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Presentation outline

▶ Graph preliminaries

▶ Spectral analysis and Dirichlet energy on graphs

▶ Dynamical systems on graphs

▶ MPNNs as multi-particle systems and the gradient flow framework (GRAFF)

▶ Presentation of Graph Neural Networks as Gradient Flows
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Introduction



Preliminaries on graph operators

▶ G = (V,E) is an undirected graph with |V| = n and i ∼ j if (i, j) ∈ E

▶ A,D are n× n adjacency and (diagonal) degree matrices

▶ The normalized adjacency is Ā = D− 1
2 AD− 1

2

▶ The Laplacian ∆ = I − Ā is an operator acting on signals f : V → R as

(∆f)i = fi −
∑
j∼i

fj√
didj

The Laplacian ∆ ⪰ 0 → eigenvalues satisfy 0 = λ∆
0 ≤ . . . ≤ λ∆

n−2 ≤ ρ∆, with ρ∆ ≤ 2,
and are called (graph) frequencies, eigenvectors are denoted by {ϕ∆

ℓ }n−1
ℓ=0
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Signal on graphs: Dirichlet energy and smoothness

Consider a signal (feature) f : V → R e.g. temperature of each node

We write f = (f1, . . . , fn)⊤ → f =
∑

ℓ cℓϕ
∆
ℓ

∆ can be used to measure smoothness of f : the Dirichlet energy[1] EDir is defined by

EDir(f) := 1
4
∑
i∼j

|| fi√
di

− fj√
dj

||2 = 1
2⟨f ,∆f⟩ = 1

2
∑

ℓ

λ∆
ℓ c

2
ℓ .

→ the frequency components of f determine the variations of the signal along edges

The quantity fi/
√
di − fj/

√
dj := ∇f(i, j) is the gradient of f along (i, j) ∈ E

[1] Zhou and Schölkopf (2005)

3



Signal on graphs: Dirichlet energy and smoothness

Consider a signal (feature) f : V → R e.g. temperature of each node

We write f = (f1, . . . , fn)⊤ → f =
∑

ℓ cℓϕ
∆
ℓ

∆ can be used to measure smoothness of f : the Dirichlet energy[1] EDir is defined by

EDir(f) := 1
4
∑
i∼j

|| fi√
di

− fj√
dj

||2 = 1
2⟨f ,∆f⟩ = 1

2
∑

ℓ

λ∆
ℓ c

2
ℓ .

→ the frequency components of f determine the variations of the signal along edges

The quantity fi/
√
di − fj/

√
dj := ∇f(i, j) is the gradient of f along (i, j) ∈ E

[1] Zhou and Schölkopf (2005)

3



A rough picture: low-pass vs high-pass filtering

Consider a dynamical process t 7→ f(t) ∈ Rn starting at f0 → f(t) =
∑

ℓ cℓ(t)ϕ∆
ℓ

If the high-frequency components |cℓ(t)|, with ℓ >> 0, decrease with time, then the process
acts as ‘low-pass filtering’ → smooths the signal out

If the low-frequency components |cℓ(t)|, with ℓ ∼ 0, decrease with time, then the process
acts as ‘high-pass filtering’ → sharpens the signal

Figure 1: First four Laplacian eigenvectors of Minnesota Road graph. Figure taken from Bronstein et al. (2017)
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A prototypical low-pass filtering: the graph heat equation

Consider an input signal f0 : V → R and recall that f 7→ EDir(f) = 1
2⟨f ,∆f⟩

If we want to minimize EDir → take infinitesimal steps in the direction of steepest descent

Heat equation : ḟ(t) = −∇f EDir(f(t)) = −∆f(t), f(0) = f0.

This is a gradient flow: ˙EDir(f(t)) ≤ 0 and f(t) → f∞ s.t. ∆f∞ = 0 i.e.
f∞ ∈ span(

√
d1, . . . ,

√
dn)⊤

Low-pass dynamics → ‘features become indistinguishable’ when t >> 1
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Multiple channels

Consider F : V → Rd with matrix representation F ∈ Rn×d → EDir can be extended as

EDir(F) = 1
4
∑

(i,j)∈E
|| fi√

di
− fj√

dj
||2 = 1

2trace(F⊤∆F)

The gradient flow of EDir yields heat equation in each feature channel[2]:

ḟ r(t) = −∆f r(t), 1 ≤ r ≤ d

[2] ‘Channels’ = ‘feature components’ = ‘feature coordinates’
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The ⊗ formalism

We can vectorize a matrix signal F ∈ Rn×d → vec(F) ∈ Rnd

We use the Kronecker product Id ⊗ ∆ ∈ Rnd × Rnd to rewrite EDir as

EDir(F) = 1
2⟨vec(F), (Id ⊗ ∆)vec(F)⟩

The heat equation can also be rewritten by ‘stacking the columns as’

vec(Ḟ(t)) = −(Id ⊗ ∆)vec(F(t))

Upshot: ⊗ formalism reduces a matrix ODE to a vector ODE → vectorized ODEs are much
easier to deal with
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A motivating example

How to determine if a dynamical process on a graph is dominated by the low or high
frequencies?

Use EDir after normalization

Consider Ḟ(t) = ĀF(t) ⇐⇒ vec(Ḟ(t)) = (Id ⊗ Ā)vec(F(t)), with F(0) = F0

Recall that Ā = I − ∆ so we can solve as

f r(t) = eĀt f r(0) = e(I−∆)t f r(0), 1 ≤ r ≤ d

Expand each channel in the basis {ϕ∆
ℓ } satisfying Āϕ∆

ℓ = (1 − λ∆
ℓ )ϕ∆

ℓ :

f r(t) =
∑

ℓ

e(1−λ∆
ℓ )t⟨f r(0),ϕ∆

ℓ ⟩ϕ∆
ℓ
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A motivating example

Recall that ϕ∆
0 is the smoothest eigenvector i.e. ∆ϕ∆

0 = 0

The projection along ϕ∆
0 is the one growing the fastest[3] since

⟨f r(t),ϕ∆
0 ⟩ = e(1−0)t⟨f r(0),ϕ∆

0 ⟩

The dynamics are ‘dominated’ by the low-frequencies: does EDir(F(t)) → 0?

No:[4]

EDir(f r(t)) = 1
2⟨f r(t),∆f r(t)⟩ =

∑
ℓ>0

e(1−λ∆
ℓ )t(⟨f r(0),ϕ∆

ℓ ⟩)2 → ∞

[3] Unless |⟨f r(0), ϕ∆
0 ⟩| = 0 which is only true in a smaller subspace of Rn

[4] Unless ⟨f r(0), ϕ∆
ℓ ⟩ = 0 for all ℓ > 0
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A motivating example

Looking at EDir is not enough → we should normalize first: in fact we have

EDir(F(t)/||F(t)||) → 0, t → ∞

and for each channel 1 ≤ r ≤ d ∃ f r
∞ s.t.

f r(t)/||f r(t)|| → f r
∞, ∆f r

∞ = 0

Upshot: Analyse F(t) via EDir(F(t)/||F(t)||) → Rayleigh quotient of Id ⊗ ∆
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Low-frequency-dominant: LFD

Definition

A dynamical system Ḟ(t) initialized at F(0) is Low-Frequency-Dominant LFD if
EDir(F(t)/||F(t)||) → 0 for t → ∞.

Does it make sense?

Lemma

A dynamical system is LFD iff for each sequence tj → ∞ there exist a subsequence
tjk

→ ∞ and F∞ s.t. F(tjk
)/||F(tjk

)|| → F∞ and ∆f r
∞ = 0.
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LFD dynamics: numerical example

A numerical example of LFD dynamics: T = 4.0, τ = 0.1

Ḟ(t) = ĀF(t)Λ, Λ =
[
1 0
0 0

]

In both cases the eigenvector ϕ∆
0 dominates the dynamics

▶ Top: solution becomes unbounded

▶ Bottom: evolution of F(t)/||F(t)||
→ convergence to ker(∆) where
we only distinguish nodes based on their degrees
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High-frequency-dominant: HFD

Note that EDir(F) ≤ 1
2ρ∆||F||2 → EDir(F/||F||) ≤ 1

2ρ∆

Definition

A dynamical system Ḟ(t) initialized at F(0) is High-Frequency-Dominant (HFD) if
EDir(F(t)/||F(t)||) → ρ∆/2 for t → ∞.

Does it make sense?

Lemma

A dynamical system is HFD iff for each sequence tj → ∞ there exist a subsequence
tjk

→ ∞ and F∞ s.t. F(tjk
)/||F(tjk

)|| → F∞ and ∆f r
∞ = ρ∆f r

∞.
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Why do we need HFD?

Consider Ḟ(t) = −ĀF(t) → eigenvector ϕ∆
ρ∆

dominates the dynamics

▶ Evolution of F(t)/||F(t)|| → convergence to ker(ρ∆I − ∆) where we distinguish
nodes based on the largest frequency eigenvector (right figure)
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Homophily vs heterophily aka short vs long range interactions

Semi-supervised setting: Vtr ⊂ V labelled → predict labels on Vtest

Homophily: Neighbours often share labels → labels are smooth i.e. low-pass is ‘good’

Heterophily: 1 − homophily → labels are not smooth i.e. low-pass is ‘bad’

Dual perspective: short-range relations vs long-range relations → relevant for graph
classification and regression tasks on molecules
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Graph Convolutional Networks

A layer of Graph Convolutional Network (GCN)[5] is defined by:

F(t+ 1) = ReLU
(
ĀF(t)W(t)

)

Ā is the message-passing matrix and W(t) is the ‘channel-mixing’

▶ Poor performance on heterophilic graphs

▶ Degradation when increasing depth (over-smoothing)[6]

[5] Kipf and Welling (2017)
[6] Nt and Maehara (2019); Oono and Suzuki (2020); Cai and Wang (2020)
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Low-pass filters and over-smoothing: review

Theorem (Cai and Wang)

Let (1 − λ̄)2 := maxλ∆
ℓ

(1 − λ∆
ℓ )2 and sT = maxt≤T sing(W(t)). Then the solution

F(T ) of GCN satisfies

EDir(F(T )) ≤ (sT (1 − λ̄))2T EDir(F(0)).

▶ If singular values of W(t) are controlled in terms of the spectrum of ∆ → solution of
GCN becomes increasingly smoother

▶ GCN should succeed with homophily but fail with heterophily

▶ If T >> 1, we converge to ker(∆) i.e. only information to separate nodes is degree
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Are graph convolutional models doomed?

▶ What if the singular values of W are not bounded by (1 − λ̄)2?

▶ Can we require more structure on W?

▶ What is the interpretation of W?

▶ What is the ‘minimal requirement’ for a graph convolutional framework to be HFD?
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A physics-inspired approach

time

Figure 2: Actual GRAFF dynamics: attractive and repulsive forces lead to a
non-smoothing process able to separate labels

Joint w/ J. Rowbottom∗, B. Chamberlain, T. Markovich, M. Bronstein (2022)
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Outline of the contributions

▶ We propose a gradient flow framework (GRAFF) for MPNNs where the equations
follow the direction of steepest descent of a learnable energy

▶ We show how the channel-mixing W can learn to induce either LFD or HFD
dynamics via its spectrum

▶ This allows us to interpret MPNNs as multi-particle dynamics with attractive and
repulsive forces generated by positive and negative eigenvalues of W

▶ Show that LFD/HFD dynamics induced by this framework adapt to the underlying
homophily/heterophily
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Residual networks as discrete ODEs

Figure 3: Dynamics of ResNet vs ODE. Figure
taken from Chen et al. (2018)

A ResNet F(t+ τ) = F(t) + τResNet(F(t)) is
the Euler discretization of an ODE[7] (as the step-size τ → 0)

Ḟ(t) = ResNet(F(t))

ODE theory → analysing and improving ResNets

What about residual MPNNs?

F(t+ τ) = F(t) + τMPNN(G,F(t)) → Ḟ(t) = MPNN(G,F(t))

[7] Haber and Ruthotto (2018); Chen et al. (2018)
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Instances of ‘continuous’ MPNNs

The linear GCN[8] system

F(t+ 1) = ĀF(t)W(t) → Ḟ(t) = ĀF(t)W(t) − F(t)

If we use the ⊗-formalism: GCN is the unit step-size discretization of

vec(Ḟ(t)) = (W(t)⊤ ⊗ Ā − I)vec(F(t))

→ we’ll see that the dampening term I is responsible for LFD dynamics

[8] Wu et al. (2019)
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Instances of ‘continuous’ MPNNs

Continuous Graph Neural Network (CGNN)[9]: set W = W⊤ →

Ḟ(t) = −∆F(t) + F(t)W + F(0)

▶ CGNN is a gradient flow

▶ We’ll prove that this is never HFD

▶ Source term F(0) increases expressive power

[9] Xhonneux et al. (2020)
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Instances of ‘continuous’ MPNNs

Graph Neural Diffusion (GRAND)[10] is the ‘continuous’ version of GAT[11]

Ḟ(t) = −(I − A(F(t)))F(t)

▶ A(F(t)) is an attention matrix over the edge set

▶ (Linear) GRAND is a diffusion process with maximum principle → low-pass filter and
over-smoothing

[10] Chamberlain et al. (2021)
[11] Veličković et al. (2018)
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Instances of ‘continuous’ MPNNs

PDE-GCND
[12] is a diffusion process given by

Ḟ(t) = −∆F(t)W(t)⊤W(t)

→ We’ll prove that this is a smoothing process and hence not suitable for heterophilic graphs

[12] Eliasof et al. (2021)
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Instances of ‘continuous’ MPNNs

Second-order variants[13] → by design they prevent over-smoothing

F̈(t) = MPNN(G,F(t)) − γF(t) − αḞ(t)

However, why oscillatory behaviour? Do we need them?

The actual equations are parametric → how to choose them?

Upshot: Learn an energy rather than the equations!

[13] Eliasof et al. (2021); Rusch et al. (2022)
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Dynamical systems as gradient flows

Dynamical systems are gradient flows when ∃ E : RN → R:

Ḟ(t) = ODE(F(t)) = −∇FE(F(t)) =⇒ Ė(F(t)) ≤ 0.

Gradient flows are easier to analyze and interpret since the solution F(t) is minimizing E

What if we parametrize an energy rather than the MPNN equations?

Goal: Learn Eθ generalizing EDir → find right notion of smoothness for the problem

Ḟ(t) = MPNN(G,F(t)) = −∇FEθ(G,F(t))
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GNNs as Gradient Flows part 1: taking
inspiration from harmonic maps



Harmonic map flow in continuous space

f : Rn → (Rd, h) smooth with h a constant metric → The Dirichlet energy of f is

E(f, h) = 1
2

∫
Rn

∥∇f∥2
h dx = 1

2

d∑
q,r=1

n∑
j=1

∫
Rn
hqr∂jf

q∂jf
r(x)dx

→ measures the smoothness of f wrt h

Eells and Sampson (1964) studied the gradient flow of E given by ḟ(t) = −∇f E(f(t)) to
find minimizers of E → extended to manifolds harmonic map flow

For PDE-based image processing gradient flows of E recover the Perona-Malik diffusion[14]

[14] Kimmel et al. (1997); Perona and Malik (1990)

28



Harmonic map flow in continuous space

f : Rn → (Rd, h) smooth with h a constant metric → The Dirichlet energy of f is

E(f, h) = 1
2

∫
Rn

∥∇f∥2
h dx = 1

2

d∑
q,r=1

n∑
j=1

∫
Rn
hqr∂jf

q∂jf
r(x)dx

→ measures the smoothness of f wrt h

Eells and Sampson (1964) studied the gradient flow of E given by ḟ(t) = −∇f E(f(t)) to
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Extending the formalism to graphs

f : Rn → (Rd, h) smooth with h a constant metric → The Dirichlet energy of f is

E(f, h) = 1
2

∫
Rn

∥∇f∥2
h dx = 1

2

d∑
q,r=1

n∑
j=1

∫
Rn
hqr∂jf

q∂jf
r(x)dx

→ Replace
∫
Rn with

∑
i∈V and ∂j |i with ∇(i,j)∈E:

EDir
W (F) := 1

4

d∑
q,r=1

∑
i∈V

∑
j:(i,j)∈E

hqr(∇f q)ij(∇f r)ij = 1
4
∑

(i,j)∈E
||W(∇F)ij ||2.

with H = W⊤W with W ∈ Rd×d

If we minimize EDir
W we expect ||(∇F)ij || to shrink ‘except’ when inside ker(H)
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Generalized harmonic flow on graphs is smoothing

We treat W as learnable weights and study the gradient flow of EDir
W :

Ḟ(t) = −∇FEDir
W (F(t)) = −∆F(t)W⊤W

Proposition (Di G.∗, Rowbottom∗, et al.)

The dynamics is smoothing. Let P ker
W be the projection onto ker(W⊤W), then

EDir(F(t)) ≤ e−2tgap(W⊤W)gap(∆)||F(0)||2 + EDir((P ker
W ⊗ In)vec(F(0))), t ≥ 0.

∃ ϕ∞ ∈ Rd: for each i ∈ V we have fi(t) →
√
diϕ∞ + P ker

W fi(0).
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Ḟ(t) = −∇FEDir
W (F(t)) = −∆F(t)W⊤W

Proposition (Di G.∗, Rowbottom∗, et al.)

The dynamics is smoothing. Let P ker
W be the projection onto ker(W⊤W), then

EDir(F(t)) ≤ e−2tgap(W⊤W)gap(∆)||F(0)||2 + EDir((P ker
W ⊗ In)vec(F(0))), t ≥ 0.

∃ ϕ∞ ∈ Rd: for each i ∈ V we have fi(t) →
√
diϕ∞ + P ker

W fi(0).

32



Generalized harmonic flow on graphs is smoothing

We treat W as learnable weights and study the gradient flow of EDir
W :

Ḟ(t) = −∇FEDir
W (F(t)) = −∆F(t)W⊤W

Proposition (Di G.∗, Rowbottom∗, et al.)

The dynamics is smoothing. Let P ker
W be the projection onto ker(W⊤W), then

EDir(F(t)) ≤ e−2tgap(W⊤W)gap(∆)||F(0)||2 + EDir((P ker
W ⊗ In)vec(F(0))), t ≥ 0.

∃ ϕ∞ ∈ Rd: for each i ∈ V we have fi(t) →
√
diϕ∞ + P ker

W fi(0).

33



Generalized harmonic flow on graphs is smoothing

We treat W as learnable weights and study the gradient flow of EDir
W :

Ḟ(t) = −∇FEDir
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A few comments on the graph harmonic flow

▶ No W separates the limit embeddings of nodes with same degree and input features

▶ If W has zero kernel, nodes with same degrees converge to the same representation and
over-smoothing occurs[15]

▶ Over-smoothing occurs independently of the spectral radius of W if its eigenvalues are
positive – even for equations which lead to residual MPNNs when discretized[16]

[15] Similar to Nt and Maehara (2019); Oono and Suzuki (2020)
[16] This is different from Nt and Maehara (2019); Oono and Suzuki (2020); Cai and Wang (2020)
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GNNs as Gradient Flows part 2:
multi-particle energy approach



A more general energy

We can rewrite EDir
W (F) = 1

2
∑

i⟨fi,W⊤Wfi⟩ − 1
2
∑

i,j āij⟨fi,W⊤Wfj⟩

Replace W⊤W with symmetric matrices Ω,W ∈ Rd×d →

Etot(F) := 1
2
∑

i

⟨fi,Ωfi⟩ − 1
2
∑
i,j

āij⟨fi,Wfj⟩ ≡ Eext
Ω (F) + Epair

W (F)

The gradient flow of Etot is

Ḟ(t) = −∇FEtot(F(t)) = −F(t)Ω + ĀF(t)W.
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Attraction vs repulsion

Node-features → particles in Rd with energy Etot

▶ Eext
Ω is independent of the graph topology ∼ external field

▶ Epair
W ∼ potential energy, with W defining pairwise interactions of adjacent nodes

Decompose W = Θ⊤
+Θ+ − Θ⊤

−Θ− into positive and negative eigenvalues

37
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Attraction vs repulsion

W = Θ⊤
+Θ+ − Θ⊤

−Θ−

Etot(F) = 1
2
∑

i

⟨fi, (Ω − W)fi⟩ + 1
4
∑
i,j

||Θ+(∇F)ij ||2 − 1
4
∑
i,j

||Θ−(∇F)ij ||2.

The gradient flow minimizes Etot → W encodes..

▶ attraction via its positive eigenvalues since ||Θ+(∇F)ij ||2 decreases edge-wise

▶ repulsion via its negative eigenvalues since ||Θ−(∇F)ij ||2 increases edge-wise
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Spectrum of W induces LFD or HFD

Consider Ḟ(t) = ĀF(t)W ⇐⇒ vec(Ḟ(t)) = (W ⊗ Ā)vec(F(t))

Write the spectrum of W as {λW
r } with λW

+ = (max λW
r )+ and λW

− = (minλW
r )−

Any eigenvalue of W ⊗ Ā can be written as λW
r λĀ

i = λW
r (1 − λ∆

i )

Let P ρ−
W be the projection onto the eigenspace of W ⊗ Ā associated with

ρ− := |λW
− |(ρ∆ − 1) → Recall that ρ∆ is the largest eigenvalue of ∆ = I − Ā
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Any eigenvalue of W ⊗ Ā can be written as λW
r λĀ
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Spectrum of W induces LFD or HFD

Proposition (Di G.∗, Rowbottom∗, et al.)

If ρ− > λW
+ , then Ḟ(t) = ĀF(t)W is HFD for a.e. F(0): there exists ϵHFD such that [17]

EDir(F(t)) = e2tρ−

(
ρ∆
2 ||P ρ−

W F(0)||2 + O(e−2tϵHFD)
)
, t ≥ 0,

and F(t)/||F(t)|| converges to F∞ ∈ Rn×d such that ∆f r
∞ = ρ∆f r

∞, for 1 ≤ r ≤ d.

If enough mass is distributed over the negative eigenvalues of the ‘channel-mixing’, graph
high frequencies dominate → what matters is how the spectra of ∆ and W interact

[17] We have an explicit formula depending on ‘spectral gaps’ of ∆ and W
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high frequencies dominate → what matters is how the spectra of ∆ and W interact

[22] We have an explicit formula depending on ‘spectral gaps’ of ∆ and W
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Source term and a more general family of energies

Equations with a source term may have better expressive power[23]

In our framework: add an extra energy term Esource
W̃ (F) := β⟨F,F(0)W̃⟩ →

Ḟ(t) = −F(t)Ω + ĀF(t)W − βF(0)W̃.

We can also replace Ā with A satisfying Aij = 0 if (i, j) /∈ E →

Epair
A,W(F) := −

∑
(i,j) Aij⟨fi,Wfj⟩.

[23] Xhonneux et al. (2020); Chen et al. (2020); Thorpe et al. (2021)
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Comments on non-linear activations

Non-linear function σ can ‘activate’ the inner products in the energy:

Eext
Ω (F) + Epair

W (F) = 1
2
∑

i σ(⟨fi,Ωfi⟩) − 1
2
∑

i,j āijσ(⟨fi,Wfj⟩).

A few reasons why we keep the gradient flow linear

▶ Perform spectral analysis in closed form[24]

▶ We have seen no gain in performance when including non-linear activations

▶ We can ‘push the non-linear maps’ in either the encoding block or the decoding one

[24] Wu et al. (2019); Oono and Suzuki (2020); Chen et al. (2020)
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i,j āijσ(⟨fi,Wfj⟩).

A few reasons why we keep the gradient flow linear

▶ Perform spectral analysis in closed form[24]

▶ We have seen no gain in performance when including non-linear activations

▶ We can ‘push the non-linear maps’ in either the encoding block or the decoding one

[24] Wu et al. (2019); Oono and Suzuki (2020); Chen et al. (2020)

47



A comparison with (some) continuous GNN models

Recall the continuous models:

▶ Linear PDE − GCND: ḞPDE−GCND(t) = −∆F(t)K(t)⊤K(t)

▶ CGNN: ḞCGNN(t) = −∆F(t) + F(t)Ω̃ + F(0) with symmetric Ω̃

▶ Linear GRAND: ḞGRAND(t) = −∆RWF(t) = −(I − A(F(0)))F(t)

Proposition (Di G.∗, Rowbottom∗, et al.)

(i) PDE − GCND is a smoothing model: ĖDir(FPDE−GCND
(t)) ≤ 0.

(ii) For a.e. F(0) it holds: CGNN is never HFD and if we remove the source term, then
EDir(FCGNN(t)/||FCGNN(t)||) ≤ e−gap(∆)t.

(iii) If G is connected, FGRAND(t) → µ as t → ∞, with µr = mean(f r(0)), 1 ≤ r ≤ d.
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▶ CGNN: ḞCGNN(t) = −∆F(t) + F(t)Ω̃ + F(0) with symmetric Ω̃
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GNNs as Gradient Flows part 3:
discrete setting



The requirement for symmetry

When classical MPNNs are discretized gradient flows?

Let A ∈ Rn×n be a symmetric graph vector field → (A)ij = 0, (i, j) /∈ E

Consider a family of linear GNNs with shared weights of the form

F(t+ 1) = F(t)Ω + AF(t)W + βF(0)W̃, 0 ≤ t ≤ T.

They are gradient flow of a ‘multi-particle’ energy iff Ω and W are symmetric.
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Can graph convolutional models be high-frequency dominated?

Introduce step-size τ ≤ 1 and consider gradient flow system

F(t+ τ) = F(t) + τĀF(t)W, W = W⊤,

Let P ρ−
W be the projection into the eigenspace of W ⊗ Ā = W ⊗ (I − ∆) associated with

the eigenvalue ρ− := |λW
− |(ρ∆ − 1) and set

λW
+ (ρ∆ − 1))−1 < |λW

− | < 2(τ(2 − ρ∆))−1 (1)
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Can graph convolutional models be high-frequency dominated?

Theorem (Di G.∗, Rowbottom∗, et al.)
If equation 3 holds then there exists δHFD < ρ− s.t.

EDir(F(mτ)) = (1 + τρ−)2m

(
ρ∆
2 ||P ρ−

W F(0)||2 + O
((1 + τδHFD

1 + τρ−

)2m
))

.

The dynamics is HFD for a.e. F(0) and F(mτ)/||F(mτ)|| → F∞ s.t. ∆f r
∞ = ρ∆f r

∞.

Conversely, if G is not bipartite, then for a.e. F(0) the system F(t+ τ) = τĀF(t)W,
with W symmetric, is LFD independent of the spectrum of W.
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HFD dynamics via negative eigenvalues

→ linear discrete gradient flows can be HFD due to the negative eigenvalues of W

▶ Differently from previous results[25], no bound on spectral radius of W coming from the
graph topology as long as λW

+ is small enough

→ Recall that previous over-smoothing results required W to have sufficiently small
singular values depending on the spectrum of ∆
→ If we have symmetry and control the spectrum of W we can avoid over-smoothing
(and in fact be HFD) in terms of positive vs negative eigenvalues of W

[25] Nt and Maehara (2019); Oono and Suzuki (2020); Cai and Wang (2020)
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The role of the residual connection

▶ Without a residual term the dynamics is LFD for a.e. F(0) independently of the sign
and magnitude of the eigenvalues of W

→ provides a justification for the residual connection in terms of the spectrum of W

→ explains via induced dynamics and spectral analysis the ‘expressivity’ results in
Chen et al. (2020)
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Reversing time and sign of the edge weights

Let {λW
r } be the spectrum of W with orthonormal eigenvectors {ϕW

r } and ∆ = UΛU⊤

Introduce zr(t) : V → R defined by zr
i (t) = ⟨fi(t),ϕW

r ⟩, then gradient flow becomes:

zr(t+ τ) = U(I + τλW
r (I − Λ))U⊤zr(t) = zr(t) + τλW

r Āzr(t)

Along ϕW
r if λW

r < 0 then the dynamics is equivalent to flipping the sign of the edges [26]

[26] Similar effect as in Bo et al. (2021); Yan et al. (2021)
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r Āzr(t)

Along ϕW
r if λW

r < 0 then the dynamics is equivalent to flipping the sign of the edges [26]

[26] Similar effect as in Bo et al. (2021); Yan et al. (2021)

56



GNNs as Gradient Flows part 4:
ablation studies and experiments



Structure of the framework

General ingredients of the framework GRAFF (Gradient Flow Framework)

▶ Encoding block ψEN : Rn×p → Rn×d is used to process input features F0 ∈ Rn×p

▶ Symmetric channel-mixing matrices Ω,W ∈ Rd×d that are shared across the layers

▶ Decoding block ψDE : Rn×d → Rn×k, where k is the number of label classes

F(t+ τ) = F(t) + τ
(
−F(t)Ω + ĀF(t)W + βF(0)

)
, F(0) = ψEN(F0),
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Different choices for W

▶ Sum-variant: W = W′ + W′⊤ → ‘no-control’ on spectrum

▶ (Neg)-Prod: W = ±W′⊤W′ → signed eigenvalues

▶ W diagonally-dominant (DD): take W0 symmetric with zero diagonal and w ∈ Rd

defined by wα = qα
∑

β|W0
αβ| + rα, and set W = diag(w) + W0 → by Gershgorin

Theorem the model ‘can’ easily re-distribute mass in the spectrum via qα, rα
[27].

[27] Provides justification to Chen et al. (2020)
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Complexity and number of parameters

GRAFF scales as O(|V|pd+ |E|d), where p and d are input feature and hidden dimension

→ our model is faster than GCN with small number of parameters: pd+ d2 + 3d+ dk
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Figure 4: Runtime ablation for inference on Cora dataset 59



Ablation and synthetic experiments: setting

Recall our claims about role of ‘channel-mixing’ W:

▶ Positive eigenvalues of W induce attraction in a residual convolutional model

▶ Negative eigenvalues of W induce repulsion in a residual convolutional model

▶ A non-residual convolutional model is always dominated by low-frequencies
independent of the spectrum of the W

To investigate our claims we use the synthetic Cora dataset of Zhu et al. (2020)

→ graphs are generated for target levels of homophily via preferential attachment: we
expect LFD to be better than HFD with high homophily and vice-versa for low homophily
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Ablation and synthetic experiments: part 1

Goal: Explain performance wrt homophily in terms of the spectrum of W
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▶ Neg-prod is better than prod on low-homophily →
confirms HFD dynamics

▶ prod (attraction-only) struggles in low-homophily
even with residual connection

▶ ‘neutral’ variants like sum and (DD) are more
flexible and outperform GCN confirming that
non- residual convolutional models are LFD
irrespectively of the spectrum of W
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Ablation and synthetic experiments: part 2

Goal: Use homophily to assess if the evolution is smoothing → compute homophily of the
prediction (cross) and compare with that read from the encoding (i.e. no evolution)
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▶ neg-prod: homophily decreases after
evolution while with prod the prediction
is smoother than the true homophily

▶ (DD) and sum variants adapt better to
the true homophily

▶ The encoding compensates when the
spectrum of W has a sign
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Conclusions and where to next?



What was the message then?

▶ Framework where the MPNNs equations minimize a multi-particle learnable energy

▶ Analysis of the interaction between the spectrum of the graph and the spectrum of the
‘channel-mixing’ → when and why the dynamics is low (high) frequency dominated

▶ Refined existing asymptotic analysis of MPNNs to account for the role of the spectrum
of the channel-mixing

▶ From a practical perspective, our framework allows for ‘educated’ choices resulting in
a simple, more explainable convolutional model: our results refute the folklore of graph
convolutional models being too ‘simple’ for complex benchmarks.
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‘channel-mixing’ → when and why the dynamics is low (high) frequency dominated

▶ Refined existing asymptotic analysis of MPNNs to account for the role of the spectrum
of the channel-mixing

▶ From a practical perspective, our framework allows for ‘educated’ choices resulting in
a simple, more explainable convolutional model: our results refute the folklore of graph
convolutional models being too ‘simple’ for complex benchmarks.
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Limitations and future directions

We restricted to a constant bilinear form W, how about non-constant alternatives W(F, t)
that are aware of the features? → requirement for local ‘heterogeneity’ with efficiency

What can we say about dynamics that are neither LFD nor HFD?

The energy formulation points to new models more ‘physics’ inspired
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Thank you!

For any question/complaint/video-game recommendation do not hesitate to contact me! :-)

fdigiovanni (at) twitter com

@Francesco_dgv
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