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symmetry groups = “sets” of transformtions leaving an object invariant

reflection symmetry

discrete translations of crystal lattice

trivial symmetry

rotationally symmetric potential

"

isometries of manifolds

graph authomorphisms

® 9‘:



group actions - on different objects / spaces

example: SO(2) actions actions on the
2-sphere S°:
R 0 X-axis rotations Z-axis rotations
\ action on vectors in R
\q\ A scalar field vector field
actions on

signals / fields:

group representations - /inear actions on vector spaces (e.g. feature vector spaces)



group invariant & equivariant functions

invariant image classification equivariant image segmentation

classify

["bedroom"]

classify
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Symmetry groups - basic definitions
Group actions
Invariant & equivariant maps

Group representations



Symmetry groups

example: 2d rotation group SO(2)

there is a set of rotations

rotations can be composed

there is an identity rotation

each rotation has an inverse

the composition is associative




Symmetry groups

Definition B.1 (Group). A group is a tuple (G, -), consisting of a set G and a binary operation
- GxG—=G, (g,h)—g-h
satisfying the following three group axioms:
associativity: forall g,h,k € G onehas (g-h)-k=g-(h-k)
identity element: de € G suchthat Vg € G onehas e-g=g=g-e€

inverse element: Yg € G J¢g~' € G suchthat g-g ' =e=¢"' ¢

examples: translation group : (R4, 4)

unitary group :  U(1) := {eid’ | ¢ € [0,27)} check closure

+ group axioms !

general linear group :  GL(d) := {g € s ‘ det(g) #0}

trivial group :  {e}



Symmetry groups

Definition B.1 (Group). A group is a tuple (G, +), consisting of a set G and a binary operation
- GxG—=G, (g,h)—g-h
satisfying the following three group axioms:
associativity: forall g,h,k € G onehas (g-h)-k=g-(h-k)
identity element: de € G suchthat Vg € G onehas e-g=g=g-e€

inverse element: Yg € G 3¢~ ' € G suchthat g-g '=e=¢1.g¢

counter

examples: couter example 1:  {'? | ¢ € [0,7)} (closure)

couter example 2:  {g € R&*E ‘ det(g) =2} (closure)

couter example 3:  {g € RdXd} (inverse)



Symmetry groups

Definition B.1 (Group). A group is a tuple (G, +), consisting of a set G and a binary operation
- GxG—=G, (g,h)—g-h
satisfying the following three group axioms:
associativity: forall g,h,k € G onehas (g-h)-k=g-(h-k)
identity element: de € G suchthat Vg € G onehas e-g=g=g-e€

inverse element: Yg € G 3¢~ ' € G suchthat g-g '=e=¢1.g¢

groups may come with additional structure:

group category structure on G binary operation
topological group topology continuous map
Lie group smooth manifold smooth map
finite group finite set any function

(between finite sets)



Abelian groups

groups elements do in general not commute: gh =~ hg

rot

groups with commutative elements are called Abelian:

Definition B.2 (Abelian group). A group is called abelian if all of its elements commute, i.e. if:
gh=hg Vg,heG

Z-axis rotations



Subgroups

subsets of group elements may form a subgroup:

Definition A.1 (Subgroup). A subset H C G of a group G forms a subgroup if it is closed under composition
and taking inverses:

composition: forall g,h € H one has gh € H

inversion: forall g€ H onehas g~' € H

As the name suggests, subgroups are themselves groups, that is, they satisfy the three group axioms.
One writes H < G.

examples:  discrete translations:  (Z%, +) < (R%, +4)
rotations around fixed axis:  SO(2) < SO(3)

trivial examples: {e} <G, G <G

Z-axis rotations



Subgroups

subsets of group elements may form a subgroup:
Definition A.1 (Subgroup). A subset H C G of a group G forms a subgroup if it is closed under composition
and taking inverses:

composition: forall g,h € H one has gh € H

inversion: forall g € H onehas g~' € H

As the name suggests, subgroups are themselves groups, that is, they satisfy the three group axioms.
One writes H < G.

Zi:nmtg{es; {ew ’ ¢ € |0, W)} % U(1) (closure + inverse violated)

(R>o,+) £ (R,+) (inverse violated)



Products of groups

there are different product operations to combine groups into a supergroup

Definition A.5 (Direct product of groups). Let (H,-) and (K, *) be arbitrary groups. Their (outer) direct
product (H, +) x (K,x) is defined on the Cartesian product H x K of the underlying sets, equipped with
the binary operation

HxK—HxK, ((hk), (hk))r (heh, kxk)

which composes the elements of the factors H and K independently from each other.

example: SO(2) x (R, +) (R, +)

so@)




Products of groups

there are different product operations to combine groups into a supergroup

Definition A.5 (Direct product of groups). Let (H,-) and (K, *) be arbitrary groups. Their (outer) direct
product (H, +) x (K,x) is defined on the Cartesian product H x K of the underlying sets, equipped with
the binary operation

HxK—HxK, ((hk), (hk))r (heh, kxk)

which composes the elements of the factors H and K independently from each other.

counter example: SE(2)

# 80i2) (B2 4)

A
(R2, +) . SO(2)
<—€-—>
|/

A\




Products of groups

there are different product operations to combine groups into a supergroup

Idea: In a semidirect product H x K, the group K acts on H.

example:  special Euclidean group SE(2) := (R?, +) x SO(2)
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Group homomorphisms & isomorphisms

group homomorphisms are structure preserving maps between groups

Definition A.2 (Group homomorphism). A group homomorphism

between groups (G, ) and (G',*) is amap v : G — G’ such that GXG £

Yg-h)=~(g)*xy(h) Vg heq. WXWJ lﬁ,
/ ! !
This implies generally that v(g~') = 7(g) ' and that g(e,) = e, G'xG ——F—— G
example: complex exponentiation T,y TR s T4y
exp(i(): (R,+) = U(1), @ e £ i) O
ezx’ eiy = eiw.eiy — eix—}—y

—> homomorphisms may lose information about the group — isomorphisms



Group homomorphisms & isomorphisms

group isomorphisms identify equivalent groups

Definition A.4 (Group isomorphism). Group isomorphisms are invertible group homomorphisms.
One writes G = G’ to state that G and G' are isomorphic.

examples:

cos¢ -sing ! 0 O
(g o) 0 cong -sing

T T

U(1) = SO(2) = SO(3), = SO(3),

!

X-axis rotations

) cos¢p -sing O
equZS (sin @ coso O) >
0 0 1

Z-axis rotations



Group actions




Group actions

groups can act on other objects:

Definition A.2 (Group action). Let G be a group and X be a set. A (left) group action is a map
>: GxX =X, (g2)—~g>ux
that is compatible with the group composition and identity element:
associativity: (gh) >z =gt (h>x) forany g,h € G, v € X

identity: el>x =z forany © € X

example: SO(2)-action on R?

Gz
~ Gl




groups can act on other objects:

Definition A.2 (Group action). Let G be a group and X be a set. A (left) group action is a map
>: GxX =X, (g2)—~g>ux
that is compatible with the group composition and identity element:
associativity: (gh) >z =gt (h>x) forany g,h € G, v € X

identity: el>x =z forany © € X

example: SO(2)-action on scalar field




Group actions - orbits

the action traces out an orbit in X:

Definition A.6 (Group orbit). Let > be an action of G on X and consider any element x € X. The subset
Gz = {gl>:r|g€G}

of X is then denoted as orbit of x.

example: SO(2)-action on R?




Group actions - orbits

"being in the same orbit” defines an equivalence relation

reflexivity: x~ x, thatis, z is contained in its own orbit G > x
symmetry. T~ 1Y < y~px, thatis, if z is contained in y’s orbit, then y is contained in x’s orbit

transitivity: © ~p Yy Ny~ 2 = & ~p 2, thatis, if z is contained in y’s orbit and if y is contained in
z’s orbit, then x 1s contained in z’s orbit

—> we can take a quotient w.r.t. this equivalence relation

example: SO(2)-action on R?




Group actions - quotient sets

the quotient set is the set of all orbits

Definition A.7 (Quotient set and quotient map). 7he quotient set induced by a G-action > on X is the set
of all orbits:

G\X = {Gpz|ze X}
The corresponding quotient map collapses elements of X to their orbit:

9o : X > G\X, 2G> x

SO(2)\R? = Rx

example: SO(2)-action on R?

Gox

G0



Group actions - orbit representatives

guotient maps are generally non-invertible, but one may choose orbit representatives

Definition A.8 (Orbit representative). Orbit representatives are specified by a map
ry : G\NX = X suchthat g or (G x) = G>x VG>x € G\X,
i.e. such that the following diagram commutes:

s

ox — " . x y G\X

[ J

ide x
SO(2)\R? = Rx
example: SO(2)-action on R?
T
-
%, > Gox
T
T

G0



Transitivity, homogeneity & stabilizers

Definition A.12 (Transitive action / homogeneous space).

A G-action > on a space X is called transitive iff it satisfies A General Theory of Equivariant CNNs on
Vez,ye X dge€ G suchthat y=g>x. Homogeneous Spaces
X is then called a homogeneous space.
Taco S. Cohen Mario Geiger Maurice Weiler
Qualcomm AI Research* PCSL Research Group QUVA Lab
Definition A.13 (Stabilizer subgroup). Let > be a G-action on a set X. Qualcoinafozi:;:f%‘;%ziiﬁe.rcliidsB'V‘ mario: gelilg)zi:%pfl.ch mUw:f;LAen;(th\rliar:l

The stabilizer subgroup of some element x € X is defined as:
Stab, = {geGlgbrz =2z} <G

&M

AN

group (R?,+) SO(2) reflections SO(3)

transitive v X / X / v

7

/
stabilizers {e} {e} SO(2) {e} | reflections SO(2)




Invariant & Equivariant maps




Invariant maps

Definition A.9 (Invariant map). Ler >, be a group action on a set X.

X
X
A function L : X — Y is called G-invariant, iff it satisfies gy \
—
X

L(g>,z) = L(x) Vged, ze€X.

example:

rotation invariant vector norm |-

since |g>v| = |v| for g € SO(2)



Invariant maps

X
Definition A.9 (Invariant map). Ler >, be a group action on a set X. X
A function L : X — Y is called G-invariant, iff it satisfies gy g
L(g>,z) = L(x) Vged, ze€X. /
L
X
example:

permutation invariant luggage classification classify

classify




Invariant maps

Definition A.9 (Invariant map). Ler >, be a group action on a set X.

X
X
A function L : X — Y is called G-invariant, iff it satisfies gy \
—
X

L(g>,z) = L(x) Vged, ze€X.

example:
iIsometry invariant image classification

classify

A




Invariant maps - universal property

example:

universal property: invariant maps “descent to the quotient” X L v Y
-1
i.e. for any G-invariantmap L : X — Y qDJ/ e
there exists aunique map L : G\X — Y o\ -7 L
suchthat L = Lo q_ \
9>
image space X e

invariant image classification label space Y’

—> reduced hypothesis space
of invariant models !

RN “—
> ("Lizard"]
>

S
> |"Butterfly"|
v 4




Equivariant maps

x —L L,y
Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy gy
Lig>y x) = gy L(z) Vgel, € X l l
Y

d——a

R3 Proj . ayis . R2 example:
SO(2)-rotations around a projection axis
g |>R3,z-axis 9 commute with the projection
R3 s R? .
DIOj , axis (1 0 o) (Zfrfj; zg;‘i 8) (“’5) _ (c9s¢ —sinqb) (1 0 0) (z)
01 0 0 0 1 i \sm(ﬁ COS(bAO 1 0/ i
2 g 9P Proj ais

pI‘Oj z-axis gb L

Rr3 , z-axis



Equivariant maps

x —L L,y
Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy gy
Lig>y x) = gy L(z) Vgel, € X l ‘/
Y

d——a

identify
dangerous
objects
example:
permute . . . .
permutation equivariant labeling
of dangerous objects
identify
dangerous

objects



Equivariant maps

x —L

Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy

Lig>y x) = gy L(z) Vgel, € X

translation | action

equivariant

convolution

equivariant

convolution

@

translation | action

@

d——a

example:

translation equivariant convolution

Y
lg
Y

Py



Equivariant maps

x —L L,y
Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy gy
Lig>y x) = gy L(z) Vgel, € X l ‘/
Y

d——a

Kt L*R) — L2R), frs K#f = fRdyK(fc—y)f(y)

(K * (g5 ))(z) = ]dyK(x—m (95> )(w)

example:
dy Kx—-y)fly—g9) translation equivariant convolution
substitute C

mYY de (x —g) —2) f(2)

f)@—g)
= (QD(K* ) ()



Equivariant maps

x —L L,y
Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy gy
Lig>y x) = gy L(z) Vgel, € X l ‘/
Y

d——a

equivariant

é
convolution @

isometry | action

equivariant
convolution

example:

iIsometry equivariant convolution




Equivariant maps

x —L L,y
Definition A.10 (Equivariant map). Let >, and o>, be group actions on sets X and Y.
A function L : X — Y is said to be GG-equivariant iff it commutes with these actions: gy gy
Lig>y x) = gy L(z) Vgel, € X l ‘/
X — Y

equivariant

convolution

example:

isometry i action

equivariant
—_—
\ convolution

iIsometry equivariant convolution
on Riemannian manifold




Invariance < Equivariance

invariant maps are a special case of equivariant maps with a trivial action idy on their codomain:

X . x —L .y
QDX‘ \ ) Didy <~ gDX‘/ J{idy
"
X X ———Y

SO(2)-invariant
kernel field

equivariant maps are themselves invariants under the group action:

Lo

P

gy () = (g>y () oL

— (g_l >y ()) oLo (g D> ()) =L

. . ; . .. permutation invariant
G-equivariant NNs <= G-invariant neural connectivity MLP weight matrix

v

Hartford et al., Deep Models of Interactions Across Sets, ICML 2018




Equivariant Neural Networks

(feed forward) neural networks are sequences of layers:

iy L Ln- L
> F, P K2 s Ry — N F

L1

o

equivariant NNs are sequences of equivariant layers:

L1 Lo Ls Ln_a Ln

Y-S & > I > oL h B g ———
9B gy gy 9PN _1 hg D

vy > I » o $ a3 B J; —

o Ly 1 Lo & Ls Ln-1 A=l Ly "

invariant NNs are usually built from 1) equivariant layers, 2)an invariant map and 3) a final MLP:

Ll LN
F Fy .
\ » El zj\{ Y
95>, 9>y F— M F,
F F

0 I In N



Group representation theory




Group representation theory

motivation: systematic investigation of equivariant NNs in terms of representation theory

feature vector spaces = representation spaces

\ L1 N Lo N Lyn_1 i
A > F, L —S e L e
linear group actions
- Po(9) p1(9) p. (9) o (9)
group representations — 0 ! N-1 N
e S > F ... —— F s
0 i 1 T 2 e N-1 T N

|

equivariant maps between representations
(e.g. intertwiners)



Linear group representations

group representations ... ... model group elements as matrices (or linear operators)

.. act on vector spaces

Definition A.1 (Linear group representation). A linear group representation of a group G on a real vector
space RY is a group homomorphism

p: G — GL(RM)

\ group of invertible nXn-matrices

group composition
; ; tri Itiplicati
Recall that homomorphisms satisfy: matrix muttipfication

gp(h) Vg,heG

composition:  p(gh) = p(
pw)l VgeG
idy

inverse: p(g~")
identity:  p(e) =



Linear group representations

group representations ... ... model group elements as matrices (or linear operators)

... act on vector spaces

Definition A.1 (Linear group representation). A linear group representation of a group G[ on a real vector

space R |is a group homomorphism
p:G— GL

\ group of invertible nXn-matrices

group composition

Recall that homomorphisms satisfy: l igbdepicaion

composition:  p(gh) = p(g)p(h) Vg,heG

g) ! Vged
identity:  p(e) =idy ,

inverse: p(g~")



Linear group representations

group representations ... ... model group elements as matrices (or linear operators)

.. act on vector spaces

Deﬁﬁl (Linear group representation). A linear group representation of a group G on a
space V'

is a group homomorphism
p:G— G

from G to the general linear group GL(V) (invertible linear maps) of the vector space.
V' is referred to as representation space.

group composition

Recall that homomorphisms satisfy: [composmon SR

composition:  p(gh) = p(g)p(h) Vg,heG
plg)™" VYged
idy

inverse: p(g~")
identity:  p(e) =



Linear group representations

group representations ...

... model group elements as matrices (or linear operators)

... act on vector spaces

Deﬁﬁl (Linear group representation). A linear group representation of a group G on a
space V'

p:G—>G

examples for G = SO(2) :

trivial rep:

defining rep:

(real) irreducible reps:

(2nd order) tensor rep:

is a group homomorphism

Puiv : SO(2) — GL(1),

paef : SO(2) — GL(2),

pimeps : SO(2) = GL(2),

Ptensor,2 - SO(2) — GL(4)7

g — (1) = ide
_ (cos¢p -sing
g g = <sin¢ cosgb)
k _ [cosk¢p -sink¢
g gt = (sinqu cosk¢>) forany £ € N
cos¢ -sing . cos ¢
5 B — Gos P (sinqﬁ COS(;S) =Eing sin ¢
9 e s = cos¢ -sing cos ¢
¢ sing  cos¢ cos ¢ sin ¢



Restricted representation

representations can be restricted to subgroups

Definition A.2 (Restricted representation). Let (p, V') be a G-representation and let
H < G be a subgroup. The restricted representation of p is the H-representation

Res® p: H — GL(V), hw~ p(h)

example: restriction from continuous rotations in SO(2) to 90° rotations in C, :

ISIE
3
|

¢ o

ResS0@) cos¢ -sing 1 0 0 -1 -1 0 0 1
®cs \sing cosd 0 1 10 0 -1 100




Restricted representation

representations can be restricted to subgroups

Definition A.2 (Restricted representation). Let (p, V') be a G-representation and let
H < G be a subgroup. The restricted representation of p is the H-representation

Res® p: H — GL(V), hw~ p(h)

example: for models with varying level of equivariance with depth,

turn G-representation features into H-representation features

G-CNN || Res%

Weiler & Cesa, General E(2)-equivariant Steerable CNNs, NeurlPS 2019



Direct sum of representations

|

| | v

the direct sum V' & W of vector spaces V and W contains “stacked” vectors: T ©lw| = ||
w

|

there is a corresponding direct sum of representations:

Definition A.3 (Direct sum representation). Let (p1, V1) and (p2, V) be G-representations.
Their direct sum (p1 & p2, Vi & Va) is defined by:

(p1® p2)(g) (v1 D v2) = p1(g)v1 @ pa(g) v2

The two subspaces V', and Vy of Vi & Vo are transforming independently under this representation.

for matrix representations:

0 # —ing cpsqﬁ -sing 0
momo = ("9 ,0) e (Mg mO)em - (Wm0 b o



Direct sum of representations

|

| | v

the direct sum V' & W of vector spaces V and W contains “stacked” vectors: T ©lw| = ||
w

|

there is a corresponding direct sum of representations:

Definition A.3 (Direct sum representation). Let (p1, V1) and (p2, V) be G-representations.
Their direct sum (p1 @ pa, Vi & Va) is defined by:

(p1 @ p2)(g) (v1 B v2) = p1(g)v1 & pa(g) v2
(&)

Ay
) \

I

\
example: SO(2)-equivariant MLP, processing a batch (= direct sum) of vectors in R? LY, )




Tensor product of representations

representations can also be combined by taking their tensor product:

Definition A.4 (Tensor product representation). Let (p1, V1) and (p2, Va) be two G-representations. The
tensor product representation (p1 ® pa, Vi ® Va) acts on the tensor product of vector spaces as follows:

(p1 @ p2)(g) (v1 ®v2) = p1(g) v1 ® p2(g) v2

for matrix representations:

(m(g)n.m(g) 01(9)117“92(9)) oo cos ¢ ‘;f’;;f ~sing —sin¢((;?§f£ 2;2?;)

cos ¢

(p1 ®p2)(g) =

cos¢ -sing cos¢ -sing

pr(g)v1 - p2(9) p1(g)v - p2(g) SINP | Gng  cose Cow(sinqb cos¢)

example: 9 999

higher order data tensors
(e.g. adjacency matrix):




linear equivariant maps between representations are called intertwiners

Definition A.7 (Intertwiner). Let (p1, V1) and (pa2, V) be two G-representations. Vi # 7
An intertwiner between them is an equivariant linear map L : Vi — Vo, It satisfies
Lopi(g) = pa(g)eL  VgeG, pr(9) p2(9)
The vector space of intertwiners is usually denoted as Homg (V7, Va). Vi T Va

intertwiners are the main building blocks of equivariant NNs  (interleaved with equivariant nonlinearities)

Ln-
F—tm B F o P Ry — o R
Po(9) p1(9) py_(9) p.(9)
F F » F, —— Fy, ——— F




linear equivariant maps between representations are called intertwiners

Definition A.7 (Intertwiner). Let (p1, V1) and (pa2, V) be two G-representations. Vi L 7
An intertwiner between them is an equivariant linear map L : Vi — Vo, It satisfies
Lopi(g) = pa(g)eL  VgeG, pr(9) p2(9)
The vector space of intertwiners is usually denoted as Homg (V7, Va). Vi T Va
example: equivariant MLPs with... ... representation spaces as feature vector spaces

... intertwiners as weight matrices

Sax Sy C

Hartford et al., Deep Models of Interactions Across Sets, ICML 2018



linear equivariant maps between representations are called intertwiners

Definition A.7 (Intertwiner). Let (p1, V1) and (p2, Va) be two G-representations. Vi L v
An intertwiner between them is an equivariant linear map L : Vi — Vo, It satisfies
Lopi(g) = p2(g)o L. Vgea, p1(9) p2(g)

example:

The vector space of intertwiners is usually denoted as Homg (V7, Va).

convolutions are linear + equivariant —> they are translation intertwiners

equivariant

[
convolution @

translationluction
Sramu f
&:qulvarlant
—_—

convolution

Vi——m— W



Group representation theory

further topics:

- irreducible representations \

- isomorphic representations

- Schur's lemma useful for solving for

- Complete reducibility of unitary representations Intertwiner spaces

- Clebsch-Gordan decomposition

- Peter-Weyl theorem and Fourier transforms /



linear equivariant maps between representations are called intertwiners

Definition A.7 (Intertwiner). Let (p1, V1) and (p2, V2) be two G-representations. Vi L 7
An intertwiner between them is an equivariant linear map L : Vi — Vs, It satisfies
Lopi(g) = palg) oL Vgea, p1(g) p2(9)
The vector space of intertwiners is usually denoted as Homg (V7, Va). Vi T Va

we need to solve for intertwiner spaces to build equivariant networks

Schur’s lemma characterizes intertwiner spaces for irreducible representations

on the next slides: - irreducible representations
- isomorphic representations

- Schur’s lemma
- complete reducibility of unitary representations




Invariant subspaces, subrepresentations & irreps

representations may contain invariant subrepresentations

Definition A.5 (Invariant subspace, subrepresentation).

» let (p, V') be a G-representation and consider a vector subspace W C V.
» W is called invariant if it is closed under the action of p, i.e., if p(g)w € W YweW, ge G.

« the restriction plw : G — GL(W) of p to W is denoted as subrepresentation

AR

examples:
cos¢p -sing 0
Z-axis rotations: sing cos¢ 0O | hasthe z-axis and the xy-plane as invariant subspaces R?
0 0 1

trivial examples: the full subspace W = V' and the empty subspace W = 0 are always invariant Q




Invariant subspaces, subrepresentations & irreps

representations may contain invariant subrepresentations

Definition A.5 (Invariant subspace, subrepresentation).

» let (p, V') be a G-representation and consider a vector subspace W C V.
» W is called invariant if it is closed under the action of p, i.e., if p(g)w € W YweW, ge G.

« the restriction plw : G — GL(W) of p to W is denoted as subrepresentation

Definition A.6 (Irreducible representation (irrep)). A representation (p, V') is called irreducible represen-
tation (irrep) if it has only the two trivial subrepresentations W =V and W = (.

. . . cosk¢ -sink
example; the real irreps of SO(2) are frequency-k rotation matrices (sin kjb) oS ki) , keN



Isomorphic representations

Definition A.7 (Equivalent (isomorphic) representations). Tivo G-representations (p1,V1) and (pa,Va)
are said to be equivalent or isomorphic if there exists an invertible intertwiner, i.e. a vector space
isomorphism L : Vi — Vs satisfying L o p1(g) = p2(g) o L ¥V g € G, between them.

Gl =ang cos¢p -sing 0 1 0 0
(Sin¢ COSQﬁ) %50(2)-@ g GSg 0) TSO(2)-rep (O cosg -sing ) g i X-axis rotations

l 0 0 1 0 sing cos¢

not a vector
space isomorphism

zZ-axis rotations



Schur’'s lemma

intertwiners between irreducible representations are characterized by Schur’s lemma:

Lemma A.18 (Schur’s lemma). Let (p1, V1) and (p2, Va) be irreducible G-representations, then:
1) non-trivial intertwiners Vi — Vo exist only if the irreps are isomorphic, i.e. if p1 = pa.
2) if the representations agree, (p1, V1) = (p2, V), then:

- for C-reps: the irrep intertwiner is a scalar multiple \-id of the identity
- for R-reps: the irrep intertwiner is an endomorphism (easy to find)

application example: W pin(9) = poulg) - W

_ _ -1
intertwiner constraint g W = poulg) W - pin(9)

reduction to irrep constraints,

. . , irrep | decomposition
then solving via Schur’s lemma P P

Jila Jilz Jila Jila -1
VVirrep VVirrep o Py, (9) VVirrep VVirrep o pll(g)

J2l1 lez — T J2l1 J2l2 . =l
VVirrep Van—ep B pj2 (g) VVirrep VVirrep co plz(g)

VVirrep @Je[om PJ(Q') I/Vlrl'ﬁp @le[in Pl (g)_l



Compact groups & unitary representations

for compact groups, one may w.l.o.g. consider unitary representations
L» e.g. any subgroups of O(d) or U(d)

Definition A.7 (Unitary group). Let V' be an inner product space. The unitary group U(V)
is the group formed by all unitary transformations from V' to itself:

Uv) = {g € GL(V) ‘ {gv,gw)v = (U,w)v Vo, we V} < GL(V)

Definition A.8 (Unitary representation). A unitary representation on an inner product space V-
is a (continuous) homomorphism

p:G—UV).

Theorem A.9. Every linear representation of a compact group on an inner product space
is equivalent to a unitary representation.



Complete reducibility

Theorem A.10 (Complete reducibility). Let (p, V) be a finite dimensional unitary G-representation.
It decomposes into a direct sum p = @, p; of unitary irreps p;.



Complete reducibility

Theorem A.10 (Complete reducibility). Let (p, V) be a finite dimensional unitary G-representation.
It decomposes into a direct sum p = @, p; of unitary irreps p;.

example: Clebsch-Gordan decomposition of irrep tensor products

G =50(2): Pi®@pr = plj—1 D P+
., (coslp -sinlg .. (coslp -sinlp cos (|7 —Il¢) -sin(|j—1|¢
008 ¢ sinl¢  coslgo -sinj¢ (sinlc_b coslo ~ (sin ((j - l|¢3 cos ((|j = ,}|¢))>
. . [cosld -sinlg . (coslg -sinle o cos ((j +1)¢) -sin ((j + )¢
sin j¢ sinlp  cosld oS jo (sinlqb coslo s ((j n l)qb) o ((] +1)¢

G =S0(3) :
L+S

PL @ ps = @ pJ
J=|L—S]

)



Complete reducibility

Theorem A.10 (Complete reducibility). Let (p, V) be a finite dimensional unitary G-representation.
It decomposes into a direct sum p = @, p; of unitary irreps p;.

example: Clebsch-Gordan decomposition of irrep tensor products

application: tensor product nonlinearities, acting on irrep-features

a [ @
(f§>% Isl (ﬁ)
) -

Anderson et al., Cormorant: Covariant Molecular Neural Networks, NeurlPS 2018

—




Peter-Weyl theorem

Peter-Weyl theorem / Fourier transforms on homogeneous spaces

fct on homogeneous space harmonics

regular/quotient representation irrep spaces
(in general non-finite dimensional)

NI N

G=R+): W DNSZANIA
NIRRT
Peter-Wey! NAN NN
irrep decomposition
>
(aka Fourier transform) e ‘

G =S0(3) :

Peter-Weyl for homogeneous spaces: Lang & Weiler, A Wigner-Eckart theorem for group equivariant convolution kernels, ICLR 2021
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