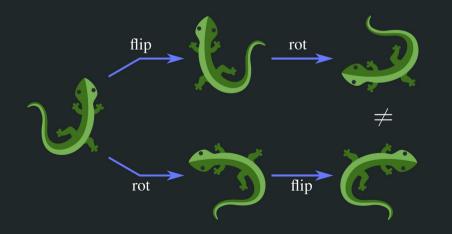
Groups, Representations & Equivariant maps

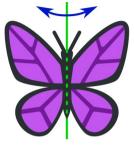
First Italian School in Geometric Deep Learning

Maurice Weiler AMLab, QUVA Lab University of Amsterdam

🥑 @maurice_weiler

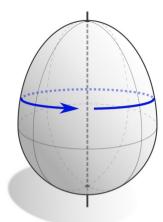


symmetry **groups** = "sets" of transformtions leaving an object invariant



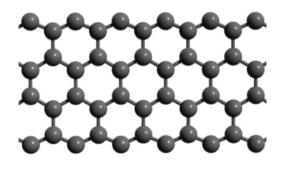
reflection symmetry

trivial symmetry

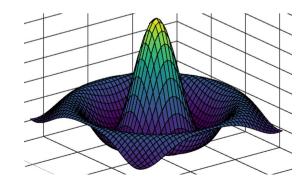


isometries of manifolds

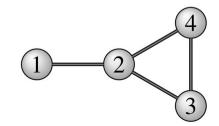
discrete translations of crystal lattice

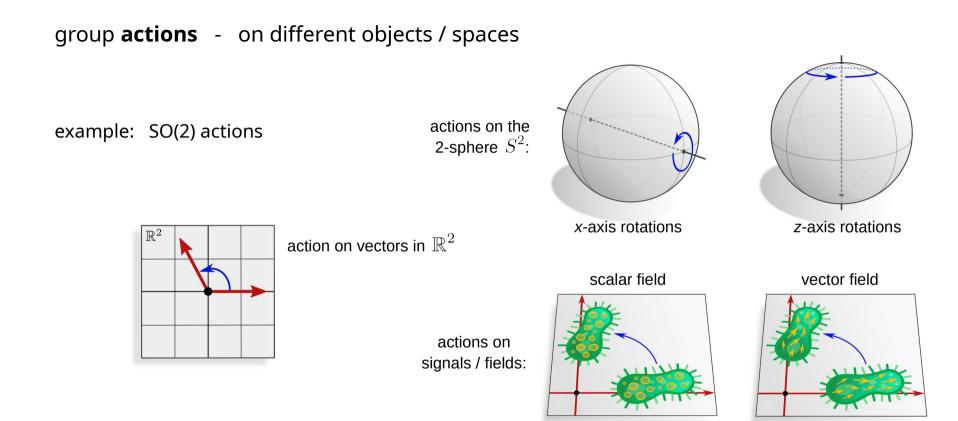


rotationally symmetric potential



graph authomorphisms



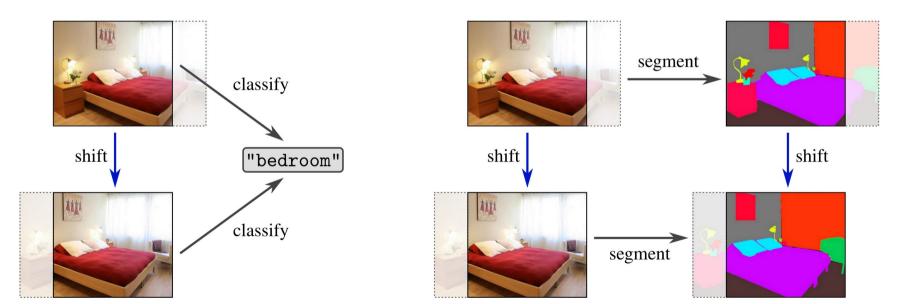


group **representations** - *linear* actions on *vector spaces* (e.g. feature vector spaces)

group invariant & equivariant functions

invariant image classification

equivariant image segmentation



Outline

Symmetry groups - basic definitions

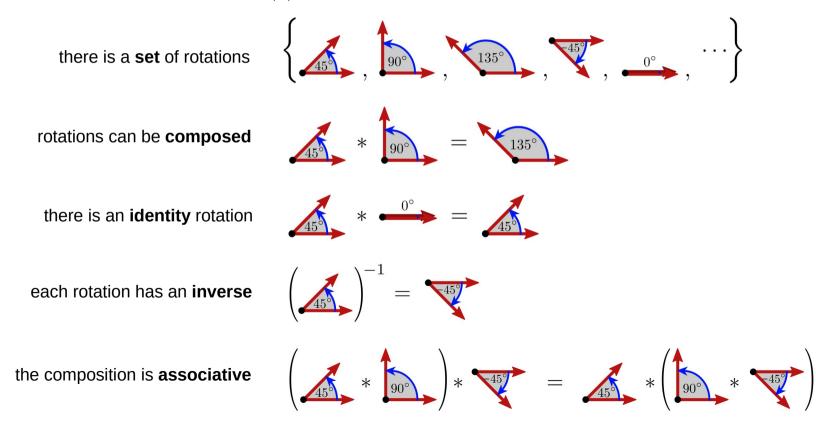
Group actions

Invariant & equivariant maps

Group representations

Symmetry groups

example: 2d rotation group SO(2)



Definition B.1 (Group). A group is a tuple (G, \cdot) , consisting of a set G and a binary operation $\cdot: G \times G \to G, \quad (g, h) \mapsto g \cdot h$

satisfying the following three group axioms:

associativity: for all $g, h, k \in G$ one has $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ identity element: $\exists e \in G$ such that $\forall g \in G$ one has $e \cdot g = g = g \cdot e$ inverse element: $\forall g \in G \ \exists g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$

examples: translation group : $(\mathbb{R}^d, +)$

unitary group : $U(1) := \left\{ e^{i\phi} \mid \phi \in [0, 2\pi) \right\}$ general linear group : $GL(d) := \left\{ g \in \mathbb{R}^{d \times d} \mid \det(g) \neq 0 \right\}$ trivial group : $\{e\}$

check closure + group axioms ! **Definition B.1 (Group).** A group is a tuple (G, \cdot) , consisting of a set G and a binary operation $\cdot: G \times G \to G, \quad (g, h) \mapsto g \cdot h$

satisfying the following three group axioms:

associativity: for all $g, h, k \in G$ one has $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ identity element: $\exists e \in G$ such that $\forall g \in G$ one has $e \cdot g = g = g \cdot e$ inverse element: $\forall g \in G \ \exists g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$

counter examples:

couter example 1:
$$\{e^{i\phi} \mid \phi \in [0, \pi)\}$$
(closure)couter example 2: $\{g \in \mathbb{R}^{d \times d} \mid \det(g) = 2\}$ (closure)couter example 3: $\{g \in \mathbb{R}^{d \times d}\}$ (inverse)

Definition B.1 (Group). A group is a tuple (G, \cdot) , consisting of a set G and a binary operation $\cdot: G \times G \to G, \quad (g, h) \mapsto g \cdot h$

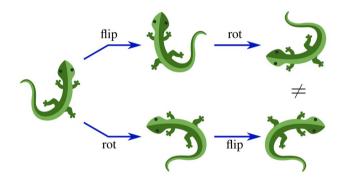
satisfying the following three group axioms:

associativity: for all $g, h, k \in G$ one has $(g \cdot h) \cdot k = g \cdot (h \cdot k)$ identity element: $\exists e \in G$ such that $\forall g \in G$ one has $e \cdot g = g = g \cdot e$ inverse element: $\forall g \in G \ \exists g^{-1} \in G$ such that $g \cdot g^{-1} = e = g^{-1} \cdot g$

groups may come with additional structure:

group category	structure on G	binary operation
topological group	topology	continuous map
Lie group	smooth manifold	smooth map
finite group	finite set	any function (between finite sets)

groups elements do in general *not* commute: $gh \neq hg$



groups with commutative elements are called Abelian:

Definition B.2 (Abelian group). A group is called abelian if all of its elements commute, i.e. if:

$$gh = hg \quad \forall g, h \in G$$

z-axis rotations

subsets of group elements may form a subgroup:

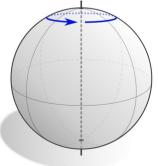
Definition A.1 (Subgroup). A subset $H \subseteq G$ of a group G forms a subgroup if it is closed under composition and taking inverses:

composition: for all $g, h \in H$ one has $gh \in H$

inversion: for all $g \in H$ one has $g^{-1} \in H$

As the name suggests, subgroups are themselves groups, that is, they satisfy the three group axioms. One writes $H \leq G$.

examples:discrete translations: $(\mathbb{Z}^d, +) \leq (\mathbb{R}^d, +)$ rotations around fixed axis: $SO(2) \leq SO(3)$ trivial examples: $\{e\} \leq G, \quad G \leq G$



z-axis rotations

subsets of group elements may form a subgroup:

Definition A.1 (Subgroup). A subset $H \subseteq G$ of a group G forms a subgroup if it is closed under composition and taking inverses:

composition: for all $g, h \in H$ one has $gh \in H$

inversion: for all $g \in H$ one has $g^{-1} \in H$

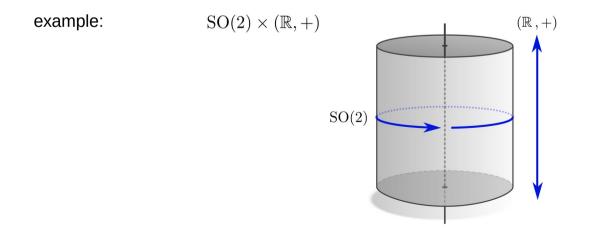
As the name suggests, subgroups are themselves groups, that is, they satisfy the three group axioms. One writes $H \leq G$.

counter examples: $\{ e^{i\phi} \mid \phi \in [0,\pi) \} \not\leq U(1)$ (closure + inverse violated) $(\mathbb{R}_{>0},+) \not\leq (\mathbb{R},+)$ (inverse violated) there are different product operations to combine groups into a supergroup

Definition A.5 (Direct product of groups). Let (H, \cdot) and (K, \star) be arbitrary groups. Their (outer) direct product $(H, \cdot) \times (K, \star)$ is defined on the Cartesian product $H \times K$ of the underlying sets, equipped with the binary operation

 $H \times K \to H \times K, \quad \left((\tilde{h}, \tilde{k}), (h, k) \right) \mapsto \left(\tilde{h} \cdot h, \ \tilde{k} \star k \right)$

which composes the elements of the factors H and K independently from each other.

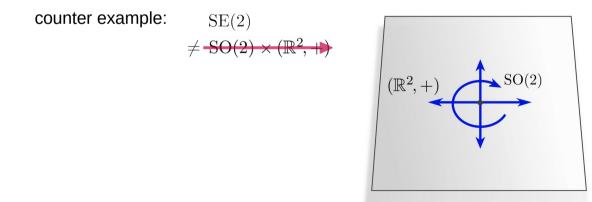


there are different product operations to combine groups into a supergroup

Definition A.5 (Direct product of groups). Let (H, \cdot) and (K, \star) be arbitrary groups. Their (outer) direct product $(H, \cdot) \times (K, \star)$ is defined on the Cartesian product $H \times K$ of the underlying sets, equipped with the binary operation

 $H \times K \to H \times K, \quad \left((\tilde{h}, \tilde{k}), (h, k) \right) \mapsto \left(\tilde{h} \cdot h, \ \tilde{k} \star k \right)$

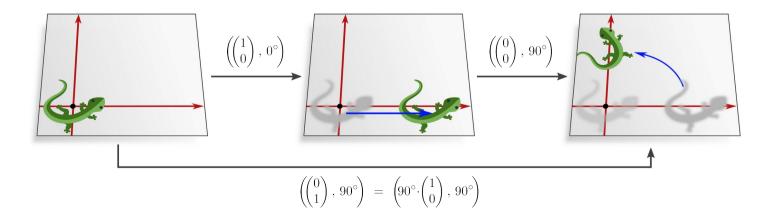
which composes the elements of the factors H and K independently from each other.



there are different **product** operations to combine groups into a supergroup

Idea: In a *semidirect product* $H \rtimes K$, the group K acts on H.

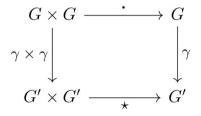
example: special Euclidean group $SE(2) := (\mathbb{R}^2, +) \rtimes SO(2)$ $\neq (\mathbb{R}^2, +) \times SO(2)$



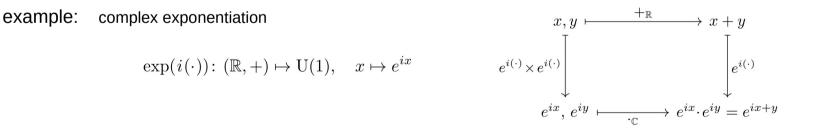
Group homomorphisms & isomorphisms

group homomorphisms are structure preserving maps between groups

Definition A.2 (Group homomorphism). A group homomorphism between groups (G, \cdot) and (G', \star) is a map $\gamma : G \to G'$ such that $\gamma(g \cdot h) = \gamma(g) \star \gamma(h) \quad \forall g, h \in G.$



This implies generally that $\gamma(g^{-1}) = \gamma(g)^{-1}$ and that $g(e_G) = e_{G'}$.

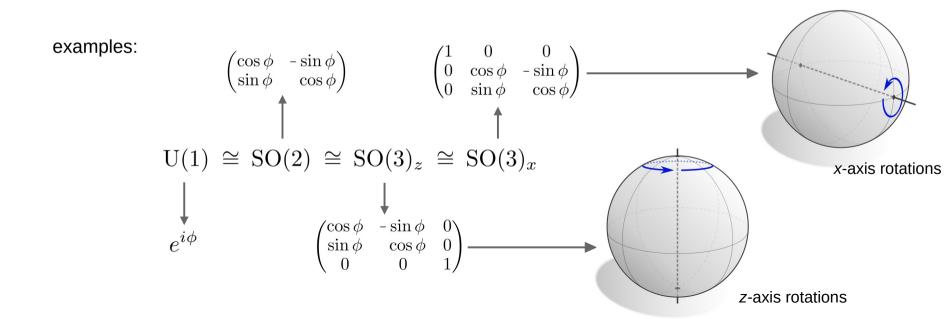


 \implies homomorphisms may lose information about the group \rightarrow isomorphisms

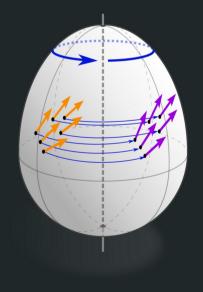
Group homomorphisms & isomorphisms

group isomorphisms identify equivalent groups

Definition A.4 (Group isomorphism). Group isomorphisms are invertible group homomorphisms. One writes $G \cong G'$ to state that G and G' are isomorphic.



Group actions

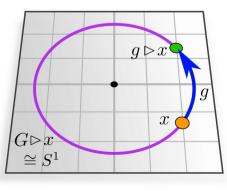


groups can act on other objects:

Definition A.2 (Group action). Let G be a group and X be a set. A (left) group action is a map $\triangleright : G \times X \to X, \quad (g, x) \mapsto g \triangleright x$ that is compatible with the group composition and identity element:

> associativity: $(gh) \triangleright x = g \triangleright (h \triangleright x)$ for any $g, h \in G, x \in X$ identity: $e \triangleright x = x$ for any $x \in X$

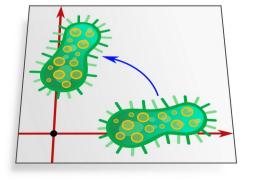
example: SO(2)-action on \mathbb{R}^2



groups can act on other objects:

Definition A.2 (Group action). Let G be a group and X be a set. A (left) group action is a map $\rhd : G \times X \to X, \quad (g, x) \mapsto g \rhd x$ that is compatible with the group composition and identity element: associativity: $(gh) \rhd x = g \rhd (h \rhd x)$ for any $g, h \in G, x \in X$ identity: $e \rhd x = x$ for any $x \in X$

example: SO(2)-action on scalar field



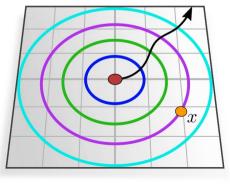
the action traces out an **orbit** in X:

Definition A.6 (Group orbit). Let \triangleright be an action of G on X and consider any element $x \in X$. The subset

$$G \triangleright x := \{g \triangleright x \mid g \in G\}$$

of X is then denoted as orbit of x.

example: SO(2)-action on \mathbb{R}^2

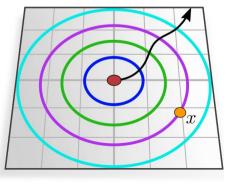


"being in the same orbit" defines an equivalence relation

reflexivity: $x \sim_{\triangleright} x$, that is, x is contained in its own orbit $G \triangleright x$ symmetry: $x \sim_{\triangleright} y \Leftrightarrow y \sim_{\triangleright} x$, that is, if x is contained in y's orbit, then y is contained in x's orbit transitivity: $x \sim_{\triangleright} y \wedge y \sim_{\triangleright} z \Rightarrow x \sim_{\triangleright} z$, that is, if x is contained in y's orbit and if y is contained in z's orbit, then x is contained in z's orbit

 \Rightarrow we can take a *quotient* w.r.t. this equivalence relation

example: SO(2)-action on \mathbb{R}^2



Group actions – quotient sets

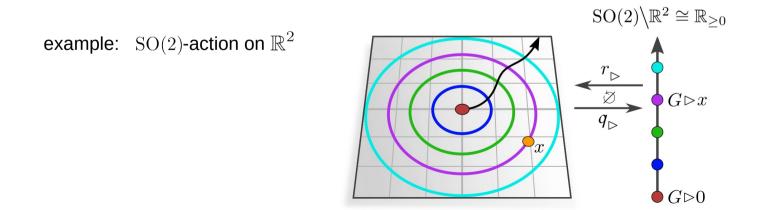
the **quotient set** is the set of all orbits

Definition A.7 (Quotient set and quotient map). The quotient set induced by a G-action \triangleright on X is the set of all orbits:

$$G \backslash X := \{ G \rhd x \mid x \in X \}$$

The corresponding quotient map collapses elements of X to their orbit:

 $q_{\rhd}:X\to G\backslash X,\ x\mapsto G\rhd x$

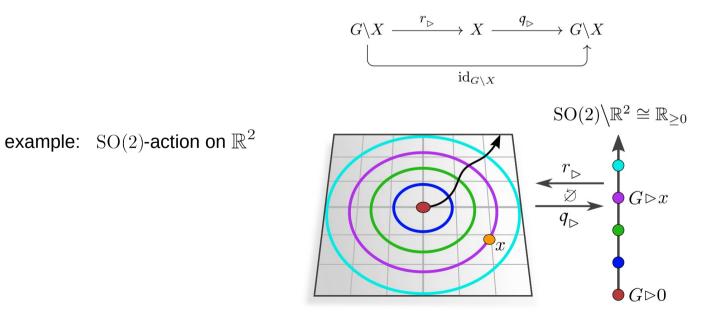


quotient maps are generally non-invertible, but one may choose orbit representatives

Definition A.8 (Orbit representative). Orbit representatives are specified by a map

 $r_{\rhd}:\;G\backslash X\to X\qquad \text{such that}\qquad q_{\rhd}\circ r_{\rhd}(G\rhd x)\,=\,G\rhd x\quad\forall\;G\rhd x\,\in\,G\backslash X\,,$

i.e. such that the following diagram commutes:



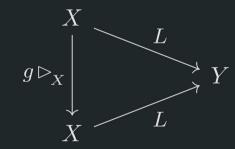
Transitivity, homogeneity & stabilizers

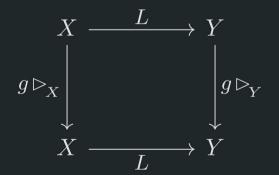
Definition A.12 (Transitive action / homogeneous space). $A \ G$ -action \triangleright on a space X is called transitive iff it satisfies $\forall x, y \in X \exists g \in G \text{such that} y = g \triangleright x .$	A General Theory of Equivariant CNNs on Homogeneous Spaces		
X is then called a homogeneous space.			
Definition A.13 (Stabilizer subgroup). Let \triangleright be a <i>G</i> -action on a set <i>X</i> . The stabilizer subgroup of some element $x \in X$ is defined as:	Taco S. Cohen Qualcomm AI Research* Qualcomm Technologies Netherlands B.V. tacos@qti.qualcomm.com	Mario Geiger PCSL Research Group EPFL mario.geiger@epfl.ch	Maurice We QUVA Lat U. of Amsterd m.weiler@uva
Stab _x := $\{g \in G \mid g \triangleright x = x\} \leq G$			

Maurice Weiler QUVA Lab U. of Amsterdam m.weiler@uva.nl

..... $(\mathbb{R}^2,+)$ SO(2)SO(2)SO(3)SO(2)reflections group transitive \checkmark Х Х Х Х \checkmark $\{e\}$, reflections $\{e\}$ stabilizers $\{e\}$, SO(2) $\{e\}$ SO(2) $\{e\}$, SO(2)

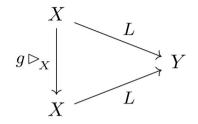
Invariant & Equivariant maps





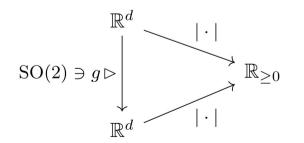
Definition A.9 (Invariant map). Let \triangleright_X be a group action on a set X. A function $L: X \to Y$ is called G-invariant, iff it satisfies

 $L(g \rhd_X x) \ = \ L(x) \qquad \forall \ g \in G, \ x \in X \, .$



example:

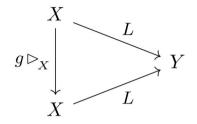
rotation invariant vector norm



since $|g \triangleright v| = |v|$ for $g \in SO(2)$

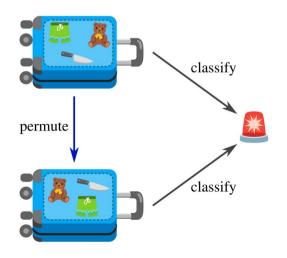
Definition A.9 (Invariant map). Let \triangleright_X be a group action on a set X. A function $L: X \to Y$ is called G-invariant, iff it satisfies

 $L(g \rhd_X x) \; = \; L(x) \qquad \forall \; g \in G, \; \; x \in X \, .$



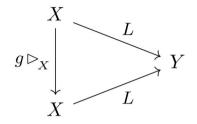
example:

permutation invariant luggage classification



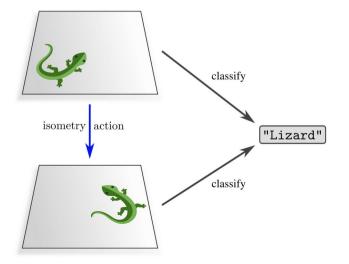
Definition A.9 (Invariant map). Let \triangleright_X be a group action on a set X. A function $L: X \to Y$ is called G-invariant, iff it satisfies

 $L(g \rhd_X x) \; = \; L(x) \qquad \forall \; g \in G, \; \; x \in X \, .$



example:

isometry invariant image classification

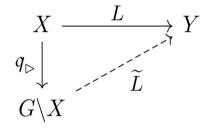


Invariant maps - universal property

universal property:

invariant maps "descent to the quotient"

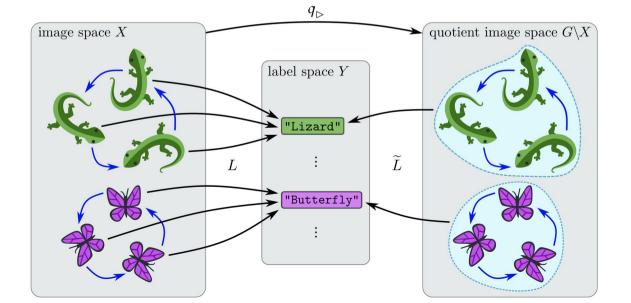
i.e. for any G-invariant map $L:X\to Y$ there exists a unique map $\widetilde{L}:G\backslash X\to Y$ such that $L=\widetilde{L}\circ q_{\rhd}$



example:

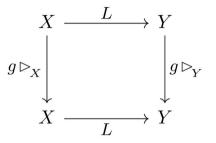
invariant image classification

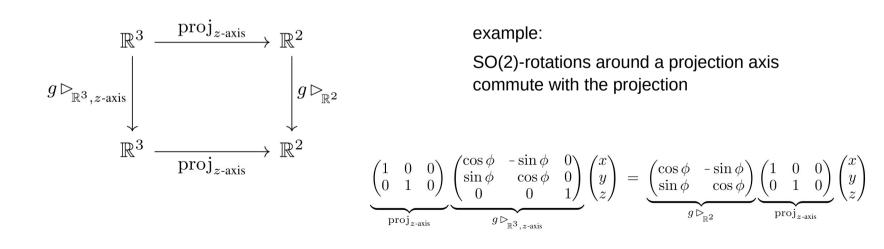
 \Rightarrow reduced hypothesis space of invariant models !



Definition A.10 (Equivariant map). Let \succ_X and \succ_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

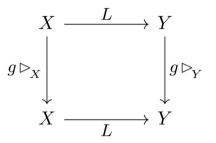
 $L(g \rhd_X x) = g \rhd_Y L(x) \qquad \forall \ g \in G, \ x \in X$

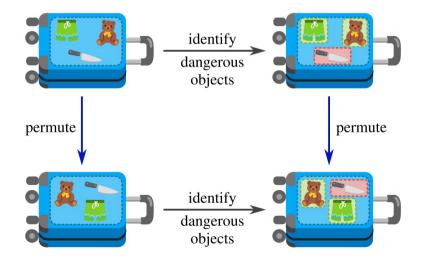




Definition A.10 (Equivariant map). Let \triangleright_X and \triangleright_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

$$L(g \triangleright_X x) = g \triangleright_Y L(x) \qquad \forall \ g \in G, \ x \in X$$



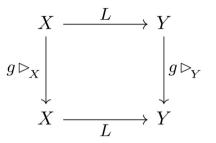


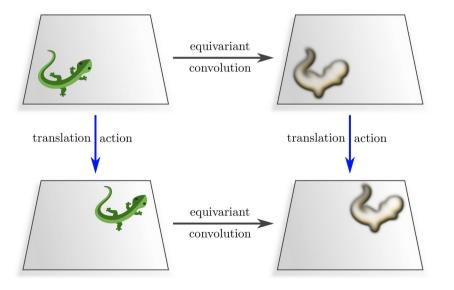
example:

permutation equivariant labeling of dangerous objects

Definition A.10 (Equivariant map). Let \triangleright_X and \triangleright_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

$$L(g \rhd_X x) = g \rhd_Y L(x) \qquad \forall \ g \in G, \ x \in X$$





example:

translation equivariant convolution

Definition A.10 (Equivariant map). Let \succ_X and \succ_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

$$L(g \triangleright_X x) = g \triangleright_Y L(x) \qquad \forall \ g \in G, \ x \in X$$

$$K*: L^2(\mathbb{R}) \to L^2(\mathbb{R}), \quad f \mapsto K*f := \int_{\mathbb{R}} dy \ K(x-y) \ f(y)$$

$$\begin{pmatrix} K*(g \rhd f) \end{pmatrix}(x) = \int_{\mathbb{R}} dy \ K(x-y) \ (g \rhd f)(y)$$

substitute
$$z := y - g \qquad = \int_{\mathbb{R}} dy \ K(x-y) \ f(y-g)$$

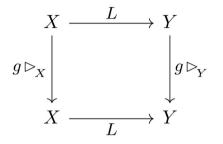
$$= \int_{\mathbb{R}} dz \ K((x-g)-z) \ f(z)$$

$$= (K*f)(x-g)$$

$$= (g \rhd (K*f))(x)$$

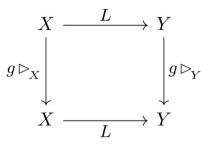
example:

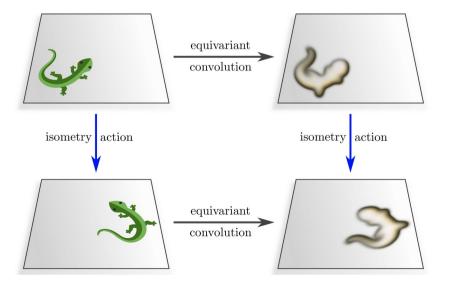
translation equivariant convolution



Definition A.10 (Equivariant map). Let \triangleright_X and \triangleright_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

$$L(g \rhd_X x) \ = \ g \rhd_Y L(x) \qquad \forall \ g \in G, \ x \in X$$





example:

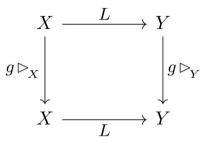
isometry equivariant convolution

Definition A.10 (Equivariant map). Let \triangleright_X and \triangleright_Y be group actions on sets X and Y. A function $L: X \to Y$ is said to be G-equivariant iff it commutes with these actions:

$$L(g \rhd_X x) \ = \ g \rhd_Y L(x) \qquad \forall \ g \in G, \ x \in X$$

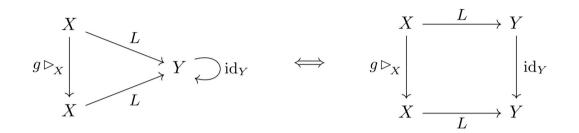


isometry equivariant convolution on Riemannian manifold



Invariance \Leftrightarrow Equivariance

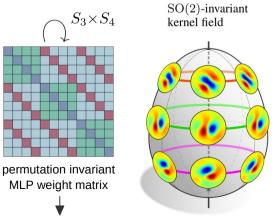
invariant maps are a special case of equivariant maps with a trivial action id_Y on their codomain:



equivariant maps are themselves invariants under the group action:

$$\begin{split} L \circ \left(g \rhd_X \left(\cdot \right) \right) \; = \; \left(g \rhd_Y \left(\cdot \right) \right) \circ L \\ \Longleftrightarrow \quad \left(g^{-1} \rhd_Y \left(\cdot \right) \right) \circ L \circ \left(g \rhd_X \left(\cdot \right) \right) \; = \; L \end{split}$$

G-equivariant NNs \iff G-invariant neural connectivity



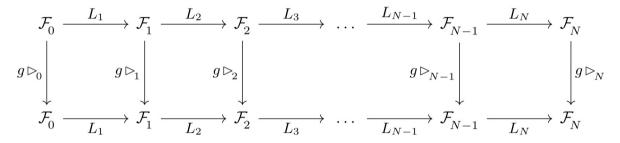
Hartford et al., Deep Models of Interactions Across Sets, ICML 2018

Equivariant Neural Networks

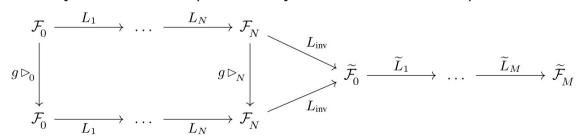
(feed forward) neural networks are sequences of layers:

$$\mathcal{F}_{0} \xrightarrow{L_{1}} \mathcal{F}_{1} \xrightarrow{L_{2}} \mathcal{F}_{2} \xrightarrow{L_{3}} \dots \xrightarrow{L_{N-1}} \mathcal{F}_{N-1} \xrightarrow{L_{N}} \mathcal{F}_{N}$$

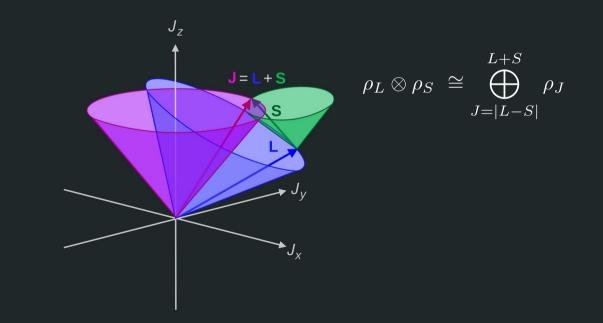
equivariant NNs are sequences of equivariant layers:



invariant NNs are usually built from 1) equivariant layers, 2) an invariant map and 3) a final MLP:

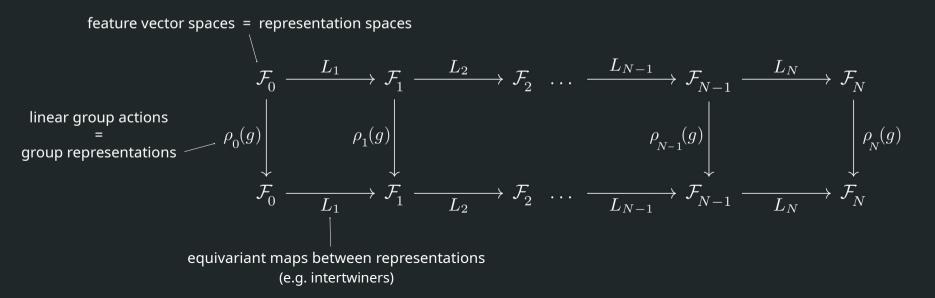


Group representation theory



Group representation theory

motivation: systematic investigation of equivariant NNs in terms of representation theory

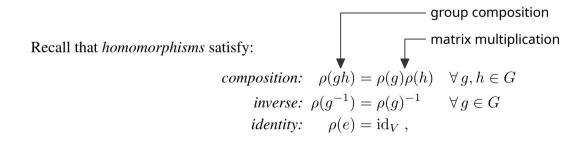


Linear group representations

group **representations** model group elements as matrices (or linear operators)

... act on vector spaces

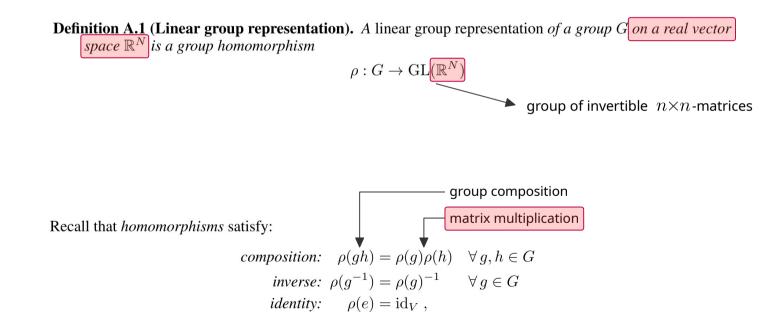
Definition A.1 (Linear group representation). A linear group representation of a group G on a real vector space \mathbb{R}^N is a group homomorphism



Linear group representations

group **representations** model group elements as matrices (or linear operators)

... act on vector spaces



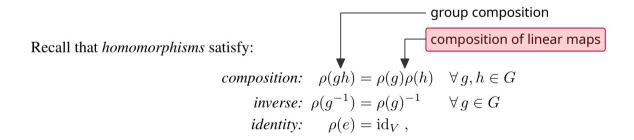
group **representations** model group elements as matrices (or linear operators)

... act on vector spaces

Definition A.1 (Linear group representation). A linear group representation of a group G on a vector space V is a group homomorphism

 $\rho: G \to \operatorname{GL}(V)$

from G to the general linear group GL(V) (invertible linear maps) of the vector space. V is referred to as representation space.



group **representations** model group elements as matrices (or linear operators)

... act on vector spaces

Definition A.1 (Linear group representation). A linear group representation of a group G on a vector space V is a group homomorphism

$$\rho: G \to \operatorname{GL}(V)$$

examples for G = SO(2):

$$\begin{aligned} trivial \ rep: \qquad \rho_{\text{triv}} : \operatorname{SO}(2) \to \operatorname{GL}(1), \quad g \mapsto (1) = \operatorname{id}_{\mathbb{R}^{1}} \\ defining \ rep: \qquad \rho_{\text{def}} : \operatorname{SO}(2) \to \operatorname{GL}(2), \quad g \mapsto g = \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \\ (real) \ irreducible \ reps: \qquad \rho_{\text{irrep},k} : \operatorname{SO}(2) \to \operatorname{GL}(2), \quad g \mapsto g^{k} = \begin{pmatrix} \cos k\phi & -\sin k\phi \\ \sin k\phi & \cos k\phi \end{pmatrix} \quad \text{for any } k \in \mathbb{N} \\ (2nd \ order) \ tensor \ rep: \qquad \rho_{\text{tensor},2} : \operatorname{SO}(2) \to \operatorname{GL}(4), \quad g \mapsto g \otimes g = \begin{pmatrix} \cos \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} & -\sin \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \\ \sin \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} & \cos \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \\ \sin \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} & \cos \phi \begin{pmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{pmatrix} \end{aligned}$$

representations can be **restricted** to subgroups

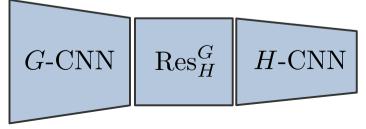
Definition A.2 (Restricted representation). Let (ρ, V) be a *G*-representation and let $H \leq G$ be a subgroup. The restricted representation of ρ is the *H*-representation $\operatorname{Res}_{H}^{G} \rho : H \to \operatorname{GL}(V), \quad h \mapsto \rho(h)$

example: restriction from continuous rotations in SO(2) to 90° rotations in C₄:

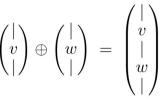
representations can be **restricted** to subgroups

Definition A.2 (Restricted representation). Let (ρ, V) be a *G*-representation and let $H \leq G$ be a subgroup. The restricted representation of ρ is the *H*-representation $\operatorname{Res}_{H}^{G} \rho : H \to \operatorname{GL}(V), \quad h \mapsto \rho(h)$

example: for models with *varying level of equivariance* with depth, turn *G*-representation features into *H*-representation features



the direct sum $V \oplus W$ of vector spaces V and W contains "stacked" vectors: $\begin{pmatrix} | \\ v \\ | \end{pmatrix} \oplus \begin{pmatrix} | \\ w \\ | \end{pmatrix} = \begin{pmatrix} | \\ v \\ | \\ w \end{pmatrix}$



there is a corresponding **direct sum of representations**:

Definition A.3 (Direct sum representation). Let (ρ_1, V_1) and (ρ_2, V_2) be G-representations. Their direct sum $(\rho_1 \oplus \rho_2, V_1 \oplus V_2)$ is defined by:

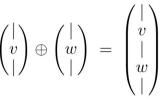
 $(\rho_1 \oplus \rho_2)(g) (v_1 \oplus v_2) := \rho_1(q) v_1 \oplus \rho_2(q) v_2$

The two subspaces V_1 and V_2 of $V_1 \oplus V_2$ are transforming independently under this representation.

for matrix representations:

$$(\rho_1 \oplus \rho_2)(g) = \begin{pmatrix} \rho_1(g) & 0\\ 0 & \rho_2(g) \end{pmatrix} \quad \text{e.g.} \quad \begin{pmatrix} \cos\phi & -\sin\phi\\ \sin\phi & \cos\phi \end{pmatrix} \oplus \begin{pmatrix} 1 \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi & 0\\ \sin\phi & \cos\phi & 0\\ 0 & 0 & 1 \end{pmatrix}$$

the direct sum $V \oplus W$ of vector spaces V and W contains "stacked" vectors: $\begin{pmatrix} | \\ v \\ | \end{pmatrix} \oplus \begin{pmatrix} | \\ w \\ | \end{pmatrix} = \begin{pmatrix} | \\ v \\ | \\ w \end{pmatrix}$

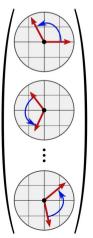


there is a corresponding **direct sum of representations**:

Definition A.3 (Direct sum representation). Let (ρ_1, V_1) and (ρ_2, V_2) be G-representations. Their direct sum $(\rho_1 \oplus \rho_2, V_1 \oplus V_2)$ is defined by:

 $(\rho_1 \oplus \rho_2)(q) (v_1 \oplus v_2) := \rho_1(q) v_1 \oplus \rho_2(q) v_2$

example: SO(2)-equivariant MLP, processing a batch (= *direct sum*) of vectors in \mathbb{R}^2



representations can also be combined by taking their **tensor product**:

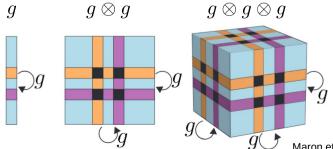
Definition A.4 (Tensor product representation). Let (ρ_1, V_1) and (ρ_2, V_2) be two *G*-representations. The tensor product representation $(\rho_1 \otimes \rho_2, V_1 \otimes V_2)$ acts on the tensor product of vector spaces as follows: $(\rho_1 \otimes \rho_2)(g) (v_1 \otimes v_2) := \rho_1(g) v_1 \otimes \rho_2(g) v_2$

for matrix representations:

$$(\rho_1 \otimes \rho_2)(g) = \begin{pmatrix} \rho_1(g)_{11} \cdot \rho_2(g) & \cdots & \rho_1(g)_{1\nu} \cdot \rho_2(g) \\ \vdots & \ddots & \vdots \\ \rho_1(g)_{\nu 1} \cdot \rho_2(g) & \cdots & \rho_1(g)_{\nu} \cdot \rho_2(g) \end{pmatrix} \quad \text{e.g.} \quad \begin{pmatrix} \cos\phi \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} & -\sin\phi \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \\ \sin\phi \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} & \cos\phi \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \end{pmatrix}$$

example:

higher order data tensors (e.g. adjacency matrix):

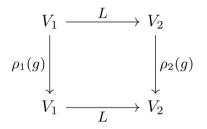


Maron et al., On the Universality of Invariant Networks, ICML 2019

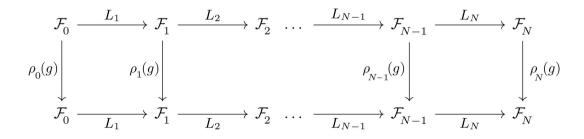
Definition A.7 (Intertwiner). Let (ρ_1, V_1) and (ρ_2, V_2) be two *G*-representations. An intertwiner between them is an equivariant linear map $L: V_1 \to V_2$. It satisfies

 $L \circ \rho_1(g) = \rho_2(g) \circ L \quad \forall g \in G,$

The vector space of intertwiners is usually denoted as $Hom_G(V_1, V_2)$.



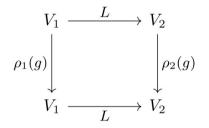
intertwiners are the main building blocks of equivariant NNs (interleaved with equivariant nonlinearities)



Definition A.7 (Intertwiner). Let (ρ_1, V_1) and (ρ_2, V_2) be two *G*-representations. An intertwiner between them is an equivariant linear map $L: V_1 \to V_2$. It satisfies

 $L \circ \rho_1(g) = \rho_2(g) \circ L \quad \forall g \in G,$

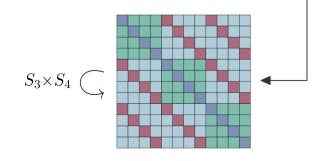
The vector space of intertwiners is usually denoted as $Hom_G(V_1, V_2)$.



example: equivariant MLPs with... ... r

... representation spaces as feature vector spaces

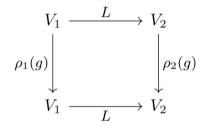
... intertwiners as weight matrices



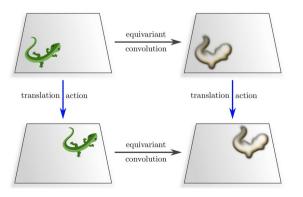
Definition A.7 (Intertwiner). Let (ρ_1, V_1) and (ρ_2, V_2) be two *G*-representations. An intertwiner between them is an equivariant linear map $L: V_1 \to V_2$. It satisfies

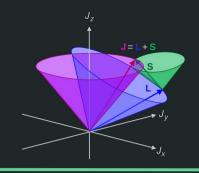
 $L \circ \rho_1(g) = \rho_2(g) \circ L \quad \forall g \in G,$

The vector space of intertwiners is usually denoted as $Hom_G(V_1, V_2)$.



example: convolutions are linear + equivariant \Rightarrow they are translation intertwiners





Group representation theory

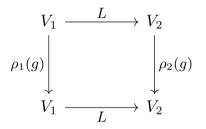
further topics:

- irreducible representations
- isomorphic representations
- Schur's lemma
- Complete reducibility of unitary representations
- Clebsch-Gordan decomposition
- Peter-Weyl theorem and Fourier transforms

useful for solving for intertwiner spaces

Definition A.7 (Intertwiner). Let (ρ_1, V_1) and (ρ_2, V_2) be two *G*-representations. An intertwiner between them is an equivariant linear map $L: V_1 \to V_2$. It satisfies

 $L \circ \rho_1(g) = \rho_2(g) \circ L \quad \forall g \in G,$



we need to solve for intertwiner spaces to build equivariant networks

Schur's lemma characterizes intertwiner spaces for *irreducible representations*

on the next slides: - irreducible representations

- isomorphic representations
- Schur's lemma
- complete reducibility of unitary representations

Invariant subspaces, subrepresentations & irreps

representations may contain invariant subrepresentations

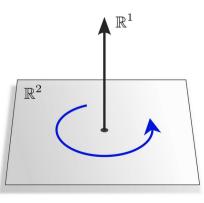
Definition A.5 (Invariant subspace, subrepresentation).

- let (ρ, V) be a *G*-representation and consider a vector subspace $W \subseteq V$
- W is called invariant if it is closed under the action of ρ , i.e., if $\rho(g)w \in W \quad \forall w \in W, g \in G$.
- the restriction $\rho|_W : G \to GL(W)$ of ρ to W is denoted as subrepresentation

examples:

z-axis rotations: $\begin{pmatrix} \cos \phi & -\sin \phi & 0\\ \sin \phi & \cos \phi & 0\\ 0 & 0 & 1 \end{pmatrix}$ has the *z*-axis and the *xy*-plane as invariant subspaces

trivial examples: the full subspace W = V and the empty subspace W = 0 are always invariant



Invariant subspaces, subrepresentations & irreps

representations may contain invariant subrepresentations

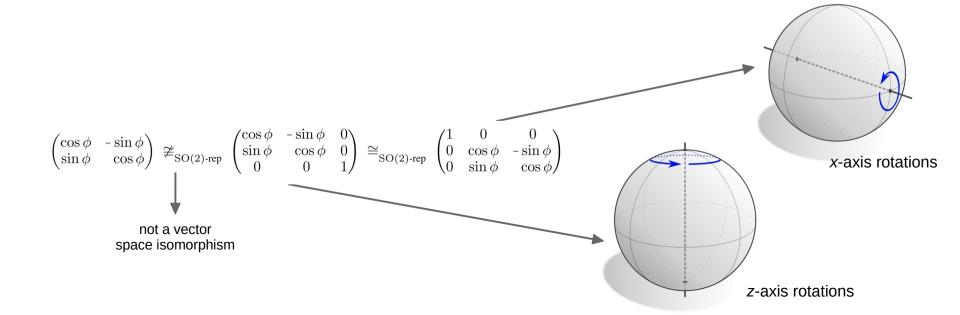
Definition A.5 (Invariant subspace, subrepresentation).

- *let* (ρ, V) *be a G-representation and consider a vector subspace* $W \subseteq V$
- W is called invariant if it is closed under the action of ρ , i.e., if $\rho(g)w \in W \quad \forall w \in W, g \in G$.
- the restriction $\rho|_W : G \to GL(W)$ of ρ to W is denoted as subrepresentation

Definition A.6 (Irreducible representation (irrep)). A representation (ρ, V) is called irreducible representation (*irrep*) if it has only the two trivial subrepresentations W = V and W = 0.

example: the *real* irreps of SO(2) are frequency-k rotation matrices
$$\begin{pmatrix} \cos k\phi & -\sin k\phi \\ \sin k\phi & \cos k\phi \end{pmatrix}$$
, $k \in \mathbb{N}$

Definition A.7 (Equivalent (isomorphic) representations). Two *G*-representations (ρ_1, V_1) and (ρ_2, V_2) are said to be equivalent or isomorphic if there exists an invertible intertwiner, i.e. a vector space isomorphism $L: V_1 \xrightarrow{\sim} V_2$ satisfying $L \circ \rho_1(g) = \rho_2(g) \circ L \quad \forall g \in G$, between them.



intertwiners between irreducible representations are characterized by Schur's lemma:

Lemma A.18 (Schur's lemma). Let (ρ_1, V_1) and (ρ_2, V_2) be irreducible *G*-representations, then:

1) non-trivial intertwiners $V_1 \rightarrow V_2$ exist only if the irreps are isomorphic, i.e. if $\rho_1 \cong \rho_2$.

2) if the representations agree, $(\rho_1, V_1) = (\rho_2, V_2)$, then:

- for \mathbb{C} -reps: the irrep intertwiner is a scalar multiple $\lambda \cdot \mathrm{id}$ of the identity - for \mathbb{R} -reps: the irrep intertwiner is an endomorphism (easy to find)

application example:

intertwiner constraint reduction to irrep constraints, then solving via Schur's lemma

$$W \cdot \rho_{\text{in}}(g) = \rho_{\text{out}}(g) \cdot W$$

$$\Leftrightarrow W = \rho_{\text{out}}(g) \cdot W \cdot \rho_{\text{in}}(g)^{-1}$$

$$\text{irrep} \qquad \text{decomposition}$$

$$\frac{W_{\text{irrep}}^{J_1 l_1} |W_{\text{irrep}}^{J_1 l_2} | \dots}{W_{\text{irrep}}^{J_2 l_2} | \dots} = \underbrace{\left(\begin{array}{c} \rho_{J_1}(g) \\ \hline & \rho_{J_2}(g) \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} W_{\text{irrep}}^{J_1 l_1} |W_{\text{irrep}}^{J_1 l_2} | \dots \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} W_{\text{irrep}}^{J_1 l_1} |W_{\text{irrep}}^{J_1 l_2} | \dots \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} W_{\text{irrep}}^{J_1 l_1} |W_{\text{irrep}}^{J_1 l_2} | \dots \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_1}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_1}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_1}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & & \end{array} \right)}_{W_{\text{irrep}} (W_{\text{irrep}})} \cdot \underbrace{\left(\begin{array}{c} P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} \\ \hline & P_{l_2}(g)^{-1} \\ \hline & P_{l_2}(g)^{-1} \\ \end{array}\right)}_{W_{\text{irrep}} (W_{\text{irrep}}) \cdot \underbrace{\left(\begin{array}{c} P_{l_2}(g)^{-1} |W_{l_2}| - 1 \\ \hline & P_{l_2}(g)^{-1} \\ \hline & P_{l_2}(g)$$

for compact groups, one may w.l.o.g. consider unitary representations

→ e.g. any subgroups of O(d) or U(d)

Definition A.7 (Unitary group). Let V be an inner product space. The unitary group U(V) is the group formed by all unitary transformations from V to itself: $U(V) = \{g \in GL(V) \mid \langle gv, gw \rangle_{V} = \langle v, w \rangle_{V} \quad \forall v, w \in V\} \leq GL(V)$

Definition A.8 (Unitary representation). A unitary representation on an inner product space V is a (continuous) homomorphism

$$\rho: G \to \mathrm{U}(V)$$
.

Theorem A.9. Every linear representation of a compact group on an inner product space is equivalent to a unitary representation.

Theorem A.10 (Complete reducibility). Let (ρ, V) be a finite dimensional unitary *G*-representation. It decomposes into a direct sum $\rho \cong \bigoplus_i \rho_i$ of unitary irreps ρ_i . \sim

Theorem A.10 (Complete reducibility). Let (ρ, V) be a finite dimensional unitary *G*-representation. It decomposes into a direct sum $\rho \cong \bigoplus_i \rho_i$ of unitary irreps ρ_i .

example: **Clebsch-Gordan decomposition** of *irrep tensor products*

$$G = \mathrm{SO}(2): \qquad \rho_{j} \otimes \rho_{l} \cong \rho_{|j-l|} \oplus \rho_{j+l}$$

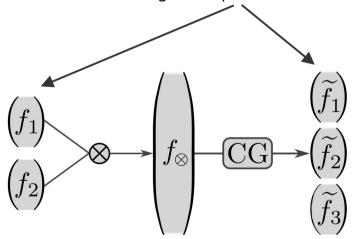
$$\begin{pmatrix} \cos j\phi \begin{pmatrix} \cos l\phi & -\sin l\phi \\ \sin l\phi & \cos l\phi \end{pmatrix} & -\sin j\phi \begin{pmatrix} \cos l\phi & -\sin l\phi \\ \sin l\phi & \cos l\phi \end{pmatrix} \\ \sin j\phi \begin{pmatrix} \cos l\phi & -\sin l\phi \\ \sin l\phi & \cos l\phi \end{pmatrix} & \cos j\phi \begin{pmatrix} \cos l\phi & -\sin l\phi \\ \sin l\phi & \cos l\phi \end{pmatrix} \end{pmatrix} \cong \begin{pmatrix} \left(\cos (|j-l|\phi) & -\sin (|j-l|\phi) \\ \sin (|j-l|\phi) & \cos (|j-l|\phi) \end{pmatrix} \\ \left(\cos ((j+l)\phi) & -\sin ((j+l)\phi) \\ \sin ((j+l)\phi) & \cos ((j+l)\phi) \end{pmatrix} \right) \end{pmatrix}$$

$$G = \mathrm{SO}(3): \qquad \rho_{L} \otimes \rho_{S} \cong \bigoplus_{J=|L-S|}^{L+S} \rho_{J}$$

Theorem A.10 (Complete reducibility). Let (ρ, V) be a finite dimensional unitary *G*-representation. It decomposes into a direct sum $\rho \cong \bigoplus_i \rho_i$ of unitary irreps ρ_i .

example: Clebsch-Gordan decomposition of irrep tensor products

application: tensor product nonlinearities, acting on irrep-features



Weiler et al., 3D Steerable CNNs, NeurIPS 2018

Peter-Weyl theorem / Fourier transforms on *homogeneous spaces*

