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Overview of the presentation

▶ Review of MPNN problems with focus on over-squashing

▶ (Long) discussion on curvature on graphs: old and new

▶ How curvature helps understanding information flow in MPNNs

▶ Graph-rewiring and future directions
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Introduction



Preliminaries on graph operators

▶ G = (V,E) is an undirected graph with |V| = n and i ∼ j if (i, j) ∈ E

▶ A,D are the adjacency and (diagonal) degree matrices

▶ We write di := Dii for the degree of node i

▶ dG(i, j) is the shortest walk distance between nodes i, j

▶ Sr(i) : {j ∈ V : dG(i, j) = r}
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Preliminaries on graph operators

▶ The normalized adjacency is Ā = D− 1
2 AD− 1

2

▶ The Laplacian ∆ = I − Ā is an operator acting on signals f : V → R as

(∆f)i = fi −
∑
j∼i

fj√
didj

The Laplacian ∆ ⪰ 0 → eigenvalues satisfy 0 = λ∆
0 ≤ . . . ≤ λ∆

n−2 ≤ ρ∆, with ρ∆ ≤ 2,
and are called (graph) frequencies, eigenvectors are denoted by {ϕ∆

ℓ }n−1
ℓ=0
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Information encoded in λ∆
ℓ

[1]

▶ The multiplicity λ∆
0 = 0 represents the number of connected components of G

▶ S ⊂ V, ∂S = {(i, j) : i ∈ S, j ∈ V \ S} and vol(S) =
∑

i∈S di.

hG := min
S⊂V

|∂S|
min{vol(S), vol(V \ S)} =⇒ Cheeger inequality : 2hG ≥ λ1 ≥ h2

G
2

→ λ∆
1 := gap(∆) measures the ‘required energy’ to separate G into two communities

▶ 2 − ρ∆ measures the deviation of G from a bipartite graph

[1] Chung and Graham (1997)
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The formalism of MPNNs

▶ Graph G = (V,E)

▶ Finput ∈ Rn×p matrix representation of input node features, with rows {(fi)⊤
input}n

i=1

▶ Encoding map ψEN : Rp → Rd0

▶ Update functions {ϕt
UP : Rdt → Rdt+1} for 0 ≤ t ≤ T − 1, with T the depth

MPNN : fi(t+ 1) = ϕt
UP (fi(t), {{fj(t) : j ∼ i}}) , fi(0) = ψEN((fi)input).
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Common problems in MPNNs

Under-reaching Over-smoothing Over-squashing

6



Under-reaching

▶ Information cannot propagate further than there are layers in the MPNN (shown above
with three layers): in principle this can be fixed by increasing depth

7



Over-smoothing

▶ In a deep MPNN, node representations can
become similar (smoothed out) and weaken
influence of graph structure

▶ In principle, this can be fixed by choosing message
passing functions that do not act as low-pass
filters and is independent of the topology

8



The over-squashing phenomenon[2]

▶ Depending on the graph-topology, the size of the
r−hop of a node may grow exponentially

▶ As messages are sent through the ‘same structural
edges’ via fixed-size node representations we lose
information

[2] Alon and Yahav (2021)
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Understanding over-squashing

Questions:
▶ Can we formalize over-squashing a bit

better?

▶ Where in the graph the information is
‘getting stuck’?

▶ What are viable solutions?
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaahow
about changing the topology?

Upshot:
▶ Use sensitivity analysis to monitor

information propagation

▶ Negatively curved edges are responsible
for the over-squashing phenomenon

▶ Over-squashing only depends on
topology and is unavoidable for MPNNs
→ how about changing the graph?
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Ricci curvature on manifolds

Consider a Riemannian manifold (M, g) → p ∈ M , v,w ∈ TpM : gp(v,w) = 0

Sectional curvature Kp(v,w) is the Gaussian curvature of the surface with tangent plane at
p spanned by v,w

Ricci curvature Ricp : TpM × TpM → R bilinear map

Given v unit vector in TpM → {v, e2, . . . , en} ⊂ TpM orthonormal basis

Ricp(v,v) =
n∑

i=2
Kp(v, ei)
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Ricci curvature of space-forms

▶ Ricci curvature on ‘prototypical’ manifolds

Spherical (> 0) Euclidean (= 0) Hyperbolic (< 0)
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What is the meaning of Ricci curvature? Part I

▶ On a sphere: |B(p, r)| ∼ C

▶ In Euclidean space: |B(p, r)| ∼ poly(r)
▶ In Hyperbolic space: |B(p, r)| ∼ exp(r)

Volume comparison results:

Theorem (Bishop-Cheeger-Gromov)
If Ric ≥ (n− 1)k, then r 7→ |B(p, r)|/v(n, k, r) is a nonincreasing function, with
v(n, k, r) the volume of space-form of dimension n, constant curvature k and radius r.

13
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What is the meaning of Ricci curvature? Part II

Pick geodesics starting at nearby points with parallel velocity

▶ With positive curvature geodesics converge

▶ With zero curvature, geodesics stay parallel

▶ With negative curvature, geodesics diverge

14



Intuition

▶ Swapping geodesics for edges, we can take discrete analogues on graphs

Clique (> 0) Grid (= 0) Tree (< 0)

15



What is Ric capturing then? A transport point of view

Figure 1: Figure taken from Ollivier (2009)

Let x ∈ M , v ∈ TxM and γx,v the geodesic starting at x with initial velocity v

Theorem (Ollivier)
Let ϵ, δ > 0. Let Sx = {γx,v(ϵ) : v ∈ TxM, |v| = 1} and similarly for Sy with
y = γx,v(δ). If we map Sx to Sy using parallel transport, the average travelled distance is

δ

(
1 − ϵ2

2nRic|x(v, v) + O(ϵ3 + ϵ2δ)
)
, δ, ϵ → 0.
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Can we extend the same idea to graphs?[3]

In a nutshell: if Ric is positive (negative), balls are closer (farther) than their centers

Represent balls with volume measures →

Idea: how does distance between measures compare with distance between centers?

▶ Given a metric space, use underlying structure to measure distance among points

▶ For distance among measures, use Wasserstein metric

[3] Description based on Samal et al. (2018)
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Ollivier curvature on graphs

For i ∈ V and α ∈ [0, 1) → lazy RW-probability measure

µα
i : j 7→


α, j = i

1−α
di
, j ∼ i,

0, otherwise

Problem: what is the coupling that moves mass from µα
i to µα

j while minimizing the
travelled distance?

18
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Ollivier curvature on graphs

The transportation distance between µα
i , µ

α
j is

W1(µα
i , µ

α
j ) := inf

M

∑
k∈S1(i)

∑
w∈S1(j)

MkwdG(k,w),

where inf is over M satisfying the marginal constraints:∑
k∈S1(i)

Mkw = µα
j (w),

∑
w∈S1(j)

Mkw = µα
i (k).

19



Ollivier curvature on graphs

Definition (Lin et al.)
Given i ∼ j we define the α-Ollivier curvature by

κα(i, j) := 1 −
W1(µα

i , µ
α
j )

dG(i, j) .

Since κα(1 − α)−1 is increasing and bounded the quantity below is well-defined:

κ(i, j) := lim
α→1

κα(i, j)
1 − α

.

20



Does it make sense?

Analogy with results on Ric in the continuous case

Theorem (Lin et al.)
Let κ(i, j) ≥ κ > 0 for each edge (i, j) ∈ E. Then

▶ The diameter of the graph is bounded by diam(G) ≤ 2
κ

▶ The spectral gap is controlled from below: gap(∆) ≥ κ

21



What is κ capturing then?

Informal characterization: κ(i, j) measures the structural importance of (i, j) for the
connectedness of S1(i) ∪ S1(j)

→ The more positive κ(i, j) the more overlapping between S1(i) and S1(j)

→ The more negative κ(i, j) the fewer shortcuts between S1(i) and S1(j)

κ(i, j) is ‘local’ and will not detect if there are cycles with length > 5 based at (i, j)

22
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Expressive power vs computational cost

Ollivier is expressive → κ(i, j) function of cycles of up to length 5 based at (i, j)

Caveat: Complexity of κ : E → R is O(|E|d3
max)

Can we approximate Ollivier? Let ♯∆(i, j) := |S1(i) ∩ S1(j)|

Theorem (Jost and Liu)
If min{di, dj} > 1, then

κ(i, j) ≥ 2
di

+ 2
dj

− 2 + 2 |♯∆(i, j)|
max{di, dj}

+ |♯∆(i, j)|
min{di, dj}

.

23
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Forman curvature

Other curvature candidates? (Augmented) Forman curvature[4]

F(i, j) = 4 − di − dj + 3 ♯∆(i, j)

▶ Computationally cheap..

▶ ..but limited power (can only distinguish triangles, gives grids negative curvature)

Can we strike a balance?

[4] Forman (2003); Samal et al. (2018)
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Balanced Forman curvature: preliminaries

(i) ♯∆(i, j) := S1(i) ∩ S1(j) are the triangles based at i ∼ j.

(ii) ♯i□(i, j) are neighbors of i forming a 4-cycle based at i ∼ j without diagonals

(iii) γmax(i, j) is the maximal number of 4 cycles based at i ∼ j traversing a common node.

The degeneracy factor γmax(0, 1) = 2
since there exist two 4 cycles
passing the same node (5) 0 1

2

3

4

5

6
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(ii) ♯i□(i, j) are neighbors of i forming a 4-cycle based at i ∼ j without diagonals

(iii) γmax(i, j) is the maximal number of 4 cycles based at i ∼ j traversing a common node

We introduce a new[5] combinatorial curvature named Balanced Forman

BF(i, j) : = 2
di

+ 2
dj

− 2

[5] Topping∗, Di G.∗, et al. (2021)
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Does it make sense?

Cycle Cn≥5 Grid Gn Clique Kn Tree Tr

Graph

BFG 0 0 n
n−1

4
r+1 − 2

Theorem (Topping∗, Di G.∗, et al.)
Given an unweighted graph G, for any edge i ∼ j we have κ(i, j) ≥ BF(i, j).

→ Generalizes Jost and Liu (2014) to include 4-cycle contributions
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Other curvature notions

▶ Bakry-Emery: rich theory thanks to its formulation[8] but computationally expensive

▶ Effective resistance curvature[9]: this is expressive but global in nature meaning that
value along an edge affected by distant nodes

[8] Keller and Münch (2018)
[9] Devriendt and Lambiotte (2022)
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Over-squashing and curvature

Figure 2: Our work received an outstanding paper honorable mention at ICLR22! Figure 3: An example of a curvature-inspired flow to improve the propagation of
information and alleviate over-squashing

Joint with J. Topping, B. Chamberlain, X. Dong, and M. Bronstein
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Sensitivity analysis

▶ Symmetrically normalized adjacency → Ā = D− 1
2 AD− 1

2

▶ Message functions {ψt} and update functions {ϕt}

MPNN : f (t+1)
i = ϕt

f (t)
i ,

n∑
j=1

Āijψt(f (t)
i , f (t)

j )



Lemma (Topping∗, Di G.∗, et al.)

Let i, s ∈ V with dG(i, s) = T + 1. If |∇ϕt| ≤ α and |∇ψt| ≤ β for 0 ≤ t ≤ T , then∣∣∣∣∣∂f (T +1)
i

∂f (0)
s

∣∣∣∣∣ ≤ (αβ)T +1(ĀT +1)is.
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Over-squashing example: binary tree

▶ Node s is one node in i’s
exponentially-growing receptive field
→ (ĀT +1)is = 1

2 · 3−T

▶ Demonstrated in Tree-NeighborsMatch
experiment in Alon and Yahav (2021)

▶ If the graph topology induces
over-squashing, can we identify the
edges responsible for bottlenecks[a]?

[a] Defined as those regions in the graph where MPNNs
‘struggle’ to send messages
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How to identify bottlenecks?

If ĀT +1
is is small →

∣∣∣∣∂f (T +1)
i

∂f (0)
s

∣∣∣∣ small → data at s fail to propagate to i in T + 1 layers

→ The graph topology induces over-squashing in MPNN independent of the choice of
update and activation functions

Main question: Can we actually identify which edges cause bottlenecks?

Idea: Use curvature! We know it is related to ‘dispersion’ of edges and locally measures
connectedness of neighbourhoods via edges
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Conventions

We adopt the Balanced Forman curvature

BF(i, j) := 2
di

+ 2
dj

− 2 + 2 |♯∆|
max{di, dj}

+ |♯∆|
min{di, dj}

+ γ−1
max

max{di, dj}
(|♯i□ + ♯j□)

Convention: We say that BF(i, j) is very negative if there exists δ > 0 s.t.
0 < δ < (max{di, dj})− 1

2 , δ < γ−1
max and BF(i, j) ≤ −2 + δ.

→ exclude pathological cases with many 4-cycles traversing the same node
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Negatively curved edges cause over-squashing

Informal version: If BF(i, j) is very negative, then there exist many nodes at hop-distance 2
from i such that MPNNs struggle to send messages from i to such nodes in 2 layers

Theorem (Topping∗, Di G.∗, et al.)
Let i ∼ j with di ≤ dj and assume that BF(i, j) is very negative. Then there exists
Qj ⊂ S2(i) satisfying |Qj | > δ−1 and for 0 ≤ t0 ≤ T − 2 we have

1
|Qj |

∑
k∈Qj

∣∣∣∣∣∂f (t0+2)
k

∂f (t0)
i

∣∣∣∣∣ < (αβ)2δ
1
4 .
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Surgical analysis: graph-rewiring

Negatively curved edges −→ bottlenecks −→ over-squashing

General idea: If the topology only is responsible for over-squashing → what if we change it?

→ resonates with ideas from geometric flows as Ricci flow

∂tg(t) = −2Ric(g(t))

Very high-level description:

▶ Negatively curved directions are stretched

▶ Positively curved regions become rounder and collapse
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Ricci flow for tackling over-squashing?

Benefit of this analysis:

▶ we can surgically identify bottlenecks by studying the curvature

▶ we can add/remove edges accordingly −→ we propose SDRF algorithm
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Stochastic Discrete Ricci Flow

This is more like a ‘backwards’ Ricci flow

39



SDRF: Example

40



SDRF: Example

Edge with 
minimum Ric(i,j)
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SDRF: Example

Candidate edges to
add (plus several
others)
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SDRF: Example

New edge sampled
based on potential
improvement to
bottleneck

Curvature of previous
bottleneck increased
=> bottleneck improved
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SDRF: Example

This edge has the highest
curvature, which is > C+_
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SDRF: Example

It is removed

45



SDRF: Example

We repeat with the next
edge with minimum
curvature

46



SDRF: Example

Sample the next beneficial edge

47



SDRF: Example

Suppose this edge now has 
maximum curvature, but not > C+; 
we do not remove it

48



SDRF: Example

Finally, suppose this edge now has
min curvature, but there are no
candidate edges to add that will help

49



SDRF: Example

We have converged and are done

50



Graph-rewiring for GNNs

But are we allowed to change the input graph-topology?

▶ Graph Attention Networks learn to re-weight the input graph based on data[10]

▶ DIGL[11] proposes to smooth the graph out as pre-processing

▶ Methods that directly ‘access’ higher-order information contained in distant hops
effectively rewire the graph

▶ Learnable approaches to make the graph increasingly look like an expander [12]

→ It works in the continuous case, how about the discrete setting?

[10] Veličković et al. (2018)
[11] Klicpera et al. (2019)
[12] Arnaiz-Rodríguez et al. (2022)
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[10] Veličković et al. (2018)
[11] Klicpera et al. (2019)
[12] Arnaiz-Rodríguez et al. (2022)

51



Graph-rewiring for GNNs

But are we allowed to change the input graph-topology?

▶ Graph Attention Networks learn to re-weight the input graph based on data[10]

▶ DIGL[11] proposes to smooth the graph out as pre-processing

▶ Methods that directly ‘access’ higher-order information contained in distant hops
effectively rewire the graph

▶ Learnable approaches to make the graph increasingly look like an expander [12]

→ It works in the continuous case, how about the discrete setting?
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Can random-walk based rewiring alleviate over-squashing?

▶ DIGL[13] rewires the graph by graph diffusion
▶ Leads to significant improvements in performance on a range of models and datasets

[13] Klicpera et al. (2019)
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What about DIGL / Graph Diffusion Convolution?

▶ Based on an assumption of homophily - common but not guaranteed
▶ Consider DIGL with the PPR kernel: replace input adjacency with

Rα :=
∞∑

k=0
θP P R

k (D−1A)k = α
∞∑

k=0

(
(1 − α)(D−1A)

)k

Recall that a global measure of connectivity of G is

hS = |∂S|
min{vol(S), vol(V \ S)} , hG = min

S
hS

→ related to spectral gap λ∆
1
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What about DIGL / Graph Diffusion Convolution?

Theorem (Topping∗, Di G.∗, et al.)

Let S ⊂ V with vol(S) ≤ vol(G)/2. Then hS,α ≤
(

1−α
α

)
davg(S)
dmin(S) hS , where davg(S) and

dmin(S) are the average and minimum degree on S, respectively.

Thanks to Lin et al. (2011) and our comparison result

Proposition (Topping∗, Di G.∗, et al.)
If BF(i, j) ≥ κ > 0 for each edge (i, j) ∈ E, then hG ≥ κ/2.
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Experimental results

▶ Experiment: semi-supervised node classification with a simple GCN
▶ DIGL > SDRF with homophily and DIGL < SDRF with heterophily

% edges added / removed by method.
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Recap

▶ Over-squashing operational formulation: study Jacobian ∂f (t)/∂f (t0)

▶ Over-squashing is an issue iff the given task is a function of long-range relations in G

▶ Messages sent along negatively curved edges fail to propagate effectively in an MPNN

▶ The over-squashing phenomenon is independent of the chosen MPNN architecture

▶ Curvature-aware rewiring methods alleviate the over-squashing by surgical operations,
while diffusion approaches could fail

56



Recap

▶ Over-squashing operational formulation: study Jacobian ∂f (t)/∂f (t0)

▶ Over-squashing is an issue iff the given task is a function of long-range relations in G

▶ Messages sent along negatively curved edges fail to propagate effectively in an MPNN

▶ The over-squashing phenomenon is independent of the chosen MPNN architecture

▶ Curvature-aware rewiring methods alleviate the over-squashing by surgical operations,
while diffusion approaches could fail

56



Recap

▶ Over-squashing operational formulation: study Jacobian ∂f (t)/∂f (t0)

▶ Over-squashing is an issue iff the given task is a function of long-range relations in G

▶ Messages sent along negatively curved edges fail to propagate effectively in an MPNN

▶ The over-squashing phenomenon is independent of the chosen MPNN architecture

▶ Curvature-aware rewiring methods alleviate the over-squashing by surgical operations,
while diffusion approaches could fail

56



Recap

▶ Over-squashing operational formulation: study Jacobian ∂f (t)/∂f (t0)

▶ Over-squashing is an issue iff the given task is a function of long-range relations in G

▶ Messages sent along negatively curved edges fail to propagate effectively in an MPNN

▶ The over-squashing phenomenon is independent of the chosen MPNN architecture

▶ Curvature-aware rewiring methods alleviate the over-squashing by surgical operations,
while diffusion approaches could fail

56



Recap

▶ Over-squashing operational formulation: study Jacobian ∂f (t)/∂f (t0)

▶ Over-squashing is an issue iff the given task is a function of long-range relations in G

▶ Messages sent along negatively curved edges fail to propagate effectively in an MPNN

▶ The over-squashing phenomenon is independent of the chosen MPNN architecture

▶ Curvature-aware rewiring methods alleviate the over-squashing by surgical operations,
while diffusion approaches could fail

56



What’s next?

How to account for long-range dependencies in an ideal world?

▶ Sparsity: mitigates computational cost and have MPNNs (roughly) scaling as O(E)

▶ ‘Good information flow’: if the interaction of i, j ∈ V is important for the task, then
messages sent from i should ‘quickly’ reach j

A class of graphs that may satisfy both requirements are expanders:

Definition
A family of finite, connected graphs {Gn} is an expander family if there exist positive
constants D, ε s.t. dmax(Gn) ≤ D and λ∆n

1 ≥ ε.
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What’s next?

Is positive curvature enforcing an ‘expander’ type of property?

Theorem (Salez[14])
There are no sparse expanders with positive Ollivier curvature.

→ positive curvature reduces bottleneck but at the cost of sparsity

How to have both sparsity and good information flow? → We proposed a surgical approach
but could be improved in many ways

[14] Salez (2021)
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What’s next?

▶ Is the notion of expander graph the right one?

▶ Can we find the right graph structure for the task in the expander family?

In general we might not want to increase information flow across any pair of nodes!

Design data-driven graph-rewiring methods: a foray into this direction is Arnaiz-Rodríguez
et al. (2022) → rewire graph to make it ‘behave like an expander’ but in learnable way

Using λ∆
1 as an indirect measure of over-squashing may be ‘too rough’
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What’s next

Alon and Yahav (2021) → add an FC-layer at the end of the architecture to break bottlenecks
→ ‘post-processing’ type of rewiring that leads to improvement on molecular datasets

▶ Are we alleviating over-squashing or just counting cycles?

▶ Is it enough to make node-representations interact after graph has been leveraged?

▶ Was SDRF solving over-squashing for node-classification tasks?

▶ How to actually test solution to over-squashing?
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What’s next

(Graph)-Transformers let any pair of nodes interact with each other

→ solves over-squashing at the cost of complexity

Key question: What are we losing here when dropping the graph bias?

Is it enough to follow a from-local-to-global approach?
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