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- 1843 Emergence (1843 - John Stuart Mill - A System of Logic)
- 1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution)
- 1940s Cybernetics (1952 - Ashby - Design for a Brain)

- 1995 Book: Major Transitions in Evolution
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The Major Transition in Evolution
-

Maynard Smith and Szathmary identified several
properties common to the transitions:

JOHN MAYNARD SMITH & EORS SZATHMARY

THE MAJOR
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- Smaller entities have often come about together to
form larger entities. e.g. Chromosomes, eukaryotes,
sex multicellular colonies.

- Smaller entities often become differentiated as part of a
larger entity. e.g. DNA & protein, organelles, anisogamy,
tissues, castes

- The smaller entities are often unable to replicate in the
absence of the larger entity. e.g. DNA, chromosomes,
Organelles, tissues, castes

- The smaller entities can sometimes disrupt the
development of the larger entity, e.g. Meiotic drive
(selfish non-Mendelian genes), parthenogenesis,
cancers, coup d’etat

- New ways of transmitting information have arisen.e.g.
DNA-protein, cell heredity, epigenesis, universal
grammar.

httos.//en.wikipedia.org/wiki/The_Major_Transitions_in_Evolution



The Major Evolutionary Transitions

REVIEW ARTICLE

The major evolutionary transitions

Eors Szathmary & John Maynard Smith

There is no theoretical reason to expect evolutionary lineages to increase In complexity with
time, and no empirical evidence that they do so. Nevertheless, eskaryotic cells are more com-
plex than prokaryotic ones, animals and plants are more complex than peotists, and so on.
This increase in complexity may have been achieved as a result of a series of major evolutionary
transitions. These invelved changes In the way information is stored and tramsmitted.
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TABLE 1 The major transitions®

Replicating molecules to populations of molecules in compartments
Unlinked replicators to chromosomes

RNA as gene and enzyme to DNA and protein (genetic code)
Prokaryotes to eukaryotes

Asexual clones to sexual populations

Protists to animals, plants and fungi (cell differentiation)

Solitary individuals to colonies (non-reproductive castes)

Primate societies to human societies (language)




1843 Emergence (1843 - John Stuart Mill - A System of Logic)
1921 Emergent Evolution (1923 - Lloyd Morgan - Emergent Evolution)
Control Theory

1940s Cybernetics (1952 - Ashby - Design for a Brain)

- 1956 Artificial Intelligence

- Self Organised Criticality

- 1963 Chaotic Theory (1987 James Gleick - Chaos: The Making of a new Science)

- - Robotics (1984 - Braitenberg Vehicles)

- 1984 Complex Systems (1995 - M Gell Mann - What is Complexity)

- 1986 Atrtificial Life (1991 - Thomas Ray - Tierra)

- 1977 Artificial Chemistries (1996 - Walter Fontana - The Barrier of Objects)

- 2001 Chemical Organisation Theory (2007 - Dittrich, Speroni - Chemical Organisation Theory)



The Hypercycle
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Fig. 4. The catalytic cycle represents a higher level of organization
in the hierarchy of catalytic schemes. The constituents of the cycle
E, = E, are themselves catalysts which are formed from some en-
ergy-rich substrates (S), whereby cach intermediate E; is a catalyst
for the formation of E;, ;. The catalytic cycle seen as an entity
is equivalent to an autocatalyst, which instructs its own reproduc-
tion. To be a catalytic cycle it is sufficient, that only one of the

intermediates formed is a catalyst for one of the subsequent reac-
I, tion steps.
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Fig. 7. A catalytic hypercycle consists of self-instructive units I,
with two-fold catalytic functions. As autocatalysts or —more gener-
ally —as catalytic cycles the intermediates I; are able to instruct
their own reproduction and, in addition, provide catalytic support
for the reproduction of the subsequent intermediate (using the
energy-rich building material X). The simplified graph (b) indicates
the cyclic hierarchy



Polymer Chemistry
on Tape

from RNA model

Abstraction
Artificial Chemistry



Constructive
Dynamical
Systems

THE BARRIER OF OBJECTS:
FROM DYNAMICAL SYSTEMS TO BOUNDED
ORGANIZATIONS

Walter Fontana' Leo W. Buss
Thecovtical Chemlstry Department of Biolgy
Univorsity of Vienna and
W r.?."'!-rr\?'n.’r 17 Depactment of Gealogy and
A-1090 Vienna, Asstria Coophliysics

and Yale Universicy
Imternational Institute for Applied New Haven, CT 065208104, USA

Constructing the Molecules

A-236] Laxenburg, Austria

This work has appeared without appendices in
"Boundaries and Barriers"

John Casti & Anders Karlqvist, eds. . 1 . 1)
pp. 56-116, Addison-Wesley, Reading MA, 1996 O n S r u C | n g e J e C S




Historical Problems:
We use Ordinary Ditferential Equations to model the world
In an ODE there is no novelty
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TTHE BARRIER OF OBJECTS:
FROM DYNAMICAL SYSTEMS TO BOUNDED
ORGANIZATIONS

Walter Fontana' Leo W. Buss
and
1 k has appeared without append
“"Boundaries and Barrie rs"
Ji sti & Anders Karlgvist, eds.
I 16, Addison-Wesley, Reading MA, 1996

Artificial Chemistry as
a crude abstraction of
a Constructive
Dynamical System

Infinite Molecular Types

All Reaction Catalytic

No Conservation of Mass
Out-flux from each Molecule

Well Stirred
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(catalytic)

dx]/dt — k2 Xy X>o
dx,/dt =k; x; x,



(catalytic)

dx]/dt — k2x2x2—x] ()
dXZ/dt — k] X XZ—X2¢
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Organisations as
Emerging Objects

An Organisation is defined
as a Closed and Self
Maintaining set

Closed: all the reactions
recreate elements inside

Self Maintaining: There is
an internal reaction that
recreate each Molecule



What would be conserved if the “tape were played twice”

We develop an abstract chemistry
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* self maintaining organisations, once
established, can combine into higher-order
self-maintaining organisations.
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Organisations as
Hierarchical Structures



Organisations as
Partially Ordered
Structures

Not all Organisations
are comparable



Closure and
Self Maintenance
1n
Catalytic Flow Systems



Closed Sets

If given a set of element S,
each interaction will just create elements of that set we
say that the set is closed:

VXYyeSX(Y) =S
then S is closed



Self Maintaining Sets

If given a set of element S,

each element (x) is created by a reaction pathway inside
the set (y,z),

then the set is self maintaining:

VXxeS dy,zeS such that X =Y(z)



Organisations

A set who Is both closed and self
maintaining is an Organisation
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organisations

A set who Is both closed and self
maintaining Is a Organization
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organisations

A set who Is both closed and self
maintaining Is a Organization

O



An Example

« Each molecule has also a first order outflow:



Network

Node: molecular species f@

Arc: ,JJf molecule 1 and 3 is '
present, then 4 can/will be
produced*.



An Example

closed set
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An Example

self-maintaining set




An Example

self-maintaining set




An Example

organisation = closed and self-maintaining
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An Example

organisation = closed and self-maintaining




An Example

set of all organisations
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Lattice of organisations

Given the set of all organization (O),
given the operation organizational union (L),

given the operation organizational intersection (),

<0, u, n >1is a Lattice.




Lattice of organisations




Closed set generated by a set

» (1ven any set 1s possible to generate its closure. The
smallest closed set containing it.
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» (1ven any set 1s possible to generate its closure. The
smallest closed set containing it.
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Self Maintaining Set generated
by a set.

Given any set is possible to reduce to its self maintaining
subset.
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Self Maintaining Set
generated by a set.

Given any set is possible to reduce to its self maintaining
subset.




Organisation generated by a
subset

* In the same way given any set it uniquely
generates a Organisation.

* This 1s done by first taking the closure of the
Set

» then the biggest self maintaining set in the
closed set.



Organisation generated by a
subset

Closure

Self Maintainance
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Organisation generated by a
subset

€

Closure

Self Maintainance




Organisation generated by a
subset
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Organisation generated by a
subset

Of course 1f the starting subset 1s already a organization the we
will just regenerate the same organization.
So organisations are the fixed point

of the “generate organization” operator.



Intersection of
Organisation

* Of course given two organisations it 1s
uniquely defined the organization generated
by their intersection
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Intersection of
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* Of course given two organisations it 1s
uniquely defined the organization generated
by their intersection
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Union of organisations

* Of course given two organisations it 1S
uniquely defined the organization generated
by their union
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* Of course given two organisations it 1S
uniquely defined the organization generated
by their union



Self Organisation in a System of Binary Strings

NTop
Boolean strings folded into matrix;
SRR Matrix multiplication;
o, e Result unfolded,

Self-organisation in a system of binary strings








































Self Organisation in a System of Binary Strings

NTop
Boolean strings folded into matrix;
Matrix multiplication;
Result unfolded;

Self-organisation in a system of binary strings

15 Molecules

53 Organisations
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Toward a Theory of Organisations

Given any set of molecules you
can define the organisation
generated by this set

for all sets of molecules T, 7
exists Ot
(that can be generated in this way....)
such that O is an Organisation.

If T, S sets, with T>S
Then Ot > Os

Organisations form an algebra,
a Lattice in particular




The Lattice of Organizations

5 July 2004 Dagstuhl Peter Dittrich - FSU & JCB Jena 103



Lattice of Organizations

Given the set of all organization (O),
given the operation organizational union (u),

given the operation organizational intersection (M),

<0, U, N> is a Lattice.

5 July 2004 Dagstuhl Peter Dittrich - FSU & JCB Jena 104



Example of Lattice
(2
O

B
o
_—
D:AHB



Example of not a Lattice



NTop

15 Molecules

54 Organisations

(110111213141

523456789)

(11011121314

152345789)

[N

(11011121314 152345809)/(1101112131415234578)[110111213152345789)

(110111213 141523458

(11011121315234578]11011121315234589)

NP7\

(110121523456898) (1101112131523458

0111213141589
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Artificial Chemistry’s Global Dynamic.
Movements in the Lattice of Organisation

i Jounal of Thres Dimensional images, 16(4)160-163
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...we consider the set of all possible organisations in an
artificial chemistry.
...this set generates a lattice.

We consider the dynamical movement of a system in
this lattice, under the influence of its inner dynamic and
random noise.

We notice that some organisations, while being
algebraically closed, are not stable under the influence
of random external noise. While others, while being
algebraically self-maintaining, do not dynamically selt-
maintain all their elements. This leads to a definition of
attractive organisations.
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Problems: Find the Lattice of organisations



Chemical Organisation Theory
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Understanding an Artificial Chemistry

Problems: Find the Lattice of organisations

Understanding an Artiticial Chemistry means at least:
* know the lattice of Organisations:

* know all the organisations;
* given any two organisations A, B,
know whatis: AuB, AnB

S I
‘ A list, and 2 tables

———————

e



Applying the Lattice

Start with a set of organisations.
Calculate all the union and intersections and add them;
Until you cannot add anything anymore;
« Now you have a sub-lattice
Take an Org, add some molecules to find a new Organisation

Go from sub lattice to sub lattice

...until you have found all the organisations.



Theorem 1

In a lattice:
(AUB)UC=AU (B UQ);

We have 2 Organisations S, C;
We are looking for Twith T =5 U C,

If exist 2 Organisations A, B
suchthatS=AUB

Then:
T=AU(BUCOQC).

We might know R =B U C.
In which case
T=SUC=AUR



Theorem 1

In a lattice:
(AUB)UC=AU(BUQOQC);

We have 2 Organisations S, C;
We are looking for TwithT=SUC

If exist 2 Organisations A, B
suchthat S =AUB

Then:
T=AUBUCOQOC).

We might know R =B U C.
In which case
T=SUC=AUR



Theorem 1

In a lattice:
(AUB)UC=AU(BUZCQC);

We have 2 Organisations S, C;
We are looking for Twith T =S U C,

If exist 2 Organisations A, B
suchthatS=AUB

Then:
T=AU(BUCOQC).

We might know R =B U C.
In which case
T=SUC=AUR



Theorem 1

In a lattice:
(AUB)UC=AU(BUZCQC);

We have 2 Organisations S, C;
We are looking for Twith T =5 U C,

If exist 2 Organisations A, B
suchthatS=AUB

Then:
T=AU((BUQ).

We might know R =B U C.

In which case
T=SUC=AUR



Theorem 1

In a lattice:
(AUB)UC=AU(BUZCQC);

We have 2 Organisations S, C;
We are looking for Twith T =5 U C,

If exist 2 Organisations A, B
suchthatS=AUB

Then:
T=AU(BUCOQC).

We might know R=B U C.
In which case
T=SUC=AUR



(7)) Theorem 1

Ppas
(s ) (=
(2 ) (e

In a lattice:
(AUB)UC=AU (B UQ);

We have 2 Organisations S, C;
We are looking for Twith T =5 U C,

If exist 2 Organisations A, B
suchthatS=AUB

Then:
T=AU(BUCOQC).

We might know R =B U C.
In which case
T=SUC=AUR



Theorem 2

In a lattice:

A, B, C,Rare
Organisations
A<B<C

Wewanttofind T=B UR

fAUR=CUR

ThenBUR=AUR=CUR




Theorem 2

In a lattice:

A, B, C, R are Organisations
A<B<C

Wewanttofind T=B UR

fFAUR=CUR

ThenBUR=AUR=CUR



Theorem 2

fFAUR=CUR

Anything in between
just goes there.




Theorem 2

ButTUR=T=CUR

Thus



Theorem 3

IfAUB-=S;
fC,A<C<KS;
fD B<D<S;

then:
CUbD=S.




Theorem 3

TAUB=S;
ifC,A=sC=S;
fD B<D<S;

then:
CUbD=S.




Theorem 3

TAUB=S;
fC A<C<S;
ifD,B=D=<S;

then:
CUbD=S.




Theorem 3




How many Union and Intersections
are Calculated vs Demonstrated

100%
10%
1%
0.1%
O Relations calculated by hand
0.01%
10 100 1,000 10,000 100,000

organisations found



Problem
what molecules to ignore

what subsets of
molecules to ignore

B\A



Problem

what molecules to ignore

B
]C

f @
: II what subsets of

molecules to ignore



4 options

Af —> B > A
Af —> CwithB>C > A, feC
Af —>DwithB>D>A f¢D

Downward Af—>A

what subsets of
molecules to ignore



4 options

Upward Af—>B>A
Af —> CwithB>C > A, feC

Af —>DwithB>D>A f¢D

o Downward Af—> A

’
/
A
/n
/o
.

what subsets of
molecules to ignore



4 options

Upward Af—>B>A
Upward Af—>CwithB>C>A,fcC

Af —> D withB>D > A, f ¢ D
Downward Af—>A

what subsets of
molecules to ignore



4 options

Upward Af—>B>A
Upward Af—>CwithB>C>A, feC

Sideward Af—>DwithB>D>A,f¢D
Downward Af—>A

-
/
/
/
/
’
/ .
/ o
’ R4
/
I

what subsets of
molecules to ignore



Applying the Lattice
one molecule at a time

Start with a set of organisations.
Calculate all the union and intersections and add them;
Until you cannot add anything anymore;
 Now you have a sub-lattice
Take an Org, add ONE molecule to find a new Organisation

Go from sub lattice to sub lattice

...until you have found all the organisations.



4- 3 options

Upward Af—>B>A
Sideward Af—>DwithB>D>A,fgD

Downward Af—>A

what subsets of
molecules to ignore



We don’t need to study the sidewards

At —>DwithB>D> A, fgD
Downward Df—>D

B
f
\ //// ‘f
A B\ A A sideward molecule of an organisation

s always a downward molecule
of another organisation



4—3- 2 options

Upward  Af—> B> A

Downward Af —> A

what subsets of
molecules to ignore



Taking 2 molecules at a time

/////////jg Cases
/i Upwara

up

f goes
2 down

up

e goes
down

/ .
’ H
’ "
; .
/ H
’ .
/ .
> :
/ N
N, :
. .
* :
e .
/, . =
/ “¢ .
/ - .
/ “‘ -
/ *
/ .
/
’
’
/
/
’
/ .
/ ‘0.
’
/ y 3
/

Downward molecules to ignore




Case 1, 2: If one molecule goes upward

e goes
cases
up down
up 1 2
f goes
down 2 3
B We need to calculate

Go(AU fU e) = Gsm(Ge(A U fU e))

We know that
AUTf<Go(AUHN=B<Ge(AU I,
thus Go(A U ) = Ge(A U 1)

Go(AU fU e) =

= Gsm(Ge(A U fU e)) =

= Gsm(Ge(Ge(A U H)U e))
= Gsm(Ge(Go(A U ) U e))
= Go(B U e)

Which is something we obtained before.
So cases 1, 2, will not lead to anything
new. We don't need to calculate them



Problem
what molecules to ignore

e goes
cases

up down

u
down

what sets of molecules to ignore?
Any subset where at least a subset of molecules of it goes upward

Solved

Theorem: No Organisation Left Behind



lake away message

If something has a mathematical property:
use it



Note:

The code Is available on git hub
https://github.com/pietrosperoni/Lattice OfChemicalOrganisations/tree/Public
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https://github.com/pietrosperoni

Thank You

pletrosperoni.it
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