Group Equivariant Convolutional Networks on Euclidean spaces

Maurice Weiler AMLab, QUVA Lab University of Amsterdam

😏 @maurice_weiler

signals on Euclidean spaces

Outline

MLPs for image processing?

Translation equivariant CNNs on Euclidean spaces

Affine equivariant steerable CNNs on Euclidean spaces

Group convolutions & convolutions on homogeneous spaces

universal function approximators $\ \ f:\ \mathbb{R}^N o \mathbb{R}^M$

composed of affine maps + nonlinearities: $x_{i+1} = \sigma(Wx_i + b)$

 \mathbb{R}^{10} using MLPs for image processing p(0|3) 3) p**(**1 \mathbb{R}^{28^2} 28px p(2|3) p(3|**3**) 28px p(4|**3**) . . . p(5|**3**) p(6|3) 3) p**(**7 p(8|**3**) p(9|**3**)

 \mathbb{R}^{10} using MLPs for image processing p(0|**3**) 3) p(\mathbb{R}^{28^2} 28px 3) p(2 p(3|**3**) 3) p**(**4 . . . p(5|**3**) p(6|3) 3) p(p**(** 8 3) p(9|**3**) MLPs don't generalize over geometric transformations

28px

 \mathbb{R}^{10} using MLPs for image processing p(0|**3**) p(\mathbb{R}^{28^2} 28px p(2 3) p(3|**3**) 3) p(4 p**(** 5 3) p(6|**3**) p(p**(**8 3) p(9|**3**) MLPs don't generalize over geometric transformations

28px

MLPs are ignorant of the geometric arrangement of pixels

(any permutation of pixels would be equivalent)

convolution

G-equivariant models generalize over *G*-orbits

Translation equivariant CNNs on Euclidean spaces

Equivariant Neural Networks

(feed forward) neural networks are sequences of layers:

$$\mathcal{F}_{0} \xrightarrow{L_{1}} \mathcal{F}_{1} \xrightarrow{L_{2}} \mathcal{F}_{2} \xrightarrow{L_{3}} \dots \xrightarrow{L_{N-1}} \mathcal{F}_{N-1} \xrightarrow{L_{N}} \mathcal{F}_{N}$$

equivariant NNs are sequences of equivariant layers:

to design an equivariant network, we need to ...

... specify the *feature spaces* and *group actions* on them \rightarrow feature maps with translation action

... design *equivariant layers*, which commute with the group actions \rightarrow convolutions, bias summation, nonlinearities, etc.

spatial / pixel dimensions \ / feature channels discretized feature maps on \mathbb{R}^d are implemented as "tensors" of shape (X_1, \ldots, X_d, C) *continuous feature maps* are functions $f: \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ $L^2(\mathbb{R}^d, \mathbb{R}^c) =$ vector space of feature maps linear feature maps carry a translation group action $\triangleright : (\mathbb{R}^d, +) \times L^2(\mathbb{R}^d, \mathbb{R}^c) \to L^2(\mathbb{R}^d, \mathbb{R}^c)$ defined by $[t \triangleright f](x) := f(x-t)$ x-tfeature maps form a $(\mathbb{R}^d, +)$ -representation,

known as regular representation $(\triangleright, L^2(\mathbb{R}^d, \mathbb{R}^c))$

translation equivariant networks consist of layers $\mathcal{L}: L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{in}}}) \to L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{out}}})$ that ...

... map between c_{in} and c_{out} -dimensional input and output feature maps

... commute with the group action: $\mathcal{L}[t \rhd f](x) = [t \rhd \mathcal{L}[f]](x) \quad \forall t \in (\mathbb{R}^d, +), \ x \in \mathbb{R}^d$

Linear equivariant maps \Leftrightarrow convolutions

ansatz for linear map:
generic integral transform
$$I_{\kappa} : L^{2}(\mathbb{R}^{d}, \mathbb{R}^{c_{in}}) \to L^{2}(\mathbb{R}^{d}, \mathbb{R}^{c_{out}})$$

parameterized by 2-point correlator $\kappa : \mathbb{R}^{d} \times \mathbb{R}^{d} \to \mathbb{R}^{c_{out} \times c_{in}}$
and defined by $I_{\kappa}[f](x) := \int_{\mathbb{R}^{d}} dy \ \kappa(x, y) \ f(y)$
intuition:
matrix multiplication
 $(Mv)_{x} = \sum_{y} M_{xy} v_{y}$

ansatz for linear map:

generic integral transform $I_\kappa: L^2(\mathbb{R}^d,\mathbb{R}^{c_{\mathrm{in}}}) o L^2(\mathbb{R}^d,\mathbb{R}^{c_{\mathrm{out}}})$

parameterized by 2-point correlator $\kappa: \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$

and defined by
$$\mathbf{I}_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \ \kappa(x,y) f(y)$$

now demand equivariance:

Theorem (Regular translation intertwiners are convolutions). The integral transform I_{κ} is translation equivariant iff the correlator depends only on relative distances, *i.e. satisfies*

$$\kappa(x+t, y+t) = \kappa(x, y)$$
 for any $x, y, t \in \mathbb{R}^d$

One can always choose t = -y to obtain $\kappa(x, y) = \kappa(x - y, 0) =: K(x - y)$, where we defined the matrix valued kernel

$$K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}, \quad x \mapsto K(x) := \kappa(x, 0).$$

The integral transform is therefore equivalent to a convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x-y) f(y) \, .$$

now demand equivariance:

Theorem (Regular translation intertwiners are convolutions). The integral transform I_{κ} is translation equivariant iff the correlator depends only on relative distances, *i.e. satisfies*

$$\kappa(x+t, y+t) = \kappa(x, y)$$
 for any $x, y, t \in \mathbb{R}^d$

One can always choose t = -y to obtain $\kappa(x, y) = \kappa(x - y, 0) =: K(x - y)$, where we defined the matrix valued kernel

$$K: \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}, \quad x \mapsto K(x) := \kappa(x, 0).$$

The integral transform is therefore equivalent to a convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x-y) f(y) \,.$$

consider a general bias summation operation $B_{\mathfrak{b}}: L^2(\mathbb{R}^d, \mathbb{R}^c) \to L^2(\mathbb{R}^d, \mathbb{R}^c), \quad f \mapsto f + \mathfrak{b}$

parameterized by a **bias field** $\mathfrak{b}: \mathbb{R}^d \to \mathbb{R}^c \implies allows to sum a$ *different bias* $<math>\mathfrak{b}(x) \in \mathbb{R}^c$ at each $x \in \mathbb{R}^d$

Theorem (Translation equivariant bias summation). *The bias field summation is translation equivariant iff the bias field is* spatially constant:

 $\mathfrak{b}(x) = b$ for some $b \in \mathbb{R}^c$

similar spatial invariance results hold for other operations like nonlinearities, pooling, ...

we defined **feature vector spaces** as spaces of feature maps we defined a (linear) **translation group action** on feature maps

(regular) translation group representation

we derived **CNN operations** like convolutions / bias summation / etc by:

1) asuming a flexible **ansatz** (linear map, bias field summation)

2) demanding translation equivariance \rightarrow resulting in spatial invariance / relativity / weight sharing

next we do the same with more general symmetries of Euclidean space

Affine equivariant steerable CNNs on Euclidean spaces

action on \mathbb{R}^d : (tg)x := gx + t

action on \mathbb{R}^d : (tg)x := gx + t

action on feature spaces ?

feature vector fields on Euclidean spaces ...

... are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ (like feature maps) ... carry an $\operatorname{Aff}(G)$ -action (the details depend on their *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^d \to \mathbb{R}^1$$
 transform like: $[(tg) \triangleright s](x) = 1 \cdot s((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \triangleright v](x) = g \cdot v((tg)^{-1}x)$
Aff(*G*) acts here by... 1) moving feature vectors on \mathbb{R}^d
2) *G*-transforming feature vectors in \mathbb{R}^c

feature vector fields on Euclidean spaces ...

... are functions $f : \mathbb{R}^d \to \mathbb{R}^c$ that assign feature vectors $f(x) \in \mathbb{R}^c$ to points $x \in \mathbb{R}^d$ (like feature maps) ... carry an Aff(*G*)-action (the details depend on their *field type* ρ)

examples: scalar fields
$$s : \mathbb{R}^d \to \mathbb{R}^1$$
 transform like: $[(tg) \triangleright s](x) = 1 \cdot s((tg)^{-1}x)$
tangent vector fields $v : \mathbb{R}^d \to \mathbb{R}^d$ transform like: $[(tg) \triangleright v](x) = g \cdot v((tg)^{-1}x)$
Aff(*G*) acts here by... 1) moving feature vectors on \mathbb{R}^d
2) *G*-transforming feature vectors in \mathbb{R}^c

 ρ -feature fields $f : \mathbb{R}^d \to \mathbb{R}^c$ transform like: $[(tg) \rhd f](x) = \rho(g) f((tg)^{-1}x)$

where $\rho: G \to \operatorname{GL}(c)$ is a *G*-representation acting on individual feature vectors in \mathbb{R}^c

ho-feature fields form an $\operatorname{Aff}(G)$ -representation, denoted as **induced representation** $\operatorname{Ind}_{G}^{\operatorname{Aff}(G)}
ho$

fluid flow

optical flow

diffusion tensor image

conventional CNNs operate on a "stack" of multiple independent feature map channels

 \Rightarrow #channels as hyperparameter

steerable CNNs operate on "stacks" $\bigoplus_i f_i$ of multiple independent feature fields

 \Rightarrow field types ho_i and multiplicities as hyperparameters

Steerable CNN layers map between feature fields of types $ho_{
m in}$ and $ho_{
m out}$

Steerable CNN layers map between feature fields of types $ho_{
m in}$ and $ho_{
m out}$

approach: - start with flexible ansatz for layers

- demand $\operatorname{Aff}(G)$ -equivariance, resulting in...

1) spatial weight sharing
$$----- (\mathbb{R}^d, +) \rtimes G =: Aff(G)$$

2) *G*-steerability $-----$

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

ansatz for linear map: generic integral transform $I_{\kappa}: L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{in}}}) \to L^2(\mathbb{R}^d, \mathbb{R}^{c_{\text{out}}})$

parameterized by 2-point correlator $\kappa: \mathbb{R}^d imes \mathbb{R}^d o \mathbb{R}^{c_{ ext{out}} imes c_{ ext{in}}}$

and defined by $\mathbf{I}_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \, \kappa(x,y) \, f(y)$

now demand equivariance:

Theorem. The integral transform I_{κ} is Aff(G) equivariant iff:

1) *it is a* convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y) \, dx$$

with a matrix valued kernel $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ defined by translation relativity $\kappa(x, y) = K(x - y)$ 2) the kernel is G-steerable: $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall g \in G, \ x \in \mathbb{R}^d$

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

Theorem. The integral transform I_{κ} is Aff(G) equivariant iff:

1) *it is a* convolution integral

$$\mathbf{I}_{\kappa}[f](x) = [K * f](x) = \int_{\mathbb{R}^d} dy \ K(x - y) f(y).$$

with a matrix valued kernel $K : \mathbb{R}^d \to \mathbb{R}^{c_{\text{out}} \times c_{\text{in}}}$ defined by translation relativity $\kappa(x, y) = K(x - y)$

2) the kernel is G-steerable: $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall g \in G, x \in \mathbb{R}^d$

G-steerable (or *G*-equivariant) kernels account for *local stabilizer subgroup transformations* of their field of view

more precisely, if 1) the field of view transforms spatially via g2) its feature vectors transform according to $\rho_{in}(g)$ Then it is guaranteed by G-steerability that the output feature transforms according to $\rho_{out}(g)$

G-steerable kernels – reflection group examples

example: *reflection* steerable kernels

$$G = \{e, s\}, \quad s^2 = e$$

$$K(gx) = \frac{1}{[\det g]} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g) \Join$$
$$\forall g \in G, x \in \mathbb{R}^2$$

representation	group e	-	
ho	identity e	reflection s	
trivial / scalar	(1)	(1)	
sign-flip / pseudo-scalar	(1)	(-1)	
regular	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$	

$\rho_{\rm out}$	$\rho_{\rm in}$	trivial	sign-flip	regular		
trivial		$K_{11}(s.\mathfrak{o}) = K_{11}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = -K_{11}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = K_{12}(\mathfrak{o})$		
	vial					
		$K_{11}(s.\mathfrak{o}) = -K_{11}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = K_{11}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = -K_{12}(\mathfrak{o})$		
sign-flip	-flip					
		$K_{11}(s.\mathfrak{o}) = K_{21}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = -K_{21}(\mathfrak{o})$	$K_{11}(s.\mathfrak{o}) = K_{22}(\mathfrak{o})$ $K_{12}(s.\mathfrak{o}) = K_{21}(\mathfrak{o})$		
reg	regular					

full derivation of these examples @ Weiler et al. 2021, Coordinate Independent Convolutional Networks, Section 5.3.3

G-steerable kernels – reflection group examples

full derivation of these examples @ Weiler et al. 2021, Coordinate Independent Convolutional Networks, Section 5.3.3

to solve the G-steerability kernel constraint in general, observe that:

- the set $\{K: \mathbb{R}^d \to \mathbb{R}^{c_{out} \times c_{in}}\}$ of *unconstrained* convolution kernels forms a *vector space*

- the constraint $K(gx) = \frac{1}{|\det g|} \rho_{\text{out}}(g) K(x) \rho_{\text{in}}(g)^{-1} \quad \forall \ g \in G, \ x \in \mathbb{R}^d$ is linear

 \implies *G*-steerable kernels form a *linear (vector) subspace* !

to parameterize steerable convolutions:

1) solve for a *basis* $\{K_1, \ldots, K_N\}$ of *G*-steerable kernels

2) expand kernel in this basis with trainable weights: $K = \sum_{i=1}^{N} w_i K_i$

(during forward pass)

G-steerable kernels – Wigner-Eckart theorem

the kernel constraint is for compact G analytically solved

(including in particular any G < O(d))

A WIGNER-ECKART THEOREM FOR **GROUP EQUIVARIANT CONVOLUTION KERNELS**

Leon Lang* AMLab, CSL University of Amsterdam l.lang@uva.nl

Maurice Weiler AMLab, OUVA Lab University of Amsterdam m.weiler.ml@gmail.com A PROGRAM TO BUILD E(n)-EQUIVARIANT STEERABLE CNNS

Leon Lang

Gabriele Cesa Oualcomm AI Research* University of Amsterdam gcesa@gti.gualcomm.com

Maurice Weiler University of Amsterdam University of Amsterdam 1.lang@uva.nl m.weiler.ml@gmail.com

Leon Lang

Gabriele Cesa

the solution decomposes steerable kernels into:

- harmonics on G-orbits (Peter-Weyl)
- Clebsch-Gordan coefficients
- irrep endomorphisms

G-steerable kernels – Wigner-Eckart theorem

the kernel constraint is for compact $\,G\,$ analytically solved

(including in particular any $G \leq O(d)$)

A WIGNER-ECKART THEOREM FOR GROUP EQUIVARIANT CONVOLUTION KERNELS

Leon Lang* AMLab, CSL University of Amsterdam 1.lang@uva.nl Maurice Weiler AMLab, QUVA Lab University of Amsterdam m.weiler.ml@gmail.com

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com

A PROGRAM TO BUILD

E(n)-EQUIVARIANT STEERABLE CNNS

Leon LangMaurice WeilerUniversity of AmsterdamUniversity of Amsterdam1.lang@uva.nlm.weiler.ml@

Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

Leon Lang

Gabriele Cesa

the solution decomposes steerable kernels into:

- harmonics on G-orbits (Peter-Weyl)
- Clebsch-Gordan coefficients
- irrep endomorphisms

we get transition rules between irrep-fields (as in quantum mechanics)

transition rules for SO(3)

Linear equivariant maps \Leftrightarrow *G*-steerable convolutions

STEERABLE PARTIAL DIFFERENTIAL OPERATORS FOR EQUIVARIANT NEURAL NETWORKS

Erik Jenner* University of Amsterdam erik@ejenner.com Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

linear maps revisited:

our integral transform ansatz $I_{\kappa}[f](x) := \int_{\mathbb{R}^d} dy \ \kappa(x, y) f(y)$ does not cover all possible linear maps

a stronger version of the theorem proves:

continuous, Aff(G)-equivariant linear maps \Leftrightarrow convolutions with *G*-steerable Schwartz distributions

the distributional setting covers in particular equivariant partial differential operators

as before:

consider a general bias summation operation $B_{\mathfrak{b}}: L^2(\mathbb{R}^d, \mathbb{R}^c) \to L^2(\mathbb{R}^d, \mathbb{R}^c), \quad f \mapsto f + \mathfrak{b}$

parameterized by a **bias field** $\mathfrak{b}: \mathbb{R}^d \to \mathbb{R}^c \implies$ allows to sum a *different bias* $\mathfrak{b}(x) \in \mathbb{R}^c$ at each $x \in \mathbb{R}^d$

demanding equivariance, we get:

Theorem. The bias field summation Aff(G)-equivariant iff the bias field is Aff(G)-invariant. This requires in particular

1) a spatially constant bias field, i.e. $\mathfrak{b}(x) = b$ for some shared bias $b \in \mathbb{R}^{c}$, and

2) this shared bias needs to be G-invariant, that is, $b = \rho(g)b \quad \forall g \in G$.

 \implies one may only sum biases to the *trivial irrep subspaces* of ρ (e.g. not to tangent vector fields)

Aff(G)-equivariant nonlinearities

(local) nonlinearities also need to be

- 1) spatially shared
- 2) G-equivariant

the admissible choices depend on the field type ρ

e.g. we can't use channel-wise ReLUs on tangent vectors

🖀 escnn Non Linearities ReLU PACKAGE REFERENCE • ELU • FourierPointwise ⊞ escnn.group FourierELU • QuotientFourierELU 🖯 escnn.nn

- QuotientFourierPointwise
- TensorProductModule
- GatedNonLinearity1

- NormNonLinearity
- VectorFieldNonLinearity

more details in Pim's talk

Implementation & empirical results

from escnn import gspaces	1
from escnn import nn	2
import torch	З
	4
r2_act = gspaces.rot2d0nR2(N=8)	5
feat_type_in = nn.FieldType(r2_act, 3*[r2_act.trivial_repr])	6
feat_type_out = nn.FieldType(r2_act, 10*[r2_act.regular_repr])	7
	8
conv = nn. <mark>R2Conv</mark> (feat_type_in, feat_type_out, kernel_size=5)	9
relu = nn. <mark>ReLU</mark> (feat_type_out)	10
	11
x = torch.randn(16, 3, 32, 32)	12
x = feat_type_in(x)	13
	14
y = relu(conv(x))	15

e2cnn / escnn library

PyTorch extension for Aff(G)-steerable CNNs (for compact G)

General E(2) - Equivariant Steerable CNNs

Maurice Weiler* University of Amsterdam, QUVA Lab m.weiler@uva.nl Gabriele Cesa*† University of Amsterdam cesa.gabriele@gmail.com

A PROGRAM TO BUILD E(n)-EQUIVARIANT STEERABLE CNNS

Gabriele Cesa Qualcomm AI Research* University of Amsterdam gcesa@qti.qualcomm.com Leon Lang University of Amsterdam l.lang@uva.nl

Maurice Weiler University of Amsterdam m.weiler.ml@gmail.com

https://github.com/QUVA-Lab/escnn

github: https://github.com/QUVA-Lab/e2cnn

convolution in native PyTorch:

conv = nn.Conv2d(in_channels=3, out_channels=64, kernel_size=5)

convolution in e2cnn / escnn:

fix symmetry group G = Z₈ + action on R² + r2_act = gspaces.Rot2dOnR2(N=8)
fix types + multiplicities of feature fields feat_type_in = nn.FieldType(r2_act, 3*[r2_act.trivial_repr])
feat_type_out = nn.FieldType(r2_act, 10*[r2_act.regular_repr])
construct Aff(G)-equivariant convolution + conv = nn.R2Conv(feat_type_in, feat_type_out, kernel_size=5)

Equivariance demonstration

SE(2)-steerable CNN:

conventional CNN:

Empirical results – group size

consider:

cyclic groups $G = C_N$ dihedral groups $G = D_N$ for different N

G-augmented MNIST variants for G = O(2) or SO(2)

apply *G*-<u>invariant</u> (!) map at final layer

results:

decreasing classification error for larger groups

too much invariance hurts, but can be solved via group restriction ${\rm Res}_{{\rm C}_{\cal N}}^{{\rm D}_{\cal N}}$

extensive benchmark of:

- groups $G \leq O(2)$
- G-representations / field types
- G-equivariant nonlinearities
- invariant maps

covering a wide range of related work and new models

group	representation		nonlinearity	invariant map	citation	MNIST O(2)	MNIST rot	MNIST 12k
$:= \{e\}$	(conventional C	NN)	ELU	-	-	5.53 ± 0.20	2.87 ± 0.09	0.91 ± 0.06
2 C ₁					7,9	5.19 ± 0.08	2.48 ± 0.13	0.82 ± 0.01
3 C ₂					7.9	3.29 ± 0.07	1.32 ± 0.02	0.87 ± 0.04
4 C ₃					-	2.87 ± 0.04	1.19 ± 0.06	0.80 ± 0.03
5 C4				6	. 1. 7. 9. 10	2.40 ± 0.05	1.02 ± 0.03	0.99 ± 0.03
6 C ₆	regular	$\rho_{\rm reg}$	ELU	G-pooling	8	2.08 ± 0.03	0.89 ± 0.03	0.84 ± 0.02
7 C ₈					7.9	1.96 ± 0.04	0.84 ± 0.02	0.89 ± 0.03
8 C ₁₂					[7]	1.95 ± 0.07	0.80 ± 0.03	0.89 ± 0.03
9 C ₁₆					7.9	1.93 ± 0.04	0.82 ± 0.02	0.95 ± 0.04
10 C ₂₀					[7]	1.95 ± 0.05	0.83 ± 0.05	0.94 ± 0.06
11 C ₄		$5\rho_{reg} \oplus 2\rho_{quot}^{C_4/C_2} \oplus 2\psi_0$			1	2.43 ± 0.05	1.03 ± 0.05	1.01 ± 0.03
12 C ₈		$5\rho_{reg} \oplus 2\rho_{quot}^{c_{8}/c_{2}} \oplus 2\rho_{quot}^{c_{8}/c_{4}} \oplus 2\psi_{0}$			-	2.03 ± 0.05	0.84 ± 0.05	0.91 ± 0.02
13 C ₁₂	quotient	$5\rho_{\text{reg}} \oplus 2\rho_{\text{quot}}^{C_{12}/C_2} \oplus 2\rho_{\text{quot}}^{C_{12}/C_4} \oplus 3\psi_0$			-	2.04 ± 0.04	0.81 ± 0.02	0.95 ± 0.02
$14 C_{16}$		$5\rho_{\text{reg}} \oplus 2\rho_{\text{quot}}^{c_{16}/c_2} \oplus 2\rho_{\text{quot}}^{c_{16}/c_4} \oplus 4\psi_0$			-	2.00 ± 0.01	0.86 ± 0.04	0.98 ± 0.04
15 C ₂₀		$5\rho_{\text{reg}} \oplus 2\rho_{\text{quot}}^{C_{20}/C_2} \oplus 2\rho_{\text{quot}}^{C_{20}/C_4} \oplus 5\psi_0$			-	2.01 ± 0.05	0.83 ± 0.03	0.96 ± 0.04
16	regular/scalar	$\psi_0 \xrightarrow{\text{conv}} \rho_{\text{reg}} \xrightarrow{G\text{-pool}} \psi_0$	ELU, G-pooling		6.36	2.02 ± 0.02	0.90 ± 0.03	0.93 ± 0.04
17 C ₁₆	regular/vector	$\psi_1 \xrightarrow{\text{conv}} \rho_{\text{reg}} \xrightarrow{\text{vector pool}} \psi_1$	vector field		13, 37	2.12 ± 0.02	1.07 ± 0.03	0.78 ± 0.03
18	mixed vector	$\rho_{\text{reg}} \oplus \psi_1 \xrightarrow{\text{conv}} 2\rho_{\text{reg}} \xrightarrow{\text{vector}} \rho_{\text{reg}} \oplus \psi_1$	ELU, vector field		-	1.87 ± 0.03	0.83 ± 0.02	0.63 ± 0.02
D		pool Pieg v I				2.40	2.44	0.00
19 D ₁						3.40 ± 0.07	3.44 ± 0.10	0.98 ± 0.03
20 D ₂					-	2.42 ± 0.07	2.39 ± 0.04	1.05 ± 0.03
21 D ₃					-	2.17 ± 0.06	2.10 ± 0.05 1.87 ± 0.05	0.94 ± 0.02
22 D ₄	regular		ELU	C pooling	0.1.38	1.88 ± 0.04	1.87 ± 0.04	1.09 ± 0.03 1.00 + 5.55
25 D ₆	regular	Preg	EE0	G-pooring	0	1.77 ± 0.06 1.68 ± 0.02	1.77 ± 0.04 1.72 ± 0.02	1.00 ± 0.03
24 D ₈					-	1.06 ± 0.06 1.66 ± 0.05	1.75 ± 0.03 1.65 ± 0.07	1.04 ± 0.02 1.67 ± 0.02
D D12						1.00 ± 0.05 1.62 ± 0.63	1.00 ± 0.05 1.65 ± 0.02	1.07 ± 0.01 1.68 ± 0.02
D16					-	1.02 ± 0.04 1.64 ± 0.02	1.00 ± 0.02 1.62 ± 0.02	1.00 ± 0.04
D 20	na and an / a a al -	d conv G-pool	ELU C acolina		-	1.09 + 0.06	1.02 ± 0.05	1.09±0.03
28 D ₁₆	iegular/scalar	$\psi_{0,0} \longrightarrow \rho_{reg} \longrightarrow \psi_{0,0}$	ELU, G-pooling		-	1.92 ± 0.03	1.88 ± 0.07	1.74±0.04
29	$meps \leq 1$	$\bigoplus_{i=0}^{3} \psi_i$				2.98 ± 0.04 2.09 ± 0.55	1.38 ± 0.09 1.28 ± 0.09	1.29 ± 0.05 1.97 ± 0.05
30	incps ≤ 5	$\bigoplus_{i=0}^{j} \psi_i$				3.02 ± 0.18 3.24 ± 0.07	1.36 ± 0.09	1.27 ± 0.03 1.36 ± 0.03
31	$meps \le 5$	$\bigoplus_{i=0}^{7} \psi_i$				0.24 ± 0.05 2.20 ± 0.05	1.44 ± 0.10 1.51 ± 0.10	1.30 ± 0.04
32	$C \text{ inceps} \leq 1$	$\bigoplus_{i=0}^{1} \psi_i$	ELU, norm-ReLU	conv2triv	-	3.30 ± 0.11 2.20 ± 0.11	1.31 ± 0.10 1.47 + 0.10	1.40 ± 0.07
33	C -inteps ≤ 1	$\bigoplus_{i=0}^{j} \psi_i^{\tilde{i}}$ $\bigoplus_{i=0}^{3} \psi_i^{\mathbb{C}}$			12	3.39 ± 0.10 3.48 ± 0.10	1.47 ± 0.06 1.51 ± 0.07	1.42 ± 0.04 1.52 ± 0.07
34	C -irreps ≤ 3	$\bigoplus_{i=0}^{j} \psi_i^{-}$			12	3.48 ± 0.16 2.50 ± 0.05	1.51 ± 0.05 1.50 ± 0.05	1.53 ± 0.07
.0	C -irreps ≤ 0	$\bigoplus_{i=0}^{j} \psi_i^{-}$ $\bigoplus_{i=0}^{j} \psi_i^{\mathbb{C}}$				3.39 ± 0.08 2.64 ± 0.55	1.09 ± 0.05 1.61 ± 0.00	1.00 ± 0.06 1.69 ± 0.00
SO(2)	\bigcirc -meps ≤ 7	$\Psi_{i=0} \psi_i$	ELU counch		-	3.04 ± 0.12 3.10 ± 0.02	1.01 ± 0.06	1.02 ± 0.03
31			ELU norm Pal II		-	3.10 ± 0.09 3.22 ± 0.02	1.41±0.04	1.40 ± 0.05
38			ELU shared norm-Pal U	norm	-	0.20 ± 0.08 2.88 ± 0.11	1.00±0.08	1.33 ± 0.03 1.18 ± 0.02
39			shared norm Pal U	nottii		2.00 ± 0.11 2.61 ± 0.02	1.10 ± 0.06 1.57 ± 0.05	1.18 ± 0.03
40	irreps ≤ 3	$\bigoplus_{i=0}^{3} \psi_i$	FLU gate			3.01 ± 0.09 2.37 ± 0.02	1.07 ± 0.05 1.00 ± 0.00	1.00 ± 0.05
41			ELU charad gata	conv2triv		2.31 ± 0.06 2.33 ± 0.00	1.09 ± 0.03	1.10 ± 0.02 1.19 ± 0.02
42			FLU gate			2.33 ± 0.06 2.23 ± 0.02	1.11 ± 0.03	1.05 ± 0.04
43			ELU, gate	norm		2.23 ± 0.09 2.20 ± 0.02	1.04 ± 0.04 1.01 + 0.02	1.03 ± 0.06 1.02 ± 0.00
-04	imans = 0	ala -	ELU		-	2.20 ± 0.06 5.46 ± 0.12	5.91 ± 0.03	1.00±0.03
40	meps = 0	$\psi_{0,0}$	ELU			0.40 ± 0.46 2.21 ± 0.45	0.21 ± 0.29 2.27 ± 0.19	2.05 ± 0.04
46	$meps \leq 1$	$\psi_{0,0} \oplus \psi_{1,0} \oplus 2\psi_{1,1}$				3.31 ± 0.17 2.49 ± 0.07	3.37±0.18	3.03±0.09
47	$meps \le 3$	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{j} 2\psi_{1,i}$	ELU, norm-ReLU	O(2)-conv2tri	v -	3.42 ± 0.03 2.50 ± 0.03	3.41 ± 0.10 2.79 ± 0.11	3.80 ± 0.09
43	incps ≤ 5	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{-2} 2\psi_{1,i}$			-	3.39 ± 0.13 3.84 ± 0.05	3.78 ± 0.31 3.00 ± 0.32	4.17±0.15
49	$meps \leq r$	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus_{i=1}^{2} \mathcal{U}_{1,i}$ $\mathbf{L}_{i,1} \oplus \mathbf{SO}(2) \oplus \mathbf{L}_{i,1} \oplus \mathbf{SO}(2)$				0.84 ± 0.25	3.90 ± 0.18	4.37±0.27
50	Ind-irreps ≤ 1	Ind $\psi_0 \oplus \text{Ind } \psi_1$ $I = 1 \oplus SO(2) \bigoplus^3 = I \oplus I \oplus SO(2)$			-	2.72 ± 0.05	2.70±0.11	2.39 ± 0.07
51 O(2)	Ind-irreps ≤ 3	Ind $\psi_0^{(s)} \bigoplus_{i=1}^s \operatorname{Ind} \psi_i^{(s)}(2)$	ELU, Ind norm-ReLU	Ind-conv2triv		2.66 ± 0.07	2.65 ± 0.12	2.25 ± 0.06
52	Ind-irreps ≤ 5	Ind $\psi_0^{(s)} \bigoplus_{i=1}^s \operatorname{Ind} \psi_i^{(s)}(2)$			-	2.71 ± 0.11	2.84 ± 0.10	2.39 ± 0.09
53	Ind-irreps ≤ 7	Ind $\psi_0^{SO(2)} \bigoplus_{i=1}^{i} \operatorname{Ind} \psi_i^{SO(2)}$			-	2.80 ± 0.12	2.85 ± 0.06	2.25 ± 0.08
54	irreps < 3	$\psi_{0,0} \oplus \psi_{1,0} \bigoplus^3 , 2\psi_{1,i}$	ELU, gate	O(2)-conv2tri	v -	2.39 ± 0.05	2.38 ± 0.07	2.28 ± 0.07
55	F	$\tau v, v \sim \tau 1, v \Psi_{i=1} = \tau \tau_{i,i}$		norm		2.21 ± 0.09	2.24 ± 0.06	2.15 ± 0.03
56	Ind-irrens < 3	Ind $\psi^{SO(2)} \oplus^3$ Ind $\psi^{SO(2)}$	ELU. Ind gate	Ind-conv2triv	-	2.13 ± 0.04	2.09 ± 0.05	2.05 ± 0.05
57	ma-meps ~ 5	$\bigoplus_{i=1} \max \psi_i$	LLO, Inti gate	Ind-norm	-	1.96 ± 0.06	1.95 ± 0.05	1.85 ± 0.07

Dihedral point group D_N

group convolutions as drop in replacement

- same number of parameters
- same training setup
- no hyperparameter tuning

model	CIFAR-10	CIFAR-100	STL-10
CNN baseline	2.6 ± 0.1	17.1 ± 0.3	12.74 ± 0.23
GCNN	2.05 ± 0.03	14.30 ± 0.09	9.80 ± 0.40

Test errors on natural image datasets

exploiting local symmetries

Emperical results – reinforcement learning

On-Robot Learning With Equivariant Models

Dian Wang Mingxi Jia Xupeng Zhu Robin Walters Robert Platt Khoury College of Computer Sciences Northeastern University Boston, MA 02115, USA

Emperical results – equivariant convolutional Gaussian processes

Equivariant Learning of Stochastic Fields: Gaussian Processes and Steerable Conditional Neural Processes

Peter Holderrieth^{*1} **Michael Hutchinson**^{*1} **Yee Whye Teh**¹²

convolutional GP with:

- mean = tangent vector field
- covariance = symmetric tensor field

Table 3. Results on ERA5 weather experiment trained on US data. Mean log-likelihood ± 1 standard deviation over 5 random seeds reported. Left: tested on US data. Right: tested on China data.

Model	US	China
GP	$0.386{\pm}0.005$	$-0.755 {\pm} 0.001$
CNP	$0.001 {\pm} 0.017$	-2.456 ± 0.365
ConvCNP	$0.898 {\pm} 0.045$	-0.890 ± 0.059
SteerCNP (C_4)	1.255±0.019	-0.578 ± 0.173
SteerCNP (C_8)	$1.038 {\pm} 0.026$	-0.582 ± 0.104
SteerCNP (C_{16})	$1.094{\pm}0.015$	-0.550 ± 0.073
SteerCNP (D_4)	$1.037 {\pm} 0.037$	- 0.429 ±0.067
SteerCNP (D_8)	$1.032 {\pm} 0.011$	$-0.539 {\pm} 0.129$

Relation to group convolutions (correlations) & convolutions on homogeneous spaces

$$\left[K\star_G f\right](g) = \int_G K(g^{-1}h) f(h) \ d\lambda(h)$$

G-correlation can be thought of as patern matching with G-transformed templates (kernel)

conventional correlation on
$$\mathbb{R}^d$$
: $\langle t \triangleright K | f \rangle_{\mathbb{R}^d}$: $\mathbb{R}^d \to \mathbb{R}$ (feature map on \mathbb{R}^d)
 \mathbb{R}^d to $\operatorname{Aff}(G)$ *lifting* correlation: $\langle tg \triangleright K | f \rangle_{\mathbb{R}^d}$: $\operatorname{Aff}(G) \to \mathbb{R}$ (feature map on $\operatorname{Aff}(G)$)

 $G = C_4$

how to process lifted feature maps on Aff(G) further?

G-pooling: - pool over *G*-axis, i.e. the responses from kernels at the same position, but different *G*-pose

- maps back to scalar fields $\mathbb{R}^d
 ightarrow \mathbb{R}$
- G-invariant responses, can not encode G-pose of features

how to process lifted feature maps on $\operatorname{Aff}(G)$ further?

G-pooling: - pool over *G*-axis, i.e. the responses from kernels at the same position, but different *G*-pose

- maps back to scalar fields $\mathbb{R}^d
 ightarrow \mathbb{R}$
- G-invariant responses, can not encode G-pose of features

how to process lifted feature maps on $\operatorname{Aff}(G)$ further?

G-correlation: $\langle tg
ightharpoonrighthar$

$$g \triangleright K \left| f \right\rangle_{\operatorname{Aff}(G)} : \operatorname{Aff}(G) \to \mathbb{R}$$

with kernel on $\operatorname{Aff}(G)$

non-trivially equivariant

can be chained

group-correlation feature maps are scalar functions on $\operatorname{Aff}(G) := (\mathbb{R}^d, +) \rtimes G \cong_{\operatorname{top}} \mathbb{R}^d \times G$

equivalent to functions $\mathbb{R}^d \to \underbrace{\{\phi: G \to \mathbb{R}\}}_{i \in I}$

regular rep of G

(the transformation laws match as well)

steerable feature field of type $\,
ho_{
m reg}$

steerable CNNs allow for regular representation feature fields, but also other representations

they can in particular directly address *irrep subspaces*, which is not possible with group correlations

group correlations and steerable CNNs generalize to arbitrary homogeneous spaces

$$\operatorname{Aff}(\operatorname{SO}(2)) = \operatorname{SE}(2)$$
 as $\operatorname{SO}(2)$ -bundle over \mathbb{R}^2

SO(3) as SO(2)-bundle over S^2

