satisfied, which could be checked by case splitting:
if 𝑀 |= 𝑡 , then ⟨Γ, 𝑒, 𝑡⟩ ∈ ℐ , otherwise 𝑀 ̸ |= 𝑡 , but 𝑡 is in Γ

1It should be noted that we did not find an answer to this question in the
existing literature.

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Solving Constrained Horn Clauses over ADTs by Finite Model Finding , ,

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

by the premise of the clause, so again ⟨Γ, 𝑒, 𝑡⟩ ∈ ℐ . Using
the similar dichotomy, it is straightforward to check that ℐ
satisfies the rest clauses.

The invariant ℐ could be represented by a tree automaton.
First, there is an automaton, which determines if 𝑡 is satis-
fied by a given interpretation 𝑀 . This automaton has two
states 0 and 1, and after scanning the constructor 𝑎𝑟𝑟𝑜𝑤 (, )
it transitions from a pair of states (1, 0) to state 0, and to
state 1 from the rest of pairs of states, modeling the logical
implication. Starting from states corresponding to the inter-
pretation of the leafs of 𝑡 by𝑀 , the automaton stops in state
1 after scanning 𝑡 iff𝑀 |= 𝑡 .

Similarly, we can build the automaton which tests if there
is a type 𝑢 in Γ, such that𝑀 ̸ |= 𝑢. For this purpose, we need
two states ∈ and ∉. Scanning the empty constructor, the
automaton transits to ∉ state. Scanning the cons constructor,
the automaton transits to ∈ state if it is already in ∈ state, or
it is in ∉ state, and the above automaton stops in 1 for the
second argument of cons.

Formally, we have {⟨Γ, 𝑒, 𝑡⟩ | 𝐴 accepts ⟨Γ, 𝑡⟩} ≡ ℐ for the
tree automaton𝐴 =

(
{0, 1, ∈, ∉, 𝑣, 𝑒}, Σ𝐹 , {⟨∈, 0⟩ , ⟨∉, 1⟩ , ⟨∈, 1⟩},

Δ
)
with the following transition relation Δ:

𝑉𝑎𝑟𝑖 ↦→ 𝑣

𝑃𝑟𝑖𝑚𝑇𝑦𝑝𝑒𝑖 ↦→ 0
𝑣𝑎𝑟 (𝑣) ↦→ 𝑒

𝑎𝑏𝑠 (𝑣, 𝑒) ↦→ 𝑒

𝑎𝑝𝑝 (𝑒, 𝑒) ↦→ 𝑒

𝑎𝑟𝑟𝑜𝑤 (1, 0) ↦→ 0
𝑎𝑟𝑟𝑜𝑤 (∗, ∗) ↦→ 1

𝑒𝑚𝑝𝑡𝑦 ↦→∉

𝑐𝑜𝑛𝑠 (𝑣, 1, ∉) ↦→∉

𝑐𝑜𝑛𝑠 (𝑣, ∗, ∗) ↦→∈ .
In fact, if we replace the type (𝑎 → 𝑏) → 𝑎 in the program

assertion by the arbitrary type 𝑡 , which is not a tautology of
classical logic, ℐ still would prove the safety of an assertion.
We have checked this experimentally. Note that ℐ is simple
enough to completely ignore the type-checked term 𝑒 .
One natural question regarding these invariants is what

if we try an uninhabited type which corresponds to a clas-
sical tautology, but not to an intuitionistic one? One such
example is the Pierce’s law 𝑡 ≡ ((𝑎 → 𝑏) → 𝑎) → 𝑎. In
this case ℐ is too weak to prove that 𝑡 is uninhabited. Our
tool diverged for this input, which might mean that there
is no regular inductive invariant, which over-approximates
the denotational semantics of typeCheck and still proves
the validity of the assertion. Although, that still should be
investigated more thoroughly.
Thus, tree automata seem to be a balanced representa-

tion for ADT program invariants: they can express complex
program properties and their inference can be efficiently
automated. Regular invariants are formally defined in Sec. 3
and their automated inference with finite-model finders is
described in Sec. 4. Our implementation and it’s comparison
against state-of-art on preexisted benchmarks is represented
in Sec. 5.

3 Preliminaries

Many-sorted logic. A many-sorted first-order signature
with equality is a tuple Σ = ⟨Σ𝑆 , Σ𝐹 , Σ𝑃 ⟩, where Σ𝑆 is a set
of sorts, Σ𝐹 is a set of function symbols, Σ𝑃 is a set of predi-
cate symbols, among which there is a distinguished equality
symbol =𝜎 for each sort 𝜎 . Each function symbol 𝑓 ∈ Σ𝐹 has
associated with it an arity of the form 𝜎1 × · · · × 𝜎𝑛 → 𝜎 ,
where 𝜎1, . . . , 𝜎𝑛, 𝜎 ∈ Σ𝑆 , and each predicate symbol 𝑝 ∈ Σ𝑃

has associated with it an arity of the form 𝜎1 × · · · ×𝜎𝑛 . Vari-
ables are associated with a sort as well. We use the usual
definition of first-order terms with sort 𝜎 , ground terms,
formulas, and sentences.

A many-sorted structureℳ for a signature Σ consists of
non-empty domains |ℳ|𝜎 for each sort 𝜎 ∈ Σ𝑆 . For each
function symbol 𝑓 with arity 𝜎1 × · · · ×𝜎𝑛 → 𝜎 , it associates
an interpretation 𝑀 (𝑓 ) : |ℳ|𝜎1 × · · · × |ℳ|𝜎𝑛 → |ℳ|𝜎 ,
and for each predicate symbol 𝑝 with arity 𝜎1 × · · · × 𝜎𝑛 it
associated an interpretation𝑀 (𝑝) ⊆ |ℳ|𝜎1×· · ·×|ℳ|𝜎𝑛 . For
each ground term 𝑡 with sort 𝜎 , we define an interpretation
ℳJ𝑡K ∈ |ℳ|𝜎 in a natural way. We call structure finite if the
domain of every sort is finite; otherwise, we call it infinite.
We assume the usual definition of a satisfaction of a sen-

tence 𝜑 by ℳ, denoted ℳ |= 𝜑 . If 𝜑 is a formula, then we
write 𝜑 (𝑥1, . . . , 𝑥𝑛) to emphasize that all free variables of 𝜑
are among {𝑥1, . . . , 𝑥𝑛}. In this case, we denote the satisfi-
ability ℳ |= 𝜑 (𝑎1, . . . , 𝑎𝑛) by ℳ with free variables evalu-
ated to elements 𝑎1, . . . , 𝑎𝑛 of the appropriate domains. The
universal closure of a formula 𝜑 (𝑥1, . . . , 𝑥𝑛), denoted ∀𝜑 , is
the sentence ∀𝑥1 . . .∀𝑥𝑛 .𝜑 . If 𝜑 has free variables, we define
ℳ |= 𝜑 to meanℳ |= ∀𝜑 .

AHerbrand universe for a sort 𝜎 is a set of ground terms
with sort 𝜎 . If the Herbrand universe for a sort 𝜎 is infinite,
we call 𝜎 an infinite sort. We say that ℋ is the Herbrand
structureℋ for a signature Σ if it associates the Herbrand uni-
verse |ℋ|𝜎 to each sort 𝜎 of Σ as the domain and interprets
every function symbol with itself, i.e., ℋ(𝑓 ) (𝑡1, . . . , 𝑡𝑛) =
𝑓 (𝑡1, . . . , 𝑡𝑛) for all ground terms 𝑡𝑖 with the appropriate sort.
Thus, there is a family of Herbrand structures for one signa-
ture Σwith identical domains and interpretations of function
symbols, but with various interpretations of predicate sym-
bols. Every Herbrand structure ℋ interprets each ground
term 𝑡 with itself, i.e., ℋJ𝑡K = 𝑡 .
Assertion language. An algebraic data type (ADT) is a tu-
ple ⟨𝐶, 𝜎⟩, where 𝜎 is a sort and 𝐶 is a set of uninterpreted
function symbols (called constructors), such that each 𝑓 ∈ 𝐶
has a sort 𝜎1 × · · · × 𝜎𝑛 → 𝜎 for some sorts 𝜎1, . . . , 𝜎𝑛 .

In what follows, we fix a set of ADTs ⟨𝐶1, 𝜎1⟩ , . . . , ⟨𝐶𝑛, 𝜎𝑛⟩
with 𝜎𝑖 ≠ 𝜎 𝑗 and 𝐶𝑖 ∩ 𝐶 𝑗 = ∅ for 𝑖 ≠ 𝑗 . We define the
signature2 Σ = ⟨Σ𝑆 , Σ𝐹 , Σ𝑃 ⟩, where Σ𝑆 = {𝜎1, . . . , 𝜎𝑛}, Σ𝐹 =

𝐶1 ∪ · · · ∪𝐶𝑛 , and Σ𝑃 = {=𝜎1 , . . . ,=𝜎𝑛 }. For brevity, we omit

2For simplicity, we omit the selectors and testers from the signature because
they do not increase the expressiveness of the assertion language.

3



331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

, , Y. Kostyukov, D. Mordvinov, G. Fedyukovich

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

the sorts from the equality symbols. We refer to the first-
order language defined by Σ to as an assertion language ℒ.

As Σ has no predicate symbols except the equality symbols
(which have fixed interpretations within every structure),
there is a unique Herbrand structure ℋ for Σ. We say that a
sentence (a formula) 𝜑 in an assertion language is satisfiable
modulo theory of ADTs ⟨𝐶1, 𝜎1⟩ , . . . , ⟨𝐶𝑛, 𝜎𝑛⟩, iffℋ |= 𝜑 .
Constrained Horn Clauses. Let ℛ = {𝑃1, . . . , 𝑃𝑛} be a fi-
nite set of predicate symbols with sorts from Σ, which we
refer to as uninterpreted symbols.

Definition 1. A constrained Horn clause (CHC)𝐶 is a Σ∪ℛ-
formula of the form:

𝜑 ∧ 𝑅1 (𝑡1) ∧ . . . ∧ 𝑅𝑚 (𝑡𝑚) → 𝐻

where 𝜑 is a formula in the assertion language, called a
constraint; 𝑅𝑖 ∈ ℛ; 𝑡𝑖 is a tuple of terms; and𝐻 , called a head,
is either ⊥, or an atomic formula 𝑅(𝑡) for some 𝑅 ∈ ℛ.

If 𝐻 = ⊥, we say that 𝐶 is a query clause, otherwise we
call 𝐶 a definite clause. The premise of the implication 𝜑 ∧
𝑅1 (𝑡1) ∧ . . . ∧ 𝑅𝑚 (𝑡𝑚) is called a body of 𝐶 .

A CHC system 𝒮 is a finite set of CHCs.
Satisfiability of CHCs. Let 𝑋 = ⟨𝑋1, . . . , 𝑋𝑛⟩ be a tuple of
relations, such that if 𝑃𝑖 has sort 𝜎1 × . . . × 𝜎𝑚 , then 𝑋𝑖 ⊆
|ℋ|𝜎1 × . . . × |ℋ|𝜎𝑚 . To simplify the notation, we denote the
expansionℋ{𝑃1 ↦→ 𝑋1, . . . , 𝑃𝑛 ↦→ 𝑋𝑛} by ⟨ℋ, 𝑋1, . . . , 𝑋𝑛⟩, or
simply by ⟨ℋ, 𝑋 ⟩.
Let 𝒮 be a system of CHCs. We say that 𝒮 is satisfiable

modulo theory of ADTs, if there exists a tuple of relations 𝑋
such that ⟨ℋ, 𝑋 ⟩ |= 𝐶 for all 𝐶 ∈ 𝒮 .
For example, the system of CHCs from the Example 1 is

satisfied by interpreting 𝑒𝑣𝑒𝑛 with the relation
𝑋 = {𝑍, 𝑆 (𝑆 (𝑍 )), 𝑆 (𝑆 (𝑆 (𝑆 (𝑍 )))), . . .} = {𝑆2𝑛 (𝑍 ) | 𝑛 ≥ 0}.
It is well known that constrained Horn clauses provide a

first-order match for lots of program logics, including Floyd-
Hoare logic for imperative programs and refinement types
for high-order functional programs. So, we assume that for
every recursive program over ADTs there is a system of
CHCs, such that the program is safe iff the system is satis-
fiable. In the rest of the article, we identify programs with
their verification conditions expressed as systems of CHCs.
Definability. A representation class is a function 𝒞 mapping
every tuple ⟨𝜎1, . . . , 𝜎𝑛⟩ ∈ Σ𝑛𝑆 for every 𝑛 ∈ N to some class
of languages 𝒞 (𝜎1, . . . , 𝜎𝑛) ⊆ 2 |ℳ |𝜎1×···×|ℳ |𝜎𝑛 . We say that a
relation 𝑋 ⊆ |ℳ|𝜎1 × . . . × |ℳ|𝜎𝑛 is definable in a represen-
tation class 𝒞 if 𝑋 ∈ 𝒞 (𝜎1, . . . , 𝜎𝑛). We say that a Herbrand
structureℋ is definable in 𝒞 (or 𝒞-definable) if for every pred-
icate symbol 𝑝 ∈ Σ𝑃 with arity 𝜎1 × · · · × 𝜎𝑛 , interpretation
ℋJ𝑝K belongs to 𝒞 (𝜎1, . . . , 𝜎𝑛).
Finite Tree Automata. In order to define regular repre-
sentations, we introduce deterministic finite tree automata
(DFTA). Let Σ = ⟨·, Σ𝐹 , ·⟩ be fixed many-sorted signature.

Definition 1 (cf. [13]). A deterministic finite tree𝑛-automaton
over Σ𝐹 is a quadruple

(
𝑆, Σ𝐹 , 𝑆𝐹 ,Δ

)
, where 𝑆 is a finite set

of states, 𝑆𝐹 ⊆ 𝑆𝑛 is a set of final states, Δ is a transition
relation with rules of the form:

𝑓 (𝑠1, . . . , 𝑠𝑚) → 𝑠,

where 𝑓 ∈ Σ𝐹 , 𝑎𝑟 (𝑓 ) =𝑚 and 𝑠, 𝑠1, . . . , 𝑠𝑚 ∈ 𝑆 , and there are
no two rules in Δ with the same left-hand side.

Definition 2. A tuple of ground terms ⟨𝑡1, . . . , 𝑡𝑛⟩ is accepted
by𝑛-automaton𝐴 =

(
𝑆, Σ𝐹 , 𝑆𝐹 ,Δ

)
iff ⟨𝐴[𝑡1], . . . , 𝐴[𝑡𝑛]⟩ ∈ 𝑆𝐹 ,

where

𝐴
[
𝑓 (𝑡1, . . . , 𝑡𝑚)

] def
=

{
𝑠, if

(
𝑓 (𝐴[𝑡1], . . . , 𝐴[𝑡𝑚]) → 𝑠

)
∈ Δ,

⊥, otherwise.

Example 1 (𝐸𝑣𝑒𝑛). For example, consider the following
Peano integers datatype: 𝑁𝑎𝑡 := 𝑍 : 𝑁𝑎𝑡 | 𝑆 : 𝑁𝑎𝑡 → 𝑁𝑎𝑡 ,
and a CHC-system:

𝑒𝑣𝑒𝑛(𝑥) ← 𝑥 = 𝑍

𝑒𝑣𝑒𝑛(𝑥) ← 𝑥 = 𝑆 (𝑆 (𝑦)) ∧ 𝑒𝑣𝑒𝑛(𝑦)
⊥ ← 𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑆 (𝑥))

The only possible interpretation of 𝑒𝑣𝑒𝑛 satisfying these
CHCs is a relation {𝑆2𝑛 (𝑍 ) | 𝑛 ≥ 0}, which is not expressible
in the first-order language of the Nat datatype.
However, the solution could be represented by the au-

tomaton 𝐴 =
(
{𝑠0, 𝑠1}, Σ𝐹 , {𝑠0},Δ

)
which moves to state 𝑠0

for 𝑍 and flips the state from 𝑠0 to 𝑠1 and vice versa for 𝑆 .
The alphabet is simply Σ𝐹 = {𝑍, 𝑆 ()}. The set of transition
rules Δ can be represented as:

𝑠0𝑍 𝑠1

𝑆

𝑆

Regular Herbrand Models Letℋ be a Herbrand structure
for a signature ⟨·, Σ𝐹 , ·⟩. We say that 𝑛-automaton 𝐴 over Σ𝐹

represents a relation 𝑋 ⊆ |ℋ|𝜎1 × . . . × |ℋ|𝜎𝑛 iff
𝑋 = {⟨𝑎1, . . . , 𝑎𝑛⟩ | ⟨𝑎1, . . . , 𝑎𝑛⟩ is accepted by 𝐴, 𝑎𝑖 ∈ |ℋ|𝜎𝑖 }.
If there is a DFTA representing 𝑋 , we call 𝑋 regular. We
denote the class of regular relations by Reg. A structureℋ
is regular if it is Reg-definable.

4 Automated Inference of Regular
Invariants

In this section, we demonstrate an approach to obtaining
regular models of CHCs over ADTs using a finite model
finder, e.g., [12, 38, 44, 46]. The main outline is shown in
Figure 2.

The algorithm works in four steps. Given a system of con-
strained Horn clauses, we first rewrite it into a formula over
uninterpreted function symbols by eliminating all disequali-
ties from the clause bodies. Then we reduce the satisfiability
modulo theory of ADTs to satisfiability modulo EUF and
apply a finite model finder to construct a finite model of the

4



441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

Solving Constrained Horn Clauses over ADTs by Finite Model Finding , ,

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

reduced verification conditions. Finally, using the correspon-
dence between finite models and tree automata we get the
automaton representing the safe inductive invariant.

4.1 Translation to EUF
Recall that by definition, we call the system of CHCs over
ADTs satisfiable if every clause is satisfied in some expan-
sion of the Herbrand structure. The main insight is that this
satisfiability problem can be reduced to checking the satisfi-
ability of a formula over uninterpreted symbols in a usual
first-order sense.
Informally, given a system of CHCs, we obtain another

system by the replacement of all ADT constructors in all
CHCs with uninterpreted function symbols. Thus we allow
the interpretations of constructors to violate the ADT ax-
ioms (distinctiveness, injectivity, exhaustiveness, etc.). This
system with uninterpreted symbols is either satisfiable or
unsatisfiable in the usual first-order sense. If it is satisfiable,
then every clause is satisfied by some structureℳ. We could
use this structureℳ to recover the interpretations of unin-
terpreted symbols in the Herbrand structureℋ which satisfy
the original system over ℋ.

For instance, for the system of CHCs in the 𝑒𝑣𝑒𝑛 example,
we check the satisfiability of the following formula:

∀𝑥 .(𝑥 = 𝑍 → 𝑒𝑣𝑒𝑛(𝑥))∧
∀𝑥,𝑦.(𝑥 = 𝑆 (𝑆 (𝑦)) ∧ 𝑒𝑣𝑒𝑛(𝑦) → 𝑒𝑣𝑒𝑛(𝑥))∧
∀𝑥,𝑦.(𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑦) ∧ 𝑦 = 𝑆 (𝑥) → ⊥)

The formula is satisfied by the following finite model ℳ:
|ℳ|𝑁𝑎𝑡 = {0, 1}

ℳ(𝑒𝑣𝑒𝑛) = {0}
ℳ(𝑍 ) = 0

ℳ(𝑆) (𝑥) = 1 − 𝑥

4.2 Finite Models To Tree Tuples Automata
A procedure for constructing tree tuples automata (and,
hence, regular models) from finite models follows imme-
diately from the construction of an isomorphism between
finite models and tree automata [35].
Given a finite structure ℳ, we construct an automaton

𝒜𝑃 =
(
|ℳ| , Σ𝐹 ,ℳ(𝑃), 𝜏

)
for every predicate symbol 𝑃 ∈

Σ𝑃 . A shared set of transitions 𝜏 is defined as follows: for
each 𝑓 ∈ Σ𝐹 with arity 𝜎1× . . .×𝜎𝑛 ↦→ 𝜎 , for each 𝑥𝑖 ∈ |ℳ|𝜎𝑖 ,
𝜏
(
𝑓 (𝑥1, . . . , 𝑥𝑛)

)
= 𝑀 (𝑓 ) (𝑥1, . . . , 𝑥𝑛).

Thus, for the 𝑒𝑣𝑒𝑛 example we have 𝒜𝑒𝑣𝑒𝑛 isomorphic to
one introduced in Example 1.

CHCs over EUF
without ≠CHCs over ADTs CHCs over ADTs

without ≠

Finite model Tree tuples automata
(⇒Herbrand model)

Sec. 4.4 Sec. 4.1

Finite-model finde
r

Sec. 4.2

Figure 2. Obtaining regular model of a CHC system over ADTs.

Theorem2. For the constructed automaton𝒜𝑃 =
(
𝑆, Σ𝐹 , 𝑆𝐹 , 𝜏

)
,

𝐿(𝒜𝑃 ) = {⟨𝑡1, . . . , 𝑡𝑛⟩ |
〈
ℳJ𝑡1K, . . . ,ℳJ𝑡𝑛K

〉
∈ℳ(𝑃)}).

Proof. The proof is straightforward from the fact that 𝒜𝑃

reflects checking the satisfiability inℳ. □

In practice, this means that CHCs over ADTs could be au-
tomatically solved by finite model finders, such as Mace4 [38],
Finder [46], Paradox [12] or CVC4 in a special mode [44]:
if a finite model (in the usual first-order sense) is found, then
there exists a regular Herbrand model of the CHC system. In
Sec. 5 we evaluate an implemented tool with the finite model
finding engine in CVC4 as a backend against state-of-art
CHC solvers.

4.3 Herbrand Models Without Equality
With the correspondence between finite models and tree
automata in hand, it remains to show that the Herbrand
model induced by the constructed tree automaton is a model
of the original CHC system. In this subsection we show that
it is straightforward when the system has no disequality
constraints, but otherwise some additional steps should be
done.
First, let us assume that the signature Σ of the assertion

language does not have the equality symbol. Then there are
no predicate symbols at all, and thus we may assume that
every constraint in every CHC is ⊤. For instance, the above
example could be rewritten to:

𝑒𝑣𝑒𝑛(𝑍 ) ← ⊤
𝑒𝑣𝑒𝑛(𝑆 (𝑆 (𝑥))) ← 𝑒𝑣𝑒𝑛(𝑥)

⊥ ← 𝑒𝑣𝑒𝑛(𝑥) ∧ 𝑒𝑣𝑒𝑛(𝑆 (𝑥)).

Lemma 3. Suppose that a CHC system 𝒮 over uninterpreted
symbols ℛ = {𝑃1, . . . , 𝑃𝑘 } with no constraints is satisfied by
some first-order structure ℳ, i.e., ℳ |= 𝐶 for all 𝐶 ∈ 𝒮 . Let

𝑋𝑖
def
= {⟨𝑡1, . . . , 𝑡𝑛⟩ |ℳJ𝑡1K, . . . ,ℳJ𝑡𝑛K ∈ℳ(𝑃𝑖 )}.

Then ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ is the Herbrand model of 𝒮 .

Proof. As clause bodies have no constraints, each CHC is of
the form𝐶 ≡ 𝑅1 (𝑡1) ∧ . . .∧𝑅𝑚 (𝑡𝑚) → 𝐻 . Then by definition

⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ |= 𝐶 ⇐⇒ ℳ |= 𝐶,

so every clause in 𝒮 is satisfied by ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩. □

For the above example, we put 𝑋 def
= {𝑡 | ℳJ𝑡K = 0} =

{𝑆2𝑛 (𝑍 ) | 𝑛 ≥ 0}, indeed satisfying the system.

4.4 Herbrand Models With Equality
In the presence of the equality symbol, which has the prede-
fined semantics, a finite model finder searches for a model
in a completely free domain, thus, breaking the regular
model.Consider the system consisting of the only CHC

𝑍 ≠ 𝑆 (𝑍 ) → ⊥.
5



551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

, , Y. Kostyukov, D. Mordvinov, G. Fedyukovich

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

This system is unsatisfiable becauseℋ |= 𝑍 ≠ 𝑆 (𝑍 ). But in
a usual first-order sense, i.e., if we treat 𝑍 and 𝑆 as uninter-
preted functions, this CHC is satisfiable, e.g., as follows:

|ℳ|𝑛𝑎𝑡 = {0}
ℳ(𝑍 ) = ℳ(𝑆) (∗) = 0

In general, every clause with a disequality constraint in
the premise may be satisfied by falsifying its premise. It
suffices to make the disequality false by picking a sort with
the cardinality 1.
We propose the following way of attacking this problem.

For every ADT (𝐶, 𝜎), we introduce a fresh uninterpreted
symbol diseq𝜎 and defineℛ′ def= ℛ ∪ {diseq𝜎 | 𝜎 ∈ Σ𝑆 }.
Below we present the process of constructing another

system of CHCs 𝒮 ′ overℛ′. Without loss of generality, we
may assume that the constraint of each clause𝐶 ∈ 𝒮 is in the
Negation Normal Form (NNF). Let 𝐶 ′ be a clause with every
literal of the form ¬(𝑡 =𝜎 𝑢) in the constraint (which we
refer to as disequality constraints) substituted with the atomic
formula diseq𝜎 (𝑡,𝑢). For every clause 𝐶 ∈ 𝒮 , we add 𝐶 ′ into
𝒮 ′. Finally, for every ADT (𝐶, 𝜎), we add the following rules
for diseq𝜎 to 𝒮 ′:

for all distinct 𝑐, 𝑐 ′ of sort 𝜎 :
⊤ → diseq𝜎 (𝑐 (𝑥), 𝑐 ′(𝑥

′))
for all constructors 𝑐 of sort 𝜎 , all 𝑖 , and 𝑥 and 𝑦 of sort 𝜎 ′:

diseq𝜎′ (𝑥,𝑦) → diseq𝜎 (𝑐 (. . . , 𝑥︸︷︷︸
𝑖-th position

, . . .), 𝑐 (. . . , 𝑦︸︷︷︸
𝑖-th position

, . . .))

Let 𝒟𝜎
def
= {(𝑥,𝑦) ∈ |ℋ|2𝜎 | 𝑥 ≠ 𝑦} for each sort 𝜎 in Σ𝑆 .

It is well-known that the universal CHCs admit the least
model, which is the denotational semantics of the program
modeled by the CHCs, i.e., the least fixed point of the step
operator. Thus, the following fact is trivial.
Lemma 4. The rules of diseq𝜎 have the least model over ℋ,
which interprets diseq𝜎 by the relation 𝒟𝜎 .

As a corollary of this lemma, we state the following fact.
Lemma 5. For a CHC system 𝒮 , let 𝒮 ′ be a system with the
disequality constraints. Then, if ⟨ℋ, 𝑋1, . . . , 𝑋𝑘 , 𝑌1, . . . , 𝑌𝑛⟩ |=
𝒮 ′, then

〈
ℋ, 𝑋1, . . . , 𝑋𝑘 ,𝒟𝜎1 , . . . ,𝒟𝜎𝑛

〉
|= 𝒮 ′ (here 𝑌𝑖 and 𝒟𝜎𝑖

interpret the diseq𝜎𝑖 predicate symbol).

Example 2. For 𝒮 = {𝑍 ≠ 𝑆 (𝑍 ) → ⊥} we get the following
system of CHCs:

⊤ → diseq𝑁𝑎𝑡 (𝑍, 𝑆 (𝑥))
⊤ → diseq𝑁𝑎𝑡 (𝑆 (𝑥), 𝑍 )

diseq𝑁𝑎𝑡 (𝑥,𝑦) → diseq𝑁𝑎𝑡 (𝑆 (𝑥), 𝑆 (𝑦))
diseq𝑁𝑎𝑡 (𝑍, 𝑆 (𝑍 )) → ⊥.

Recall that 𝒮 is satisfiable in a usual first-order sense, but
unsatisfiable in ℋ. But 𝒮 ′ is unsatisfiable in a first-order
sense since the query clause is derivable from the first rule,
which solves our problem. In our workflow, we search for
finite models of 𝒮 ′ instead of 𝒮 , and then act as in the equality-
free case. Finally, we end up with the following theorem:

Theorem 6. Let 𝒮 be CHC system and 𝒮 ′ be CHC system
with the disequality constraints. If there is a finite model of 𝒮 ′
over EUF, then there is a regular Herbrand model of 𝒮 .

Proof. Without loss of generality, we may assume that each
clause 𝐶 ∈ 𝒮 is of the form (otherwise we rewrite the con-
straint into DNF, split it into different clauses and eliminate
all the equality atoms by the unification and substitution):
𝐶 ≡ 𝑦1 ≠ 𝑡1 ∧ . . . ∧ 𝑦𝑘 ≠ 𝑡𝑘 ∧ 𝑅1 (𝑥1) ∧ . . . ∧ 𝑅𝑚 (𝑥𝑚) → 𝐻.

In 𝒮 ′, this clause becomes 𝐶 ′ ≡
diseq(𝑦1, 𝑡1)∧ . . .∧diseq(𝑦𝑘 , 𝑡𝑘 )∧𝑅1 (𝑥1)∧ . . .∧𝑅𝑚 (𝑥𝑚) → 𝐻.

So, each clause in 𝒮 ′ has no constraint (rules of 𝑑𝑖𝑠𝑒𝑞
have no constraints as well), and by Lemma 3 there is a
model ⟨ℋ, 𝑋1, . . . , 𝑋𝑘 , 𝑌1, . . . , 𝑌𝑛⟩ of every 𝐶 ′ ∈ 𝒮 ′. Then, by
Lemma 5 we have

〈
ℋ, 𝑋1, . . . , 𝑋𝑘 ,𝒟𝜎1 , . . . ,𝒟𝜎𝑛

〉
|= 𝐶 ′. But〈

ℋ, 𝑋1, . . . , 𝑋𝑘 ,𝒟𝜎1 , . . . ,𝒟𝜎𝑛

〉
J𝐶 ′K = ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ J𝐶K,

thus giving us ⟨ℋ, 𝑋1, . . . , 𝑋𝑘⟩ |= 𝐶 for every 𝐶 ∈ 𝒮 . □

On finite model existence for CHCs with the disequal-
ity constraints. There is an interesting observation about
finite models and disequality constraints. It can be (straight-
forwardly) shown that if ADT of sort 𝜎 has infinitely many
terms, then the CHC

diseq𝜎 (𝑥, 𝑥) → ⊥
is satisfied only by infinite structure, i.e., if we force the
interpretations of diseq to omit the pairs of equal terms, then
such system has no finite models. For comparison, if we force
diseq being false in just one tuple, the finite model may exist.
For example, the query clause 𝑄 over the 𝑁𝑎𝑡 datatype with

𝑄 ≡ diseq𝜎 (𝑍, 𝑍 ) → ⊥
is satisfiable in a finite model
|ℳ|𝑁𝑎𝑡 = {0, 1},ℳ(𝑍 ) = 0,ℳ(𝑆) (∗) = 1,

ℳ(diseq𝑁𝑎𝑡 ) = {(0, 1), (1, 0), (1, 1)}.
Intuitively, if for proving the satisfiability of CHCswe need to
assume the disequality of a large number of ground terms, the
chance of finite model existence is getting lower. In practice,
this means that tests containing disequalities constraints
have fewer chances to be satisfiable in some finite models.
This is confirmed by our experimental evaluation (see Sec. 5).

5 Implementation and Experiments
Wehave evaluated our tool inferring regular invariants against
state-of-art: Z3 and Eldarica on preexisted benchmarks.
Implementation.Wehave implemented a regular invariant
inference tool called RegInv based on the preprocessing ap-
proach presented in Sec. 4 and an off-the-shelf finite-model
finder [44]. RegInv accepts input clauses in SMTLIB2 [3]
format and TIP extension with define-fun-rec construc-
tion [11]. It takes conditions with a property and checks if
the property holds, returning safe inductive invariant if it
does. Thus RegInv can be run as a backend solver for func-
tional program verifiers, such asMoCHi [29] and RCaml [49].

6



661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

Solving Constrained Horn Clauses over ADTs by Finite Model Finding , ,

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

RegInv can handle existentially-quantified Horn clauses. We
run CVC43 as a backend multi sort finite-model finder to
find regular models (see Sec.3).
Benchmarks.We empirically evaluate RegInv against state-
of-art CHC solvers on benchmarks taken fromworks of Yang
et al. [51], De Angelis et al. [14] and “Tons of inductive prob-
lems” (TIP) benchmark set by Claessen et al. [11].

We have modified the benchmarks of Yang et al. [51] and
De Angelis et al. [14] by replacing all non-ADT sorts with
ADTs (e.g., the 𝐼𝑛𝑡 sort in LIA with Peano integers using
the 𝑁𝑎𝑡 ADT) and adding CHC-definitions for non-ADT
operations (for example, the addition was replaced by the
addition of Peano numbers expressed as two CHCs). Thus,
the aggregated testset4 consists of 60 CHC systems over
binary trees, queues, lists, and Peano numbers.

The test set was divided into two problem subsets, which
we call PositiveEq and Diseq. PositiveEq is a set of CHC-
systems with equality only occurring positively in clause
bodies. Diseq set includes tests with occurrences of dise-
quality constraints in clause bodies, substituted with diseq
atoms, which is a sound transformation (see Sec. 4.4).
From TIP [11], we filtered out 377 problems with only

ADT sorts (the remaining problems use the combinations
of ADTs with other theories), converted all of them into
CHCs, replaced the disequalities with the diseq atoms as
described in Sec. 4.4 and replaced all free sorts declared
via (declare-sort . . . 0) with the 𝑁𝑎𝑡 datatype. Thus TIP
benchmark consists of 377 inductive ADT problems over lists,
queues, regular expressions, and Peano integers originally
generated from functional programs.
Compared tools. The evaluation was performed against
Z3/Spacer [15] with Spacer engine [31] and Eldarica [26] —
state-of-art Horn-solvers which construct elementary mod-
els and support ADTs. Spacer works with elementary model
representations. It incorporates standard decision, interpo-
lation and quantifier elimination techniques for ADT [5].
Spacer is based on property-directed reachability (PDR) tech-
nique, which alternates counter-example finding and safe
invariant construction subtasks by propagating reachabil-
ity facts and pushing partial safety lemmas in a property-
directed way.

Eldarica buildsmodels with size constraints, which count
the total number of constructor occurrences in them. It relies
on their own Princess SMT solver [45], which offers decision
and interpolation procedures for ADT with size constraints
by reduction to combination of AUF and LIA [25].

Finally, as a baselinewe include the CVC4 induction solver [43]
into the comparison (denoted CVC4-Ind5), which leverages
a number of techniques for inductive reasoning in SMT.

3Using cvc4 --finite-model-find
4The link is omitted for the anonymity.
5Using cvc4 --quant-ind --quant-cf --conjecture-gen
--conjecture-gen-per-round=3 --full-saturate-quant

101 102 103 104 105 106

101

102

103

104

105

106

Regular model construction by RegInv

El
em

en
ta
ry

m
od

el
co
ns
tr
uc
tio

n
by

Sp
ac

er
,E

ld
ar

ic
a
an
d
CV

C4
-In

d

Figure 3. Comparison of engines performance. Each point in a plot rep-
resents a pair of the run times (sec × sec) of RegInv for Reg construction
(x-axis) and a competitor for (Size)Elem construction (y-axis). Timeouts are
placed on the inner dashed lines, crashes are on the outer dashed lines.

Problem Set # Answer RegInv Eldarica Spacer CVC4-Ind
PositiveEq 35 SAT 27 1 4 0

Diseq 25 SAT 4 0 2 0
UNSAT 1 1 1 1

TIP 377 SAT 18 24 0 0
UNSAT 36 40 31 22

Total 437 SAT 49 25 6 0
UNSAT 37 41 32 23

Table 1. Results of experiments on three ADT problem sets. Number in
each cell stands for the amount of correct results within 300-seconds time
limit. RegInv was used for regular model construction, Spacer was used
for elementary model construction and Eldarica was used for building
elementary models with size constraints.

Despite the fact that we take first benchmarks from works
of Yang et al. [51] and De Angelis et al. [14], we do not pro-
vide a comparison against tools from these papers. The main
reason is that these tools are built on top of LIA solvers, and
they do not produce invariants over ADTs. In particular, a
tool from [14] handles the verification conditions over LIA
and ADT and eliminates ADTs from the verification condi-
tions completely. An approach of Yang et al. [51] is somewhat
similar to CVC4-Ind and it handles LIA and EUF natively.
So, these tools do not serve our main goal of comparing the
expressivity of different invariant classes for ADT.
Experiments were performed on an Arch Linux machine

Intel(R) Core(TM) i7-4710HQ CPU @ 2.50GHz 2.50GHz pro-
cessor with 16GB RAM and a 300-second timeout.
Results. The results are summarized in Table 1.

On the PositiveEq and Diseq benchmark set, Spacer solved
7 problems and for the rest, it ended with 8 UNKNOWN
results and 45 timeouts. Eldarica solved 2 problems (which
were also solved by Spacer) with 58 timeouts. RegInv found
31 regular solutions, one counterexample and had 28 time-
outs. Most of the solved problems are from PositiveEq test

7



771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

, , Y. Kostyukov, D. Mordvinov, G. Fedyukovich

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

101 102 103 104 105 106

101

102

103

104

105

106

Regular model construction by RegInv

El
em

en
ta
ry

m
od

el
co
ns
tr
uc
tio

n
by

Sp
ac

er
,E

ld
ar

ic
a
an
d
CV

C4
-In

d

Figure 4. Comparison of engine performance with only SAT results shown.
The testcase is included into this plot, if at least one of engines has discovered
an invariant.

set, which does not contain equalities in the negative con-
text. This confirm our hypothesis that such problems more
likely have regular invariants, which is discussed in Sec. 4.4.
Each problem solved by Spacer or Eldarica was solved by
RegInv as well, i.e., if RegInv did not manage to prove the
satisfiability within the time limit, none of the competitors
succeeded as well.
The TIP benchmarks gave more diverse results. Firstly,

all 36 problems claimed to be UNSAT by RegInv were cov-
ered by Eldarica as well, i.e., Eldarica managed to find
counterexamples more efficiently that RegInv. Eldarica
and Spacer witnessed the unsatisfiability of 40 and 31 CHC-
systems respectively. Most of these problems intersect, al-
though some of them are unique for each solver.

Spacer exceeded the memory limit of 16GB 64 times and
the time limit 277 times. It terminated 5 times within time
limit with the UNKNOWN result. RegInv exceeded the time
limit 323 times with no other errors, and Eldarica stopped
after the time limit 299 times with 14 errors6.

Finally, Eldarica proved safety with SAT result in 24 cases
vs 18 cases of RegInv. They share 12 problems; on shared
problems RegInv was two magnitudes faster. RegInv has
then 6 unique solved problems, all of them contain some
variant of evenness predicate on Peano numbers (e.g., “the
length of list concatenation is even iff sum of list lengths is
even”), so this type of regularity is naturally handled by the
finite-model finder. Eldarica has 12 unique (not solved by
RegInv) problems, all of them with orderings (<, ≤, >, ≥) on
Peano numbers, which is unsurprising as they are mapped
to LIA through size constraints.

Timing plots in Figure 3 and Figure 4 show that not only
RegInv inferred more invariants but it also was generally
6All with the same message: "Cannot handle general quantifiers in
predicates at the moment".

faster than other tools. On Figure 3, some unsafe bench-
marks were handled faster by CVC4-Ind and Spacer. This
is possibly due to a more effective procedure of quantifier
instantiation in CVC4-Ind and a more balanced tradeoff be-
tween the invariant inference and the counterexample search
in the PDR core of Spacer.

Other experiments. We have tried 23 hand-written pro-
grams related to the type theory (recall Sec. 2), questioning
the inhabitance of different STLC types, typability of STLC
terms, and programs modeling different term-rewriting sys-
tems. All these benchmarkswere intractable for all the solvers,
except the finite model finder. For that reason, we omit the
detailed statistics. We have also tried to run another finite
model finders (for example, Mace4) as a backend, but they
have shown worse results than CVC4.

Discussion. Clearly, finite model finding did much better
on benchmarks from Yang et al. [51], De Angelis et al. [14]
and our own experiments. This is due to two reasons: the
expressiveness of tree automata for representing the invari-
ants and the efficiency of RegInv’s backend CVC4-f engine.
More importantly, Spacer and Eldarica divergedmore often
because of inexpressiveness of their FOL-based languages.
Within the limits of their invariant representations, they
perform smoothly.

On TIP benchmarks Eldarica solved more testcases than
RegInv, but the analysis of the testcases solved only by El-
darica has shown, that all such tests define the Peano order-
ing, easily handled by Eldarica by the reduction to LIA. On
testcases solved by both engines RegInv was faster in aver-
age. Still, lots of interesting test cases in the TIP set obtained
from proof assistants are currently beyond the abilities of
state-of-art engines under comparison.
From this evaluation we conclude that tree automata are

very promising for automated verification of ADT-manipulating
programs: they often allow to express complex properties of
the recursive computation, and can be efficiently inferred by
the existing engines.

6 Related Work
Language classes considered in this work have already been
studied in the literature. Although these were separate works
from different subfields of computer science.

Finite models and tree automata. A classic book on au-
tomated model building Caferra et al. [7] gives a generous
overview of finitely representable models and their features,
like decision procedures and closure properties. Also, some
results for tree automata and their extensions are accumu-
lated in Comon et al. [13]. There is also an ongoing research
on extensions of regular tree languages, which still enjoy
nice decidability and closure properties [8, 9, 17, 21, 27, 33].
A number of tools, like Mace4 [38], Finder [46], Para-

dox [12] and CVC4 [44] are used to find finite models of
8



881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

Solving Constrained Horn Clauses over ADTs by Finite Model Finding , ,

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

first-order formulas. Most of them implement a classic DPLL-
like search with propagating assignments. CVC4, in addi-
tion, uses conflict analysis to accelerate the search. They
were applied to various verification tasks [34] and even
infinite models construction [40]. Yet we are unaware of
applying finite model finders to inference of invariants of
ADT-manipulating programs.

Recently, Haudebourg et al. [23] proposed a regular ab-
stract interpretation framework for invariant generation for
high-order functional programs over ADTs. Authors derive
a type system where each type is a regular language and use
CEGAR to infer regular invariants. Their procedure is much
more complex because they support high-order reasoning
which is not the goal of this paper, comparing ADT-invariant
representation. Targeting first-order functions over ADT
only we obtain a more straightforward invariant inference
procedure by using effective finite-model finders. Moreover,
this work makes clear the gap between different invariant
representations and their expressivity and aims not to adver-
tise regular invariants themselves but to overcome mental
inertia towards elementary invariant representations.

Herbrand model representations. There is a line of work
studying different computable representations of Herbrand
models [18, 19, 22, 48], which can be fruitful to study to
find out new ADT invariant representations. Even though
tree automata enjoy lots of effective properties, they are lim-
ited in their expressive power, so a few of their extensions
were widely studied by various researchers in the automated
model building field [7]. A survey on computational rep-
resentations of Herbrand models, their properties, expres-
sive power, correspondences and decision procedures can be
found in [36, 37].

ADT solving. There is a plenty of proposed quantifier elimi-
nation algorithms and decision procedures for the first-order
ADT fragment [4, 39, 41, 42, 47] and for an extension of ADT
with constraints on term sizes [52]. Some works discuss the
Craig interpolation of ADT constraints [25, 28]. Such tech-
niques are being incorporated by various SMT solvers, like
Z3 [15], CVC4 [2] and Princess [45].
Some work on automated induction for ADT was pro-

posed. Support for inductive proofs exists in deductive ver-
ifiers, such as Dafny [32] and SMT solvers [43]. The tech-
nique in CVC4 is deeply integrated in the SMT level — it
implements Skolemization with inductive strengthening and
term enumeration to find adequate subgoal. De Angelis et al.
[14] introduces a technique for eliminating ADTs from the
CHC-system by transforming it to CHC-system over integers
and booleans. Recently, Yang et al. [51] applied a method
based on Syntax-Guided Synthesis [1] to leverage induc-
tion by generating supporting lemmas based on failed proof
subgoals and user-specified templates.

7 Conclusion
We have demonstrated that tree automata are very promising
for representing the invariants of computation over ADTs,
as they allow to express properties of the unbound depth.
On the downside, tree automata cannot express the relations
between different variables.

Using the correspondence between finite models and tree
automata, we were able to use the finite model finders for au-
tomated inference of regular inductive invariants. We have
bypassed the problem of disequality constraints in the verifi-
cation conditions and implemented a tool which automat-
ically infers the regular invariants of ADT-manipulating
programs. This tool is competitive with the state-of-art CHC
solvers Z3/Spacer and Eldarica. Using this tool, we have
managed to detect interesting invariants of various inductive
problems, including the non-trivial invariant of the inhabi-
tance checking for STLC.

References
[1] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin,

Mukund Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. 2013. Syntax-
guided synthesis. In FMCAD. IEEE, 1–17.

[2] Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean,
Dejan Jovanovi’c, Tim King, Andrew Reynolds, and Cesare Tinelli.
2011. CVC4. In Proceedings of the 23rd International Conference on Com-
puter Aided Verification (CAV ’11) (Lecture Notes in Computer Science,
Vol. 6806), Ganesh Gopalakrishnan and Shaz Qadeer (Eds.). Springer,
171–177. Snowbird, Utah.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB
Standard: Version 2.6. Technical Report. Department of Computer
Science, The University of Iowa. Available at www.SMT-LIB.org.

[4] Clark Barrett, Igor Shikanian, and Cesare Tinelli. 2007. An abstract
decision procedure for a theory of inductive data types. Journal on
Satisfiability, Boolean Modeling and Computation 3 (2007), 21–46.

[5] Nikolaj Bjørner and Mikolás Janota. 2015. Playing with Quantified
Satisfaction. LPAR (short papers) 35 (2015), 15–27.

[6] Nikolaj Bjørner, Ken McMillan, and Andrey Rybalchenko. 2013. On
solving universally quantified horn clauses. In International Static
Analysis Symposium. Springer, 105–125.

[7] Ricardo Caferra, Alexander Leitsch, and Nicolas Peltier. 2013. Auto-
mated model building. Vol. 31. Springer Science & Business Media.

[8] Jacques Chabin, Jing Chen, and Pierre Réty. 2006. Synchronized-context
free tree-tuple languages. Technical Report. Citeseer.

[9] Jacques Chabin and Pierre Réty. 2007. Visibly pushdown languages and
term rewriting. In International Symposium on Frontiers of Combining
Systems. Springer, 252–266.

[10] Adam Chlipala. 2008. Parametric Higher-Order Abstract Syntax for
Mechanized Semantics. In Proceedings of the 13th ACM SIGPLAN inter-
national conference on Functional programming. 143–156.

[11] Koen Claessen, Moa Johansson, Dan Rosén, and Nicholas Smallbone.
2015. TIP: tons of inductive problems. In Conferences on Intelligent
Computer Mathematics. Springer, 333–337.

[12] Koen Claessen and Niklas Sörensson. 2003. New Techniques that
ImproveMACE-Style Finite Model Finding. In Proceedings of the CADE-
19 Workshop: Model Computation-Principles, Algorithms, Applications.
Citeseer, 11–27.

[13] H. Comon,M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, C. Löding,
S. Tison, and M. Tommasi. 2008. Tree Automata Techniques and
Applications. Available on: https://jacquema.gitlabpages.inria.fr/files/

9

https://jacquema.gitlabpages.inria.fr/files/tata.pdf
https://jacquema.gitlabpages.inria.fr/files/tata.pdf
https://jacquema.gitlabpages.inria.fr/files/tata.pdf


991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

, , Y. Kostyukov, D. Mordvinov, G. Fedyukovich

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

tata.pdf. release November, 18th 2008.
[14] Emanuele De Angelis, Fabio Fioravanti, Alberto Pettorossi, and Mau-

rizio Proietti. 2018. Solving Horn Clauses on Inductive Data Types
Without Induction. Theory and Practice of Logic Programming 18, 3-4
(2018), 452–469.

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT
solver. In International conference on Tools and Algorithms for the Con-
struction and Analysis of Systems. Springer, 337–340.

[16] Edsger Wybe Dijkstra, Edsger Wybe Dijkstra, Edsger Wybe Dijkstra,
Etats-Unis Informaticien, and Edsger Wybe Dijkstra. 1976. A Discipline
of Programming. Vol. 1. Prentice-Hall Englewood Cliffs.

[17] Joost Engelfriet and Andreas Maletti. 2017. Multiple context-free tree
grammars and multi-component tree adjoining grammars. In Interna-
tional Symposium on Fundamentals of Computation Theory. Springer,
217–229.

[18] Christian G Fermüller and Reinhard Pichler. 2005. Model representa-
tion via contexts and implicit generalizations. In International Confer-
ence on Automated Deduction. Springer, 409–423.

[19] Christian G Fermüller and Reinhard Pichler. 2007. Model representa-
tion over finite and infinite signatures. Journal of Logic and Computa-
tion 17, 3 (2007), 453–477.

[20] RobertW Floyd. 1967. AssigningMeanings to Programs. In Proceedings
of Symposium on Applied Mathematics. Number 32.

[21] Valérie Gouranton, Pierre Réty, and Helmut Seidl. 2001. Synchronized
tree languages revisited and new applications. In International Con-
ference on Foundations of Software Science and Computation Structures.
Springer, 214–229.

[22] Bernhard Gramlich and Reinhard Pichler. 2002. Algorithmic aspects of
Herbrand models represented by ground atoms with ground equations.
In International Conference on Automated Deduction. Springer, 241–
259.

[23] Timothée Haudebourg, Thomas Genet, and Thomas Jensen. 2020. Reg-
ular language type inference with term rewriting. Proceedings of the
ACM on Programming Languages 4, ICFP (2020), 1–29.

[24] Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Com-
puter Programming. Commun. ACM 12, 10 (1969), 576–580.

[25] Hossein Hojjat and Philipp Rümmer. 2017. Deciding and interpolating
algebraic data types by reduction. In 2017 19th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC).
IEEE, 145–152.

[26] Hossein Hojjat and Philipp Rümmer. 2018. The ELDARICA horn
solver. In 2018 Formal Methods in Computer Aided Design (FMCAD).
IEEE, 158–164.

[27] Florent Jacquemard, Francis Klay, and Camille Vacher. 2009. Rigid
tree automata. In International Conference on Language and Automata
Theory and Applications. Springer, 446–457.

[28] Deepak Kapur, Rupak Majumdar, and Calogero G Zarba. 2006. Inter-
polation for Data Structures. In Proceedings of the 14th ACM SIGSOFT
international symposium on Foundations of software engineering. 105–
116.

[29] Naoki Kobayashi, Ryosuke Sato, and Hiroshi Unno. 2011. Predicate
abstraction and CEGAR for higher-order model checking. In ACM
SIGPLAN Notices, Vol. 46. ACM, 222–233.

[30] Anvesh Komuravelli, Arie Gurfinkel, and Sagar Chaki. 2016. SMT-
based model checking for recursive programs. Formal Methods in
System Design 48, 3 (2016), 175–205.

[31] Anvesh Komuravelli, Arie Gurfinkel, Sagar Chaki, and Edmund M
Clarke. 2013. Automatic abstraction in SMT-based unbounded soft-
ware model checking. In International Conference on Computer Aided
Verification. Springer, 846–862.

[32] K. Rustan M. Leino. 2012. Automating Induction with an SMT Solver.
In Proceedings of the 13th International Conference on Verification, Model
Checking, and Abstract Interpretation (Philadelphia, PA) (VMCAI’12).
Springer-Verlag, Berlin, Heidelberg, 315–331.

[33] Sébastien Limet, Pierre Réty, and Helmut Seidl. 2001. Weakly regular
relations and applications. In International Conference on Rewriting
Techniques and Applications. Springer, 185–200.

[34] Alexei Lisitsa. 2012. Finite models vs tree automata in safety verifi-
cation. In 23rd International Conference on Rewriting Techniques and
Applications (RTA’12). Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

[35] Robert Matzinger. 1997. Comparing computational representations of
Herbrand models. In Kurt Gödel Colloquium on Computational Logic
and Proof Theory. Springer, 203–218.

[36] Robert Matzinger. 1998. On computational representations of Her-
brand models. Uwe Egly and Hans Tompits, editors 13 (1998), 86–95.

[37] Robert Matzinger. 2000. Computational representations of models in
first-order logic. Ph.D. Dissertation. Technische Universität Wien,
Austria.

[38] William McCune. 2003. Mace4 Reference Manual and Guide. arXiv
preprint cs/0310055 (2003).

[39] Derek C Oppen. 1980. Reasoning about recursively defined data struc-
tures. Journal of the ACM (JACM) 27, 3 (1980), 403–411.

[40] Nicolas Peltier. 2009. Constructing infinite models represented by tree
automata. Annals of Mathematics and Artificial Intelligence 56, 1 (2009),
65–85.

[41] Tuan-Hung Pham, Andrew Gacek, and Michael W. Whalen. 2016.
Reasoning About Algebraic Data Types with Abstractions. J. Autom.
Reasoning 57, 4 (2016), 281–318.

[42] Andrew Reynolds and Jasmin Christian Blanchette. 2017. A decision
procedure for (co) datatypes in SMT solvers. Journal of Automated
Reasoning 58, 3 (2017), 341–362.

[43] Andrew Reynolds and Viktor Kuncak. 2015. Induction for SMT solvers.
In International Workshop on Verification, Model Checking, and Abstract
Interpretation. Springer, 80–98.

[44] Andrew Reynolds, Cesare Tinelli, Amit Goel, and Sava Krstić. 2013.
Finite model finding in SMT. In International Conference on Computer
Aided Verification. Springer, 640–655.

[45] Philipp Rümmer. 2008. A Constraint Sequent Calculus for First-Order
Logic with Linear Integer Arithmetic. In International Conference on
Logic for Programming Artificial Intelligence and Reasoning. Springer,
274–289.

[46] John Slaney. 1994. FINDER: Finite Domain Enumerator System De-
scription. In International Conference on Automated Deduction. Springer,
798–801.

[47] Philippe Suter, Mirco Dotta, and Viktor Kuncak. 2010. Decision Pro-
cedures for Algebraic Data Types with Abstractions. Acm Sigplan
Notices 45, 1 (2010), 199–210.

[48] Andreas Teucke, Marco Voigt, and Christoph Weidenbach. 2019. On
the expressivity and applicability of model representation formalisms.
In International Symposium on Frontiers of Combining Systems. Springer,
22–39.

[49] Hiroshi Unno, Sho Torii, and Hiroki Sakamoto. 2017. Automating
induction for solving horn clauses. In International Conference on Com-
puter Aided Verification. Springer, 571–591.

[50] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon
L. Peyton Jones. 2014. Refinement types for Haskell. In ICFP. ACM,
269–282.

[51] Weikun Yang, Grigory Fedyukovich, and Aarti Gupta. 2019. Lemma
Synthesis for Automating Induction over Algebraic Data Types. In
International Conference on Principles and Practice of Constraint Pro-
gramming. Springer, 600–617.

[52] Ting Zhang, Henny B Sipma, and Zohar Manna. 2004. Decision proce-
dures for recursive data structures with integer constraints. In Inter-
national Joint Conference on Automated Reasoning. Springer, 152–167.

10

https://jacquema.gitlabpages.inria.fr/files/tata.pdf
https://jacquema.gitlabpages.inria.fr/files/tata.pdf

	Abstract
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Automated Inference of Regular Invariants
	4.1 Translation to EUF
	4.2 Finite Models To Tree Tuples Automata
	4.3 Herbrand Models Without Equality
	4.4 Herbrand Models With Equality

	5 Implementation and Experiments
	6 Related Work
	7 Conclusion
	References

