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Translation equivariant CNNs on Euclidean spaces

Affine equivariant steerable CNNs on Euclidean spaces

Group convolutions  &  convolutions on homogeneous spaces

MLPs for image processing?



Multilayer Perceptrons  (MLPs)

universal function approximators

length

width

thickness

composed of affine maps + nonlinearities:

p(species A |      )

p(species B |      )



Multilayer Perceptrons  (MLPs)

using MLPs for image processing
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Multilayer Perceptrons  (MLPs)

using MLPs for image processing
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MLPs are ignorant of the geometric arrangement of pixels
(any permutation of pixels would be equivalent)



convolutional networks   ==   MLPs + equivariance



biological retina

spatial encoding 
in feature maps

convolutional networks   ==   MLPs + equivariance



convolution

translation equivariance

convolutional networks   ==   MLPs + equivariance



convolutional networks   ==   MLPs + equivariance



G-equivariant models generalize over G-orbits



Translation equivariant CNNs
on Euclidean spaces



Equivariant Neural Networks

(feed forward) neural networks are sequences of layers:

equivariant NNs are sequences of equivariant layers:

to design an equivariant network, we need to ...

... specify the  feature spaces  and  group actions  on them

... design  equivariant layers,  which commute with the group actions

feature maps with translation action

convolutions, bias summation,
nonlinearities, etc.



Feature maps

discretized feature maps on        are implemented as “tensors” of shape

spatial / pixel dimensions feature channels

continuous feature maps are functions                             that assign feature vectors                      to points 

= vector space of feature maps

feature maps form a                 -representation,  

known as regular representation

linear

feature maps carry a translation group action

defined by



Translation equivariant NNs

... map between         and         -dimensional input and output feature maps

... commute with the group action:

translation equivariant networks consist of layers                                                                   that ...



Linear equivariant maps         convolutions

ansatz for linear map:

parameterized by 2-point correlator

and defined by

generic integral transform

intuition: 
matrix multiplication
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Linear equivariant maps         convolutions

ansatz for linear map:

parameterized by 2-point correlator

and defined by

generic integral transform

now demand equivariance:

key takeaways:

   translation equivariant linear maps =   convolutions   (assuming regular reps)

              convolutional weight sharing  =  translation relativity  



Translation equivariant bias summation

consider a general bias summation operation

allows to sum a different bias                       at each parameterized by a bias field

similar spatial invariance results hold for other operations like  nonlinearities,  pooling,  ...



Translation equivariant CNNs  -  Summary

we defined feature vector spaces as spaces of feature maps

we defined a (linear) translation group action on feature maps
(regular) translation group representation

we derived CNN operations like convolutions / bias summation / etc by:

1)  asuming a flexible ansatz      (linear map, bias field summation)

2)  demanding translation equivariance                  resulting in spatial invariance / relativity / weight sharing

next we do the same with more general symmetries of Euclidean space



Affine equivariant steerable CNNs
on Euclidean spaces



Affine group equivariant CNNs

affine groups:

action on         : 

Image from ISBI 2012 EM segmentation challenge

translations

stabilizer / local symmetries   (rotations / reflections / scaling / shearing / ...)



Affine group equivariant CNNs

affine groups:

action on         : 

Image from ISBI 2012 EM segmentation challenge

translations

stabilizer / local symmetries   (rotations / reflections / scaling / shearing / ...)

action on feature spaces ? 



Feature vector fields

feature vector fields on Euclidean spaces ...

... are functions                             that assign feature vectors                       to points                         (like feature maps)

... carry an               -action      (the details depend on their field type      )               

examples: scalar fields                             transform like:

tangent vector fields                             transform like:

acts here by... 1) moving feature vectors on 

2)     -transforming feature vectors in



Feature vector fields

feature vector fields on Euclidean spaces ...

... are functions                             that assign feature vectors                       to points                         (like feature maps)

... carry an               -action      (the details depend on their field type      )               

examples: scalar fields                             transform like:

tangent vector fields                             transform like:

acts here by... 1) moving feature vectors on 

2)     -transforming feature vectors in

-feature fields                             transform like:

where                                is a      -representation acting on individual feature vectors in

   -feature fields form an              -representation, denoted as induced representation



Feature vector fields  -  examples

fluid flow optical flow diffusion tensor image



Feature vector fields – direct sum

steerable CNNs operate on ”stacks”                  of multiple independent feature fields

conventional CNNs operate on a “stack” of multiple independent feature map channels

#channels as hyperparameter

field types         and multiplicities as hyperparameters
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Feature vector fields  -  examples



Steerable CNNs

Steerable CNN layers map between feature fields of types        and



Steerable CNNs

Steerable CNN layers map between feature fields of types        and

approach: - start with flexible ansatz for layers

- demand               -equivariance, resulting in...
1)  spatial weight sharing
2)  G-steerability



Linear equivariant maps             -steerable convolutions

ansatz for linear map:

parameterized by 2-point correlator

and defined by

generic integral transform

now demand equivariance:



Linear equivariant maps             -steerable convolutions

ansatz for linear map:

parameterized by 2-point correlator

and defined by

generic integral transform

now demand equivariance:

given access to G-steerable kernels,

this is just a standard convolution as you know it

(our PyTorch library escnn implements them for compact      )



    -steerable kernels

    -steerable (or     -equivariant) kernels account for local stabilizer subgroup transformations of their field of view

more precisely, if    1) the field of view transforms spatially via

   2) its feature vectors transform according to

then it is guaranteed by      -steerability that the output feature transforms according to



    -steerable kernels – reflection group examples

example:  reflection steerable kernels

  representation                group elements

trivial / scalar

sign-flip / 
pseudo-scalar 

regular

  identity   reflection

full derivation of these examples  @  Weiler et al. 2021, Coordinate Independent Convolutional Networks, Section 5.3.3
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regular

  identity   reflection
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    -steerable kernels – expansion in linear basis

- the set                                              of unconstrained convolution kernels forms a vector space

to solve the     -steerability kernel constraint in general, observe that:

- the constraint                                                                                                                   is linear

    -steerable kernels form a linear (vector) subspace !

to parameterize steerable convolutions:

1)  solve for a basis                                of      -steerable kernels (precomputation step)

2)  expand kernel in this basis with trainable weights: (during forward pass)



    -steerable kernels – Wigner-Eckart theorem

Leon Lang Gabriele Cesa

the kernel constraint is for compact       analytically solved (including in particular any                     ) 

the solution decomposes steerable kernels into:

- harmonics on G-orbits  (Peter-Weyl)

- Clebsch-Gordan coefficients

- irrep endomorphisms



    -steerable kernels – Wigner-Eckart theorem

Leon Lang Gabriele Cesa

the kernel constraint is for compact       analytically solved (including in particular any                     ) 

the solution decomposes steerable kernels into:

- harmonics on G-orbits  (Peter-Weyl)

- Clebsch-Gordan coefficients

- irrep endomorphisms

we get transition rules between irrep-fields    (as in quantum mechanics)



Linear equivariant maps             -steerable convolutions

linear maps revisited:

our integral transform ansatz                                                               does not cover all possible linear maps

a stronger version of the theorem proves:

continuous,              -equivariant linear maps           convolutions with G-steerable Schwartz distributions

Erik Jenner

the distributional setting covers in particular equivariant partial differential operators



            -equivariant bias summation

as before:

consider a general bias summation operation

allows to sum a different bias                       at each parameterized by a bias field

as before:

demanding equivariance, we get:

one may only sum biases to the trivial irrep subspaces of    (e.g. not to tangent vector fields)



            -equivariant nonlinearities

(local) nonlinearities also need to be

1)  spatially shared

2) G-equivariant

the admissible choices depend on the field type

more details in Pim’s talk

e.g. we can’t use channel-wise ReLUs on tangent vectors



Implementation & empirical results



e2cnn / escnn library

PyTorch extension for              -steerable CNNs      (for compact G)

fix symmetry group              + action on 

fix types + multiplicities of feature fields 

construct  Aff(G)-equivariant convolution

convolution in native PyTorch:

convolution in e2cnn / escnn:

github: https://github.com/QUVA-Lab/e2cnn
https://github.com/QUVA-Lab/escnn

https://github.com/QUVA-Lab/e2cnn


Equivariance demonstration

SE(2)-steerable CNN:

conventional CNN:




Empirical results – group size

consider:           cyclic groups 
                      dihedral groups                     for different

    -augmented MNIST variants for                     or

apply     -invariant (!) map at final layer

results:

    -augmented MNIST variants for                     or

decreasing classification error for larger groups

too much invariance hurts,
but can be solved via group restriction



Emperical results

extensive benchmark of: 
- groups 
- G-representations / field types
- G-equivariant nonlinearities
- invariant maps

covering a wide range of related work and new models



Emperical results



Emperical results – reinforcement learning



Emperical results – equivariant convolutional Gaussian processes

convolutional GP with:
- mean  = tangent vector field
- covariance = symmetric tensor field



Relation to group convolutions  (correlations)  &
convolutions on homogeneous spaces



Group correlations

G-correlation can be thought of as patern matching with G-transformed templates (kernel)

conventional correlation on

       to               lifting correlation:

(feature map on       )

(feature map on             )



Group correlations

how to process lifted feature maps on                further?

G-pooling: - pool over G-axis, i.e. the responses from kernels at the same position, but different G-pose
- maps back to scalar fields                 
- G-invariant responses, can not encode G-pose of features
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how to process lifted feature maps on                further?

G-pooling: - pool over G-axis, i.e. the responses from kernels at the same position, but different G-pose
- maps back to scalar fields                 
- G-invariant responses, can not encode G-pose of features



Group correlations

how to process lifted feature maps on                further?

G-correlation: with kernel on

non-trivially equivariant
can be chained



Relation to steerable CNNs

group-correlation feature maps are scalar functions on

equivalent to functions

regular rep of G

steerable feature field of type 

(the transformation laws match as well)



Relation to steerable CNNs

steerable CNNs allow for regular representation feature fields, but also other representations

Fourier /
Peter-Weyl

irrep subspacesregular G-rep

they can in particular directly address irrep subspaces, which is not possible with group correlations



Equivariant convolutions on homogeneous spaces

group correlations and steerable CNNs generalize to arbitrary homogeneous spaces
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