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Abstract

Information Geometry (IG) is the name given by S. Amari to the study of statistical models with the tools of
Differential Geometry. The subject is old, as it was started by the observation made by Rao in 1945 that the Fisher
information matrix of a statistical model defines a Riemannian manifold on the space of parameters. An important
advancement was obtained by Efron in 1975 by observing that there is further relevant affine manifold structure
induced by exponential families. Today we know that there are at least 3 differential geometrical structure of
interest: the Fisher-Rao Riemannian manifold, the Nagaoka dually flat affine manifold, the Takatsu Wasserstein
Riemannian manifold.
In the first part of the talk I will present a synthetic unified view of IG based on a non-parametric approach, see
Pistone and Sempi (1995), and Pistone (2013). The basic structure is the statistical bundle consisting of all
couples of a probability measure in a model and a random variable whose expected value is zero for that measure.
The vector space of random variables is a statistically meaningful expression of the tangent space of the manifold
of probabilities.
In the central part of the talk I will present simple examples of applications of IG in Machine Learning developed
jointly Luigi Malag (RIST, Cluj-Napoca). In particular, the examples consider either discrete or Gaussian models to
discuss such topics as the natural gradient, the gradient flow, the IG of Deep Learning, see R. Pascanu and Y.
Bengio (2014), and Amari (2016). In particular, the last example points to a research project just started by Luigi
as principal investigator, see details in http://www.luigimalago.it/.

http://www.luigimalago.it/
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Setup: statistical model, exponential family

• On a sample space (Ω,F), with reference probability measure ν,
and a parameter’ set Θ ∈ Rd , we have a statistical model

Ω×Θ 3 (x , θ) 7→ p(x ; θ) Pθ (A) =

∫
A

p(x ; θ) ν(dx)

• For each fixed x ∈ Ω the mapping θ 7→ p(x ; θ) is the likelihood of x .
We routinely assume p(x ; θ) > 0, x ∈ Ω, θ ∈ Θ, and define the
log-likelihood to be `(x ; θ) = log p(x ; θ).

• The simplest model show a linear form of the log-likelihood

`(x ; θ) =
d∑

j=1

θjTj(x)− θ0

The Tj ’s are the sufficient statistics, and θ0 = ψ(θ) is the cumulant
generating function. Such a model is called exponential family.

• B. Efron and T. Hastie. Computer age statistical inference, volume 5 of Institute of Mathematical Statistics
(IMS) Monographs. Cambridge University Press, New York, 2016. Algorithms, evidence, and data science



Setup: random variables

• A random variable is a measurable function on (Ω,F). The space
L0(Pθ) of (classes of) random variables does not depend on θ. The
space of L∞(Pθ) of (classes of) bounded random variables does not
depend on θ. However, the space Lα(Pθ), for any α ∈ [0,∞[ of Pθ
of (classes of) integrable random variables does depend on θ!

• For special classes of statistical models and special α’s it is possible
to assume the equality of spaces of α-integrable random variables.

• In general, it is better to think to the decomposition
Lα(Pθ) = R⊕ Lα0 (Pθ), X = EPθ

[X ] + (X − EPθ
[X ]) and to extend

the statistical model to a bundle {(Pθ,U)|U ∈ Lα0 (Pθ)}.

• Many authors have observed that each fiber of such a bundle is the
proper expression of the tangent space of the statistical models seen
as a manifold e.g., Phil Dawid (1975).



Fisher-Rao computation

d

dθ
EPθ

[X ] =
d

dθ

∑
x∈Ω

X (x)p(x ; θ)

=
∑
x∈Ω

X (x)
d

dθ
p(x ; θ)

=
∑
x∈Ω

X (x)
d

dθ
log (p(x ; θ)) p(x ; θ) (check X = 1)

=
∑
x∈Ω

(X (x)− EPθ
[X ])

d

dθ
log (p(x ; θ)) p(x ; θ)

= EPθ

[
(X − EPθ

[X ])
d

dθ
log (p(θ))

]
=

〈(
X − Ep(θ) [X ]

)
,
d

dθ
log (p(θ))

〉
p(θ)

• Dpθ = d
dθ log pθ is the score|velocity of the curve θ 7→ pθ

• C. Radhakrishna Rao. Information and the accuracy attainable in the estimation of statistical parameters.
Bull. Calcutta Math. Soc., 37:81–91, 1945



Amari’s gradient

• Let f (p) = f (p(x) : x ∈ Ω) be a smooth function on the open
simplex of densities ∆◦(Ω).

d

dθ
f (pθ) =

∑
x∈Ω

∂

∂p(x)
f (p(x ; θ) : x ∈ Ω)

d

dθ
p(x ; θ)

=
∑
x∈Ω

∂

∂p(x)
f (p(x ; θ) : x ∈ Ω)

d
dθp(x ; θ)

p(x ; θ)
p(x ; θ)

=

〈
∇f (p(θ)),

d

dθ
log pθ

〉
p(θ)

= 〈∇f (p(θ))− EPθ
[∇f (pθ)] ,Dpθ〉p(θ)

• The natural|statistical gradient is

grad f (p) = ∇f (p)− Ep [∇f (p)]

S.-I. Amari. Natural gradient works efficiently in learning. Neural Computation, 10(2):251–276, feb 1998



Statistical bundle

1.

Bp =

{
U : Ω→ R

∣∣∣∣∣Ep [U] =
∑
x∈Ω

U(x) p(x) = 0

}
, p ∈ ∆◦(Ω)

2.
〈U,V 〉p = Ep [UV ] =

∑
x∈Ω

U(x)V (x) p(x) metric

3.
S∆◦(Ω) = {(p,U)|p ∈ ∆◦(Ω),U ∈ Bp} .

4. A vector field|estimating function F of the statistical bundle is a
section of the bundle i.e.,

F : ∆◦(Ω) 3 p 7→ (p,F (p)) ∈ T∆◦(Ω)

• G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5–36. Springer, Heidelberg,
2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings.



Why the statistical bundle?

• The notion of statistical bundle appears as a natural set up for IG,
where the notions of score and statistical gradient do not require
any parameterization nor chart to be defined.

• The setup based on the full simplex ∆(Ω) is of interest in
applications to data analysis. Methods based on the simplex lead
naturally to the treatment of the infinite sample space case in cases
where no natural parametric model is available.

• There are special affine atlases such that the tangent space
identifies with the statistical bundle.

• The construction extends to the affine space generated by the
simplex, see the paper [1].

• In the statistical bundle there is a natural treatment of differential
equations e.g., gradient flow.

1. L. Schwachhöfer, N. Ay, J. Jost, and H. V. Lê. Parametrized measure models. Bernoulli, 2017.
Forthcoming paper



Regular curve
Theorem

1. Let I 3 t 7→ p(t) be a C 1 curve in ∆◦(Ω).

d

dt
Ep(t) [f ] =

〈
f − Ep(t) [f ] ,Dp(t)

〉
p(t)

, Dp(t) =
d

dt
log (p(t))

2. Let I 3 t 7→ η(t) be a C 1 curve in A1(Ω) such that η(t) ∈ ∆(Ω) for
all t. For all x ∈ Ω, η(x ; t) = 0 implies d

dt η(x ; t) = 0.

d

dt
Eη(t) [f ] =

〈
f − Eη(t) [f ] ,Dη(t)

〉
η(t)

Dη(x ; t) =
d

dt
log |η(x ; t)| if η(x ; t) 6= 0, otherwise 0.

3. Let I 3 t 7→ η(t) be a C 1 curve in A1(Ω) and assume that
η(x ; t) = 0 implies d

dt η(x ; t) = 0. Hence, for each f : ∆(Ω)→ R,

d

dt
Eη(t) [f ] =

〈
f − Eη(t) [f ] ,Dη(t)

〉
η(t)



Statistical gradient

Definition

1. Given a function f : ∆◦(Ω)→ R, its statistical gradient is a vector
field ∆◦(Ω) 3 p 7→ (p, gradF (p)) ∈ S∆◦(Ω) such that for each
regular curve I 3 t 7→ p(t) it holds

d

dt
f (p(t)) = 〈grad f (p(t)),Dp(t)〉p(t) , t ∈ I .

2. Given a function f : A1(Ω)→ R, its statistical gradient is a vector
field A1(Ω) 3 η 7→ (η, grad f (η)) ∈ TA1(Ω) such that for each curve
t 7→ η(t) with a score Dp, it holds

d

dt
f (η(t)) = 〈grad f (η(t)),Dη(t)〉η(t)



Computing grad

1. If f is a C 1 function on an open subset of RΩ containing ∆◦(Ω), by
writing ∇f (p) : Ω 3 x 7→ ∂

∂p(x) f (p), we have the following relation

between the statistical gradient and the ordinary gradient:

grad f (p) = ∇f (p)− Ep [∇f (p)] .

2. If f is a C 1 function on an open subset of RΩ containing A1(Ω), we
have:

grad f (η) = ∇f (η)− Eη [∇f (η)] .



Differential equations

Definition (Flow)

1. Given a vector field F : ∆◦(Ω) or F : A1(Ω), the trajectories along
the vector field are the solution of the (statistical) differential
equation

D

dt
p(t) = F (p(t)) .

2. A flow of the vector field F is a mapping
S : ∆◦(Ω)× R>0 3 (p, t) 7→ S(p, t) ∈ ∆◦(Ω), respectively
S : A1(Ω)× R>0 3 (p, t) 7→ S(p, t) ∈ A1(Ω), such that S(p, 0) = p
and t 7→ S(p, t) is a trajectory along F .

3. Given f : ∆◦(Ω)→ R, or f : A1(Ω)→ R, with statistical gradient
p 7→ (p, grad f (p)) ∈ S∆◦(Ω), respectively
η 7→ (η, grad f (p)) ∈ SA1(Ω), a solution of the statistical gradient
flow equation, starting at p0 ∈ ∆◦(Ω), respectively η0 ∈ A1(Ω), at
time t0, is a trajectory of the field − grad f starting at p0,
respectively η0.



Polarization measure

POL: ∆n 3 p 7→ 1− 4
n∑

x=0

(
1

2
− p(x)

)2

p(x) = 4
n∑

x=0

p(x)2(1− p(x)) .

• M. Reynal-Querol. Ethnicity, political systems and civil war. Journal of Conflict Resolution, 46(1):29–54,
February 2002

• G. Pistone and M. Rogantin. The gradient flow of the polarization measure. with an appendix.
arXiv:1502.06718, 2015



Polarization gradient flow

ṗ(x ; t) = p(x ; t)

8p(x ; t)− 12p(x ; t)2 − 8
∑
y∈Ω

p(y ; t)2 + 12
∑
y∈Ω

p(y ; t)3



● ●

●

● ●

●

• L. Malagò and G. Pistone. Natural gradient flow in the mixture geometry of a discrete exponential family.
Entropy, 17(6):4215–4254, 2015



PART II

1. Gaussian model

2. Fisher-Rao Riemannian manifold

3. Exponential manifold



Gaussian model

• A random variable Y with values in Rd has distribution N (µ,Σ) if
Z = (Z1, . . . ,Zd) is IID N (0, 1) and X = µ + AZ with A ∈ M(d)
and AA∗ = Σ ∈ Sym+ (d). Notice the state-space definition.

• We can take for example A = Σ1/2 or any A = Σ1/2R∗ with
R∗R = I .

• If X ∼ N (0,ΣX ), then Y = TX ∼ N (0,TΣXT
∗), T ∈ M(d).

• If X ∼ N (0,ΣX ) and Y ∼ N (0,ΣY ), then Y ∼ TX with

T = Σ
1/2
Y

(
Σ

1/2
Y ΣXΣ

1/2
Y

)−1/2

Σ
1/2
Y

• If Σ ∈ Sym++ (d) = Sym+ (d) ∩ Gl(d) then N (0,Σ) has density

p(x ; Σ) = (2π)−d/2 det (Σ)−1/2 exp

(
−1

2
x∗Σ−1x

)



Fisher-Rao Riemannian manifold I
• The Gaussian model N (0,Σ), Σ ∈ Sym++ (d) is parameterized

either by the covariance Σ ∈ Sym++ (d) or by the concentration
C = Σ−1 ∈ Sym++ (d).

• The vector space of symmetric matrices Sym (d) has the scalar
product (A,B) 7→ 〈A,B〉2 = 1

2 Tr (AB) and Sym++ (d) is an open
cone. The log-likelihood in the concentration C is

`(x ;C ) = log

(
(2π)−d/2 det (C )1/2 exp

(
−1

2
x∗Cx

))
= −d

2
log (2π) +

1

2
log detC − 1

2
Tr (Cxx∗)

= −d

2
log (2π) +

1

2
log detC − 〈C , xx∗〉2

• Fisher’s score in the direction V ∈ Sym (d) is the directional
derivative d(C 7→ `(x ;C ))[V ] = d

dt `(x ;C + tV )
∣∣
t=0

• J. R. Magnus and H. Neudecker. Matrix differential calculus with applications in statistics and
econometrics. Wiley Series in Probability and Statistics. John Wiley & Sons, Ltd., Chichester, 1999.
Revised reprint of the 1988 original, §8.3



Fisher-Rao Riemannian manifold II

• As d
(
C 7→ 1

2 log detC
)

[V ] = 1
2 Tr

(
C−1V

)
=
〈
C−1,V

〉
2
, the

Fisher’s score is

S(x ;C )[V ] = d(C 7→ `(x ;C ))[V ] =〈
C−1,V

〉
2
− 〈V , xx∗〉2 =

〈
C−1 − xx∗,V

〉
2

• Notice that EΣ

[
C−1 − XX ∗

]
= C−1 − Σ = 0

• The covariance of the Fisher’s score in the directions V and W is
equal to minus (the expected value of) the second derivative. As
d(C 7→ C−1)[W ] = −C−1WC−1

CovC−1 (S(x ;C )[V ],S(x ;C )[W ]) = −d2`(x ;C )[V ,W ] =〈
C−1WC−1,V

〉
2

=
1

2
Tr
(
C−1WC−1V

)
• T. W. Anderson. An introduction to multivariate statistical analysis. Wiley Series in Probability and

Statistics. Wiley-Interscience [John Wiley & Sons], Hoboken, NJ, third edition, 2003



Fisher-Rao Riemannian manifold III
• If we make the same computation with respect to the parameter Σ,

because of the special properties of C 7→ Σ, we get the same result:

CovΣ (S(x ; Σ)[V ],S(x ; Σ)[W ]) =
1

2
Tr
(
Σ−1WΣ−1V

)
• As Sym++ (d) is an open subset of the Hilbert space Sym (d), then

Sym++ (d) is (trivially) a manifold. The velocity t 7→ DΣ(t) of a
curve t 7→ Σ(t) is expressed as the ordinary derivative t 7→ Σ̇(t).

• The tangent space of Sym++ (d) is Sym (d). In fact, a smooth
curve t 7→ Σ(t) ∈ Sym++ (d) has velocity Σ̇(t) ∈ Sym (d), and,
given any Σ ∈ Sym++ (d) and V ∈ Sym (d), the curve
Σ(t) = Σ1/2 exp

(
tΣ−1/2VΣ−1/2

)
Σ1/2 has Σ(0) = Σ and

Σ̇(0) = V .

• Each tangent space TΣ Sym++ (d) = Sym (d) has a scalar product

FΣ(U,V ) =
1

2
Tr
(
Σ−1WΣ−1V

)
, V ,W ∈ TΣ Sym++ (d)

• The metric (family of scalar products) F =
{
FΣ

∣∣Σ ∈ Sym++ (d)
}

defines the Fisher-Rao Riemannian manifold



Fisher-Rao Riemannian manifold IV

• In the Fisher-Rao Riemannian manifold (Sym++ (d) ,F ) the length
of the curve [0, 1] 3 t 7→ Σ(t) is∫ 1

0

dt
√
FΣ(t)(Σ̇(t), Σ̇(t))

• The Fisher-Rao distance between Σ1 and Σ2 is the minimal length
of a curve connecting the two points. The value of the distance is

F (Σ1,Σ2) =

√
1

2
Tr
(

log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

))
• The geodesics from Σ1 to Σ2 is

γ : t 7→ Σ
1/2
1

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)t
Σ

1/2
1

• R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2007, §6.1



Fisher-Rao Riemannian manifold V
• The velocity of the geodesics is

γ̇ : t 7→ Σ
1/2
1

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)t
log
(

Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1

From that, one checks that the norm of the velocity is constant and
equal to the distance.

• The velocity at t = 0 is

γ̇(0) = Σ
1/2
1 log

(
Σ
−1/2
1 Σ2Σ

−1/2
1

)
Σ

1/2
1

and the equation can be solved for the final point Σ2 = γ(1),

Σ2 = Σ
1/2
1 exp

(
Σ
−1/2
1 γ̇(0)Σ

−1/2
1

)
Σ

1/2
1

so that the geodesics is expressed in terms of the initial point Σ and
the initial velocity V by the Riemannian exponential

ExpΣ (tV ) = Σ1/2 exp
(

Σ−1/2(tV )Σ−1/2
)

Σ1/2



Exponential manifold I

• An affine manifold is defined by an atlas of charts such that all
change-of-charts mappings are affine mappings. Exponential
families are affine manifolds if one takes as charts the centered
log-likelihood.

• We study the full Gaussian model parameterized by the
concentration matrix C = Σ−1 ∈ Sym++ (d) as an affine manifold.

• The charts in the exponential atlas
{
sA
∣∣A ∈ Sym++ (d)

}
are the

centered log-likelihoods defined by

sA(C ) = (`C − `A)− EA [`C − `A]

= 〈A− C ,XX ∗〉2 −
〈
A− C ,A−1

〉
2

• S. Amari and H. Nagaoka. Methods of information geometry. American Mathematical Society, Providence,
RI, 2000. Translated from the 1993 Japanese original by Daishi Harada, Ch. 2–3

• G. Pistone and C. Sempi. An infinite-dimensional geometric structure on the space of all the probability
measures equivalent to a given one. Ann. Statist., 23(5):1543–1561, October 1995

• G. Pistone. Nonparametric information geometry. In F. Nielsen and F. Barbaresco, editors, Geometric
science of information, volume 8085 of Lecture Notes in Comput. Sci., pages 5–36. Springer, Heidelberg,
2013. First International Conference, GSI 2013 Paris, France, August 28-30, 2013 Proceedings



Exponential manifold II
• We use the scalar product defined on Sym (d) by
〈A,B〉2 = 1

2 Tr (AB), and write X ⊗ X = XX ∗. The chart at A is

sA(C )) =
〈
A− C ,X ⊗ X − A−1

〉
2

• The image of each sA is a set of second order polynomials of the
type

1

2

d∑
i,j=1

(aij − cij)(xixj − aij), A−1 = [aij ]di,j=1 ,

that is, a second order symmetric polynomial of order 2, without
first order terms, with zero expected value at N

(
0,A−1

)
. And

vice-versa.

• For each A ∈ Sym++ (d) the vector space of such polynomials is the
model space for the affine manifold in the chart sA. Such a space is
an expression of the tangent space at A if the velocity DC (0) of the
curve t 7→ C (t), C (0) = A, is computed as

DC (0) =
d

dt
sC(0)(C (t))

∣∣∣∣
t=0

=
〈
Ċ (0),C−1(0)− X ⊗ X

〉
2



Exponential manifold III
• Define the score space at A to be the vector space generated by the

image of sA, namely

SA Sym++ (d) =
{〈

V , x ⊗ x − A−1
〉

2

∣∣V ∈ Sym (d)
}

• The image of the chart sA in this vector space is characterized by a
V = A− C , C ∈ Sym++ (d).

• Each score space is a fiber of the score bundle S Sym++ (d).

• On each fiber SA Sym++ (d) we have the scalar product induced by
L2(N

(
0,A−1

)
, namely the Fisher information operator,

EA−1 [V (X )W (X )] = EA−1

[〈
V ,X ⊗ X − A−1

〉
2

〈
W ,X ⊗ X − A−1

〉
2

]
= FA(V ,W )

• The change-of-chart sB ◦ s−1
A : SA Sym++ (d)→ SB Sym++ (d) is

affine with linear part

eUB
A :
〈
V ,X ⊗ X − A−1

〉
2
7→
〈
V ,X ⊗ X − B−1

〉
2



Exponential manifold IV

• Note that the exponential transport eUB
A is the identity on the

parameter V and it coincides with the centering of a random
variable.

• The mixture transport is the dual mUA
B = (eUB

A)∗, hence for each
W ∈ Sym (d),

FB(eUB
AV ,W ) = FA(V ,mUA

BW )

• We have

mUA
B

〈
W ,X ⊗ X − B−1

〉
2

=〈
AB−1WB−1A,X ⊗ X − A−1

〉
2

=〈
B−1WB−1, (AX )⊗ (AX )− A−1

〉
2
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2. Regression
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5. Gaussian regression: comments



Conditional independence

• Given 3 random variables X ,Y ,Z , we say that X and Y are
independent, given Z , if for all bounded f (X ) and ψ(Y ) we have

E [φ(X )ψ(Y )|Z ] = E [φ(X )|Z ]E [ψ(Y )|Z ] [Product Rule]

which in turn is equivalent to, for alla bounded φ(X )

E [ψ(Y )|X ,Z ] = E [ψ(Y )|Z ] [Sufficiency]

• If moreover the joint distribution of X ,Y has a density given Z of
the form p(x , y |z) with respect to a product measure on
(suppX )× (suppY ), then conditional independence is equivalent to

p(x , y |z) = p1(x |z)p2(y |z) [Factorization]

and to
p(y |x , z) = p(y |z) [Sufficiency]



Regression

• Consider now generic random variables X ,Y and assume
Z = f (X ; w), where w ∈ RN is a parameter. The σ-algebra
generated by X and f (X ; w) is equal to the σ-algebra generated by
f (X ; w), hence sufficiency holds,

E [ψ(Y )|X , f (X ; w)] = E [ψ(Y )|f (X ; w)]

and

E [φ(X )ψ(Y )|f (X ; w)] = E [φ(X )|f (X ; w)]E [ψ(Y )|f (X ; w)]

• R. Pascanu and Y. Bengio. Revisiting natural gradient for deep networks. v7, 2014

• S.-i. Amari. Information geometry and its applications, volume 194 of Applied Mathematical Sciences.
Springer, [Tokyo], 2016

• B. Efron and T. Hastie. Computer age statistical inference, volume 5 of Institute of Mathematical Statistics
(IMS) Monographs. Cambridge University Press, New York, 2016. Algorithms, evidence, and data science



Gaussian regression: the joint density

• For example, assume Y has real values and Y = f (X ; w) + N,
N ∼ N (0, 1), X and Y independent, w ∈ RN . Then the
distribution of Y given X = x is N (f (x ; w), 1), which depend on
f (x ; w). The joint distribution of X and Y is given by

E [φ(X )ψ(Y )] = E [φ(X )E [ψ(Y )|X ]] =

E
[
φ(X )

∫
1√
2π
ψ(y)e−

1
2 (y−f (x ;w))2

]
• The joint density (if any) of X and Y is

p(x , y ; w) = q(x)r(y |f (x ; w)) = q(x)

(
1√
2π

e−
1
2 (y−f (x ;w))2

)
• The log-density is

`(x , y ; w) = log (q(x))− 1

2
log (2π)− 1

2
(y − f (x ; w))2



Gaussian regression: the geometry

• Consider the statistical model
{
p(x , y ; w)

∣∣w ∈ RN
}

• The vector of scores is

∇(w 7→ `(x , y ; w)) = (y − f (x ; w))∇(w 7→ f (x ; w))

• The tangent space at w is the space of random variables

Tw = Span

(
(X − f (X ; w))

∂

∂wj
f (X ; w)

∣∣∣∣j = 1, . . . ,N

)
• The Fisher matrix is

I (w) = Ew
[
(Y − f (X ; w))2∇f (X ; w)∇f (X ; w)∗

]
=

Ew
[
Ew
[
(Y − f (X ; w))2

∣∣f (X ; w)
]
∇f (X ; w)∇f (X ; w)∗

]
=

E [∇f (X ; w)∇f (X ; w)∗]



Gaussian regression: comments

• Consider the case of the perceptron with input x = (x1, . . . , xN),
parameters w = (w0,w1, . . . ,wN) = (w0,w 1), activation function
S(u), and

f (x ; w) = S(w 1 · x − w0) ∇f (x ; w) = S ′(w 1 · x − w0)(−1, x)

• The Fisher information is

I (w) = E
[
S ′(w 1 · X − w0)2(−1,X )⊗ (−1,X )

]
=

E
[
S ′(w 1 · X − w0)2

[
1 X ∗

X XX ∗

]]



PART IV: Full Gaussian model

1. Riemannian metric

2. Riemannian gradient

3. Levi-Civita covariant derivative

4. Acceleration

5. Geodesics



Riemannian metric

• We parameterize the full Gaussian model N = {N (µ,Σ)} with
µ ∈ Rd and Σ ∈ Sym++ (d). The tangent space at (µ,Σ), is
Tµ,ΣN = Rd × Sym (d).

• For each couple (u,U), (v ,V ) ∈ Tµ,ΣN the scalar product of the
metric at (µ,Σ) splits:

〈(u,U), (v ,V )〉µ,Σ = 〈u, v〉µ,Σ + 〈U,V 〉µ,Σ

with

〈u, v〉µ,Σ = u∗Σ−1v = Tr
(
Σ−1vu∗

)
〈U,V 〉µ,Σ =

1

2
Tr
(
UΣ−1VΣ−1

)
• L. T. Skovgaard. A Riemannian geometry of the multivariate normal model. Scand. J. Statist.,

11(4):211–223, 1984



Riemannian gradient
Given a smooth function N 3 (µ,Σ) 7→ f (µ,Σ) ∈ R and a smooth curve
t 7→ (µ(t),Σ(t)) ∈ N ,

d

dt
f (µ(t),Σ(t))

= µ̇(t)∗∇1f (µ(t),Σ(t)) + Tr
(
∇2f (µ(t),Σ(t))Σ̇(t)

)
= µ̇(t)∗Σ(t)−1(Σ(t)∇1f (µ(t),Σ(t))) +

1

2
Tr
(

Σ(t)−1(2Σ(t)∇2f (µ(t),Σ(t))Σ(t))Σ(t)−1Σ̇(t)
)

=

〈
(Σ(t)∇1f (µ(t),Σ(t)), 2Σ(t)∇2f (µ(t),Σ(t))),

d

dt
(µ(t),Σ(t))

〉
µ(t),Σ(t)

• The Riemannian gradient is

grad f (µ,Σ) = (Σ∇1f (µ,Σ), 2Σ∇2f (µ,Σ)Σ)

• For example, f (µ,Σ) = Eµ,Σ [f (X )] = E0,I

[
f (Σ−1/2(X − µ))

]
.



Levi-Civita covariant derivative I
• Given a smooth curve γ : t 7→ (µ(t),Σ(t)) ∈ N and smooth vector

fields on the curve t 7→ X (t) = (u(t),U(t)) and
t 7→ Y (t) = (v(t),V (t)), we have

d

dt
〈X (t),Y (t)〉γ(t) =

d

dt

(
〈u(t), v(t)〉γ(t) + 〈U(t),V (t)〉γ(t)

)
=

d

dt
v(t)∗Σ−1(t)u(t) +

1

2

d

dt
Tr
(
U(t)Σ−1(t)V (t)Σ−1(t)

)
• The first term is

d

dt
v(t)∗Σ−1(t)u(t) =

v̇(t)∗Σ−1(t)u(t)+v(t)∗Σ−1(t)u̇(t)−v(t)∗Σ−1(t)Σ̇(t)Σ−1(t)u(t) =

〈u(t), v̇(t)〉µ(t),Σ(t) + 〈u̇(t), v(t)〉µ(t),Σ(t) +〈
u(t),−1

2
Σ̇(t)Σ−1(t)v(t)

〉
µ(t),Σ(t)

+〈
−1

2
Σ̇(t)Σ−1(t)u(t), v(t)

〉
µ(t),Σ(t)



Levi-Civita covariant derivative II

• We define the first component of the covariant derivative to be

D

dt
w(t) = ẇ(t)− 1

2
Σ̇(t)Σ−1(t)w(t)

because

d

dt
〈u(t), v(t)〉µ(t),Σ(t) =〈

u(t),
D

dt
v(t)

〉
µ(t),Σ(t)

+

〈
D

dt
u(t), v(t)

〉
µ(t),Σ(t)

• If w(t) = µ̇(t), then the first component of the acceleration of the
curve is

D

dt

d

dt
µ(t) = µ̈(t)− 1

2
Σ̇(t)Σ−1(t)µ̇(t)



Levi-Civita covariant derivative III

• The derivative of the second term in the splitting is

1

2

d

dt
Tr
(
U(t)Σ−1(t)V (t)Σ−1(t)

)
=

1

2
Tr

(
d

dt

(
U(t)Σ−1(t)

)
V (t)Σ−1(t)

)
+

1

2
Tr

(
U(t)Σ−1(t)

d

dt

(
V (t)Σ−1(t)

))
=

1

2
Tr
((

U̇(t)Σ−1(t)− U(t)Σ−1(t)Σ̇(t)Σ−1(t)
)
V (t)Σ−1(t)

)
+

1

2
Tr
(
U(t)Σ−1(t)

(
V̇ (t)Σ−1(t)− V (t)Σ−1(t)Σ̇(t)Σ−1(t)

))
=

1

2
Tr
((

U̇(t)− U(t)Σ−1(t)Σ̇(t)
)

Σ−1(t)V (t)Σ−1(t)
)

+

1

2
Tr
(
U(t)Σ−1(t)

(
V̇ (t)− V (t)Σ−1(t)Σ̇(t)

)
Σ−1(t)

)



Levi-Civita covariant derivative IV

• A similar expression is obtained from

1

2

d

dt
Tr
(
Σ−1(t)U(t)Σ−1(t)V (t)

)
so that we can define the second component of the covariant
derivative to be

D

dt
W (t) = Ẇ (t)− 1

2

(
W (t)Σ−1(t)Σ̇(t) + Σ̇(t)Σ−1(t)W (t)

)
• If W (t) = Σ̇(t), the second component of the acceleration is

D

dt

d

dt
Σ(t) = Σ̈(t)− Σ̇(t)Σ−1(t)Σ̇(t)



Acceleration

• The acceleration of the curve t 7→ γ(t) = (µ(t),Σ(t)) has two
components,

D

dt

d

dt
γ(t) =

(
D

dt

d

dt
µ(t),

D

dt

d

dt
Σ(t)

)
given by

D

dt

d

dt
µ(t) = µ̈(t)− 1

2
Σ̇(t)Σ−1(t)µ̇(t)

D

dt

d

dt
Σ(t) = Σ̈(t)− Σ̇(t)Σ−1(t)Σ̇(t)



Geodesics I

• Given A,B ∈ Sym++ (d), the curve

[0, 1] 3 t 7→ Σ(t) = A1/2(A−1/2BA−1/2)tA1/2

is known to be the geodesics for the manifold on Sym++ (d) with
µ = 0.

• We have
Σ−1(t) = A−1/2(A−1/2BA−1/2)−tA−1/2

and

Σ̇(t) = A1/2 log
(
A−1/2BA−1/2

)
(A−1/2BA−1/2)tA1/2 =

A1/2(A−1/2BA−1/2)t log
(
A−1/2BA−1/2

)
A1/2

• R. Bhatia. Positive definite matrices. Princeton Series in Applied Mathematics. Princeton University Press,
Princeton, NJ, 2007



Geodesics II

• We have

Σ̇(t)Σ−1(t)Σ̇(t) =

A1/2 log
(
A−1/2BA−1/2

)
(A−1/2BA−1/2)tA1/2×

A−1/2(A−1/2BA−1/2)−tA−1/2×

A1/2(A−1/2BA−1/2)t log
(
A−1/2BA−1/2

)
A1/2 =

A1/2 log
(
A−1/2BA−1/2

)
(A−1/2BA−1/2)t log

(
A−1/2BA−1/2

)
A1/2

• We have

Σ̈(t) =
d

dt
A1/2 log

(
A−1/2BA−1/2

)
(A−1/2BA−1/2)tA1/2 =

A1/2 log
(
A−1/2BA−1/2

)
(A−1/2BA−1/2)t log

(
A−1/2BA−1/2

)
A1/2



Geodesics III

• We have found that Σ(t) = A1/2(A−1/2BA−1/2)tA1/2 solves the
equation D

dt
d
dt Σ(t) = 0. Let us consider the equation D

dt
d
dtµ(t) = 0.

• We have

1

2
Σ̇(t)Σ−1(t)µ̇(t) =

1

2

(
A1/2 log

(
A−1/2BA−1/2

)
(A−1/2BA−1/2)tA1/2

)
×(

A−1/2(A−1/2BA−1/2)−tA−1/2
)
µ̇(t) =

1

2
A1/2 log

(
A−1/2BA−1/2

)
A−1/2µ̇(t)

• Notice that A = Σ(0) and A1/2 log
(
A−1/2BA−1/2

)
A1/2 = Σ̇(0),

hence the equation becomes

0 =
D

dt

d

dt
µ(t) = µ̈(t)− 1

2
Σ̇(0)Σ−1(0)µ̇(t)


