
Topological Deep Learning
Part 2: Sheaf Neural Networks

Cristian Bodnar
University of Cambridge

Geometric Deep Learning Summer School
Pescara, Italy
July 26, 2022

1 / 109

The Big Picture

2 / 109

Geometry on graphs

Graphs, the most prevalent space in GDL do not have a “natural” geometric structure1

1The diagram is inspired from Bronstein, Graph Neural Networks through the lens of Differential Geometry and Algebraic Topology, 2022

3 / 109

A bottom up approach

Sets

Topological Spaces

Topological Manifolds

Smooth Manifolds

Riemannian Manifolds

In this talk, starting from topological spaces, we
will work our way up to recover some of the ele-
ments of this hierarchy.

4 / 109

Topological Spaces

A topological space is a set X together with a collection T of subsets of X called the
open sets of X and satisfying certain axioms:

1. The empty set and X belong to T .
2. Any finite intersection and arbitrary union of open sets is an open set.

A topological space X and its open sets. These sets provide neighbourhood structure for the points of X .

5 / 109

Graphs as Topological Spaces

We can see graphs as topological spaces. Each node v (and edge e) has an associated
open set Uv (and Ue , respectively). These are given by the star operator we saw in the
previous talk.

In what follows, we will see how this perspective can help us understand and develop
better GNNs.

6 / 109

Graphs as Topological Spaces

We can see graphs as topological spaces. Each node v (and edge e) has an associated
open set Uv (and Ue , respectively). These are given by the star operator we saw in the
previous talk.

In what follows, we will see how this perspective can help us understand and develop
better GNNs.

7 / 109

Heterophily and Oversmoothing in GNNs

8 / 109

Node classification

Let G = (V ,E) be a graph with n nodes and a node feature matrix X ∈ Rn×d . We want
to label the gray nodes by training on the red and blue nodes.

9 / 109

The Oversmoothing Problem

In some GNNs2 features become progressively
smoother with increased depth.

With more layers, GCN approaches a
“smooth” subspace where all the node

features are constant1.

2Oono and Suzuki, “Graph neural networks exponentially lose expressive power for node classification”, 2019; Cai and Wang, “A note on
over-smoothing for graph neural networks”, 2020.

10 / 109

The Heterophily Problem

It was remarked3 that GNNs struggle in het-
erophilic settings (i.e. graphs where a node tends
to be connected to nodes belonging to other
classes).

The performance of GNNs is strongly
correlated to the homophily level of a

graph2.

3Zhu et al., “Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs”, 2020.

11 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

12 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t)

// X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

13 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t)

= (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

14 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

15 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)

= σ
(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

16 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

17 / 109

From Heat Diffusion to Graph Convolutions

Let G be a graph with self loops, degree matrix D, adjacency matrix A, normalised
Laplacian ∆0 := I −D−1/2AD−1/2, and node features X ∈ Rn×d .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

Ẋ(t) = −∆0X(t) // X(t + 1) = X(t)−∆0X(t) = (I−∆0)X(t) (1)

This is strikingly similar to GCN4:

GCN(X,A) := σ
(
D−1/2AD−1/2XW

)
= σ

(
(I−∆0)XW

)
(2)

Question

How can we make the base diffusion process more powerful?

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.

18 / 109

Sheaves

19 / 109

Presheaves

Informally, Pre-sheaves are an assignment of some data to the open sets of a space X .

For each open set U, we denote the data attached to it by F(U). Whenever U ⊆ X , we
can follow an arrow F(X)→ F(U) to ”restrict” the data of X to a smaller region U.

20 / 109

Presheaves

Informally, Pre-sheaves are an assignment of some data to the open sets of a space X .

For each open set U, we denote the data attached to it by F(U). Whenever U ⊆ X , we
can follow an arrow F(X)→ F(U) to ”restrict” the data of X to a smaller region U.

21 / 109

Presheaves

A presheaf of sets F over a topological space X consists of:

1. For each open set U ⊆ X , a set F(U). Its elements are called sections of F over U.

2. For each inclusion of open sets V ⊆ U, a function FU,V : F(U)→ F(V) with the
property that if W ⊆ V ⊆ U, then FU,W = FV ,W ◦ FU,V and FU,U = idF(U).

22 / 109

Presheaves

A presheaf of sets F over a topological space X consists of:

1. For each open set U ⊆ X , a set F(U). Its elements are called sections of F over U.

2. For each inclusion of open sets V ⊆ U, a function FU,V : F(U)→ F(V) with the
property that if W ⊆ V ⊆ U, then FU,W = FV ,W ◦ FU,V and FU,U = idF(U).

23 / 109

Presheaves

A presheaf of sets F over a topological space X consists of:

1. For each open set U ⊆ X , a set F(U). Its elements are called sections of F over U.

2. For each inclusion of open sets V ⊆ U, a function FU,V : F(U)→ F(V) with the
property that if W ⊆ V ⊆ U, then FU,W = FV ,W ◦ FU,V and FU,U = idF(U).

24 / 109

The presheaf of continuous functions over R

Let X = R, F(U) = {f : U → R | f is continous} and let V ⊆ U FU:V : F(U)→ F(V)
be the restriction map sending f 7→ f |V . This presheaf satisfies two nice properties:

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

25 / 109

The presheaf of continuous functions over R

Let X = R, F(U) = {f : U → R | f is continous} and let V ⊆ U FU:V : F(U)→ F(V)
be the restriction map sending f 7→ f |V . This presheaf satisfies two nice properties:

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

26 / 109

The presheaf of continuous functions over R

Let X = R, F(U) = {f : U → R | f is continous} and let V ⊆ U FU:V : F(U)→ F(V)
be the restriction map sending f 7→ f |V . This presheaf satisfies two nice properties:

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

27 / 109

Sheaves

For s ∈ F(U) and V ⊆ U, denote by s|V := FU,V (s).

Then, a sheaf is a presheaf that
also satisfies the locality and glueing conditions.

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

28 / 109

Sheaves

For s ∈ F(U) and V ⊆ U, denote by s|V := FU,V (s). Then, a sheaf is a presheaf that
also satisfies the locality and glueing conditions.

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

29 / 109

Sheaves

For s ∈ F(U) and V ⊆ U, denote by s|V := FU,V (s). Then, a sheaf is a presheaf that
also satisfies the locality and glueing conditions.

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

30 / 109

Sheaves

For s ∈ F(U) and V ⊆ U, denote by s|V := FU,V (s). Then, a sheaf is a presheaf that
also satisfies the locality and glueing conditions.

Locality
Let (Ui)i∈I be an open cover for U. For

any s, t ∈ F(U), if s|Ui
= t|Ui

for all i ∈ I ,
then s = t.

Glueing
Let (Ui)i∈I be an open cover for U and

(si ∈ F(Ui))i∈I . If for all i , j ∈ I ,
si |Ui∩Uj

= sj |Ui∩Uj
, then there is a unique

s ∈ F(U) such that s|Ui
= si for all i ∈ I .

31 / 109

Examples of sheaves

We can glue two vector fields that agree on their
overlap.

We have already seen that the presheaf of
continuous functions over R is a sheaf.

Another example is the sheaf of vector fields
over a smooth manifold M.

F(U) = {f : U → TU | f is a vector field}

The restriction maps are simply restrictions
of the vector field.

Key idea

Sheaves are about creating big(ger) data
from small(er) data.

32 / 109

Examples of sheaves

We can glue two vector fields that agree on their
overlap.

We have already seen that the presheaf of
continuous functions over R is a sheaf.

Another example is the sheaf of vector fields
over a smooth manifold M.

F(U) = {f : U → TU | f is a vector field}

The restriction maps are simply restrictions
of the vector field.

Key idea

Sheaves are about creating big(ger) data
from small(er) data.

33 / 109

Presheaves that are not sheaves

Let X = R and consider the assignment F(U) = {f : U → R | f is cont. and bounded}.
Then if we glue over R infinitely many functions bounded on subsets of R, we can easily
obtain an ubounded function over R. Therefore, this is not a sheaf.

Another example is the presheaf of constant functions over R:
F(U) = {f : U → R | f is constant}. Can you see why?

34 / 109

Presheaves that are not sheaves

Let X = R and consider the assignment F(U) = {f : U → R | f is cont. and bounded}.
Then if we glue over R infinitely many functions bounded on subsets of R, we can easily
obtain an ubounded function over R. Therefore, this is not a sheaf.

Another example is the presheaf of constant functions over R:
F(U) = {f : U → R | f is constant}. Can you see why?

35 / 109

Towards Sheaves on Graphs

Given a topological space X , an open base is a collection of open subsets B such that any
other open subsets of X can be expressed as a union of subsets in B. The elements of B
are called basic open sets.

We will now consider graphs with the topology generated by the basis of open stars of all
the vertices and edges. We will show how this space can be equipped with a sheaf,
following an approach inspired by CS Hu5.

5Hu, “A Brief Note for Sheaf Structures on Posets”, 2020.

36 / 109

Towards Sheaves on Graphs

Given a topological space X , an open base is a collection of open subsets B such that any
other open subsets of X can be expressed as a union of subsets in B. The elements of B
are called basic open sets.

We will now consider graphs with the topology generated by the basis of open stars of all
the vertices and edges. We will show how this space can be equipped with a sheaf,
following an approach inspired by CS Hu5.

5Hu, “A Brief Note for Sheaf Structures on Posets”, 2020.

37 / 109

Base presheaves on Graphs

A B-presheaf is a presheaf where we only care about basic open sets. More formally:

1. For each open set U ∈ B, a set F(U).

2. For each pair V ⊆ U of members of B, a function FU,V : F(U)→ F(V) with the
usual properties.

Now, we can easily define a B-presheaf on graphs:

To each open star we assign a set (here a vector space) and a restriction map for each Ue ⊆ Uv .

38 / 109

Base presheaves on Graphs

A B-presheaf is a presheaf where we only care about basic open sets. More formally:

1. For each open set U ∈ B, a set F(U).
2. For each pair V ⊆ U of members of B, a function FU,V : F(U)→ F(V) with the

usual properties.

Now, we can easily define a B-presheaf on graphs:

To each open star we assign a set (here a vector space) and a restriction map for each Ue ⊆ Uv .

39 / 109

Base presheaves on Graphs

A B-presheaf is a presheaf where we only care about basic open sets. More formally:

1. For each open set U ∈ B, a set F(U).
2. For each pair V ⊆ U of members of B, a function FU,V : F(U)→ F(V) with the

usual properties.

Now, we can easily define a B-presheaf on graphs:

To each open star we assign a set (here a vector space) and a restriction map for each Ue ⊆ Uv .

40 / 109

Base sheaves on Graphs

We can similarly define a B-sheaf. It is a B-presheaf such that it satisfies:

1. Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

2. Glueing: Suppose U ∈ B and U is covered by (Ui)i∈I ⊆ B with local sections
si ∈ F(Ui) such that for all i , j ∈ I , si |Ui∩Uj

= sj |Ui∩Uj
. Then there is an s ∈ F(U)

such that s|Ui
= si for all i ∈ I

Now a little miracle happens:

Theorem

Any B-presheaf on a graph with the topology generated by the open stars is a B-sheaf.

41 / 109

Base sheaves on Graphs

We can similarly define a B-sheaf. It is a B-presheaf such that it satisfies:

1. Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

2. Glueing: Suppose U ∈ B and U is covered by (Ui)i∈I ⊆ B with local sections
si ∈ F(Ui) such that for all i , j ∈ I , si |Ui∩Uj

= sj |Ui∩Uj
. Then there is an s ∈ F(U)

such that s|Ui
= si for all i ∈ I

Now a little miracle happens:

Theorem

Any B-presheaf on a graph with the topology generated by the open stars is a B-sheaf.

42 / 109

Base sheaves on Graphs

We can similarly define a B-sheaf. It is a B-presheaf such that it satisfies:

1. Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

2. Glueing: Suppose U ∈ B and U is covered by (Ui)i∈I ⊆ B with local sections
si ∈ F(Ui) such that for all i , j ∈ I , si |Ui∩Uj

= sj |Ui∩Uj
. Then there is an s ∈ F(U)

such that s|Ui
= si for all i ∈ I

Now a little miracle happens:

Theorem

Any B-presheaf on a graph with the topology generated by the open stars is a B-sheaf.

43 / 109

Proving Locality

Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

Proof.
Notice that we only have only two types of open sets in B:

For Ue the only cover is the trivial one: {Ue}. Thus, s = s|Ue = t|Ue = t. For Uv , notice
that Uv ∈ (Ui)i∈I because the vertex v cannot be covered by other open sets in B. Then
again we have s = s|Uv = t|Uv = t.

44 / 109

Proving Locality

Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

Proof.
Notice that we only have only two types of open sets in B:

For Ue the only cover is the trivial one: {Ue}. Thus, s = s|Ue = t|Ue = t.

For Uv , notice
that Uv ∈ (Ui)i∈I because the vertex v cannot be covered by other open sets in B. Then
again we have s = s|Uv = t|Uv = t.

45 / 109

Proving Locality

Locality: Let U ∈ B and s, t ∈ F(U). If U is covered by (Ui)i∈I ⊆ B such that
s|Ui

= t|Ui
for all i ∈ I , then s = t.

Proof.
Notice that we only have only two types of open sets in B:

For Ue the only cover is the trivial one: {Ue}. Thus, s = s|Ue = t|Ue = t. For Uv , notice
that Uv ∈ (Ui)i∈I because the vertex v cannot be covered by other open sets in B. Then
again we have s = s|Uv = t|Uv = t.

46 / 109

Proving Glueing

Glueing: Suppose U ∈ B and U is covered by (Ui)i∈I ⊆ B with local sections si ∈ F(Ui)
such that for all i , j ∈ I , si |Ui∩Uj

= sj |Ui∩Uj
. Then there is an s ∈ F(U) such that

s|Ui
= si for all i ∈ I

Proof.

As before, for open sets of type Ue , the proof is trivial. For open sets of type Uv we
exploit again that Uv = Uk for some k ∈ I . Let sk ∈ F(Uk) = F(Uv). We have that
sk |Ui

= sk |Uk∩Ui
= si |Uk∩Ui

= si |Uv∩Ui
= si |Ui

= si

47 / 109

Proving Glueing

Glueing: Suppose U ∈ B and U is covered by (Ui)i∈I ⊆ B with local sections si ∈ F(Ui)
such that for all i , j ∈ I , si |Ui∩Uj

= sj |Ui∩Uj
. Then there is an s ∈ F(U) such that

s|Ui
= si for all i ∈ I

Proof.

As before, for open sets of type Ue , the proof is trivial. For open sets of type Uv we
exploit again that Uv = Uk for some k ∈ I . Let sk ∈ F(Uk) = F(Uv). We have that
sk |Ui

= sk |Uk∩Ui
= si |Uk∩Ui

= si |Uv∩Ui
= si |Ui

= si

48 / 109

Sheaves on Graphs

Now we know that our B-presheaf is a B-sheaf. But how do we get a sheaf now?

To each open star we assign a set and for each Ue ⊆ Uv a restriction map.

It turns out, that sheaves behave a bit like a linear operator. It is sufficient to specify how
it behaves on a basis to fully specify its behaviour.

49 / 109

Sheaves on Graphs

Now we know that our B-presheaf is a B-sheaf. But how do we get a sheaf now?

To each open star we assign a set and for each Ue ⊆ Uv a restriction map.

It turns out, that sheaves behave a bit like a linear operator. It is sufficient to specify how
it behaves on a basis to fully specify its behaviour.

50 / 109

Sheaves on Graphs

Theorem

A B-sheaf F on a space X uniquely induces a sheaf F+ on X such that F and F+ are
canonically isomorphic.

Let I (U) = {V | V ∈ B,V ⊆ U}. Then the sections of F+ are constructed as follows:

F+(U) :=
{
(sV)V∈I (U) ∈

∏
V∈I (U)

F(V) | FV ,W (sV) = sW , ∀W ⊆ V
}

Example: For U = Uv ∪ Uu: F+(U) = {(sUv , sUe , sUu) |
sUe = FUv ,Ue (sv) = FUu ,Ue (su)}

For each open W ⊆ U, F+
U,W simply drops all the sV ,

where V ∈ I (U) but V /∈ I (W).

51 / 109

Sheaves on Graphs

Theorem

A B-sheaf F on a space X uniquely induces a sheaf F+ on X such that F and F+ are
canonically isomorphic.

Let I (U) = {V | V ∈ B,V ⊆ U}. Then the sections of F+ are constructed as follows:

F+(U) :=
{
(sV)V∈I (U) ∈

∏
V∈I (U)

F(V) | FV ,W (sV) = sW , ∀W ⊆ V
}

Example: For U = Uv ∪ Uu: F+(U) = {(sUv , sUe , sUu) |
sUe = FUv ,Ue (sv) = FUu ,Ue (su)}

For each open W ⊆ U, F+
U,W simply drops all the sV ,

where V ∈ I (U) but V /∈ I (W).

52 / 109

Sheaves on Graphs

Theorem

A B-sheaf F on a space X uniquely induces a sheaf F+ on X such that F and F+ are
canonically isomorphic.

Let I (U) = {V | V ∈ B,V ⊆ U}. Then the sections of F+ are constructed as follows:

F+(U) :=
{
(sV)V∈I (U) ∈

∏
V∈I (U)

F(V) | FV ,W (sV) = sW , ∀W ⊆ V
}

Example: For U = Uv ∪ Uu: F+(U) = {(sUv , sUe , sUu) |
sUe = FUv ,Ue (sv) = FUu ,Ue (su)}

For each open W ⊆ U, F+
U,W simply drops all the sV ,

where V ∈ I (U) but V /∈ I (W).

53 / 109

Sheaves on Graphs

Theorem

A B-sheaf F on a space X uniquely induces a sheaf F+ on X such that F and F+ are
canonically isomorphic.

Let I (U) = {V | V ∈ B,V ⊆ U}. Then the sections of F+ are constructed as follows:

F+(U) :=
{
(sV)V∈I (U) ∈

∏
V∈I (U)

F(V) | FV ,W (sV) = sW , ∀W ⊆ V
}

Example: For U = Uv ∪ Uu: F+(U) = {(sUv , sUe , sUu) |
sUe = FUv ,Ue (sv) = FUu ,Ue (su)}

For each open W ⊆ U, F+
U,W simply drops all the sV ,

where V ∈ I (U) but V /∈ I (W).

54 / 109

Cellular Sheaves

A cellular sheaf67 (G ,F) of vector spaces on an undirected graph G = (V ,E) consists of:

1. A vector space F(v) for each v ∈ V .

2. A vector space F(e) for each e ∈ E .

3. A linear map Fv⊴e : F(v)→ F(e) for each incident v ⊴ e node-edge pair.

The vector spaces are called stalks and the linear maps are also known as restriction maps.

6Curry, Sheaves, cosheaves and applications, 2014.
7Shepard, “A cellular description of the derived category of a stratified space”, 1985.

55 / 109

Cellular Sheaves

A cellular sheaf67 (G ,F) of vector spaces on an undirected graph G = (V ,E) consists of:

1. A vector space F(v) for each v ∈ V .

2. A vector space F(e) for each e ∈ E .

3. A linear map Fv⊴e : F(v)→ F(e) for each incident v ⊴ e node-edge pair.

The vector spaces are called stalks and the linear maps are also known as restriction maps.

6Curry, Sheaves, cosheaves and applications, 2014.
7Shepard, “A cellular description of the derived category of a stratified space”, 1985.

56 / 109

Cellular Sheaves

A cellular sheaf67 (G ,F) of vector spaces on an undirected graph G = (V ,E) consists of:

1. A vector space F(v) for each v ∈ V .

2. A vector space F(e) for each e ∈ E .

3. A linear map Fv⊴e : F(v)→ F(e) for each incident v ⊴ e node-edge pair.

The vector spaces are called stalks and the linear maps are also known as restriction maps.

6Curry, Sheaves, cosheaves and applications, 2014.
7Shepard, “A cellular description of the derived category of a stratified space”, 1985.

57 / 109

Cellular Sheaves

A cellular sheaf67 (G ,F) of vector spaces on an undirected graph G = (V ,E) consists of:

1. A vector space F(v) for each v ∈ V .

2. A vector space F(e) for each e ∈ E .

3. A linear map Fv⊴e : F(v)→ F(e) for each incident v ⊴ e node-edge pair.

The vector spaces are called stalks and the linear maps are also known as restriction maps.
6Curry, Sheaves, cosheaves and applications, 2014.
7Shepard, “A cellular description of the derived category of a stratified space”, 1985.

58 / 109

Opinion Dynamics

Opinion dynamics8 provides a nice mental picture of cellular sheaves.

Nodes connected by edges represent people who are communicating. The vertex stalks contain the private
opinions of the individuals, the edge stalks form a discourse space and the linear maps describe how the
private opinions manifest publicly.

8Hansen and Ghrist, “Opinion dynamics on discourse sheaves”, 2021.

59 / 109

Cochains and the coboundary operator

For a sheaf (F ,G) we define the space of 0-cochains C 0(G ;F) :=
⊕

v∈V F(v) and
1-cochains C 1(G ;F) :=

⊕
e∈E F(e). This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge e = u → v ∈ E , define the linear
coboundary map δ : C 0(G ,F)→ C 1(G ,F) by δ(x)e := Fv⊴exv −Fu⊴exu.

The transpose boundary operator behaves like a
gradient. This is the coboundary of the sheaf with

stalks R and identity restrictions.

The sheaf coboundary operator behaves like a
covariant derivative.

60 / 109

Cochains and the coboundary operator

For a sheaf (F ,G) we define the space of 0-cochains C 0(G ;F) :=
⊕

v∈V F(v) and
1-cochains C 1(G ;F) :=

⊕
e∈E F(e). This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge e = u → v ∈ E , define the linear
coboundary map δ : C 0(G ,F)→ C 1(G ,F) by δ(x)e := Fv⊴exv −Fu⊴exu.

The transpose boundary operator behaves like a
gradient. This is the coboundary of the sheaf with

stalks R and identity restrictions.

The sheaf coboundary operator behaves like a
covariant derivative.

61 / 109

Cochains and the coboundary operator

For a sheaf (F ,G) we define the space of 0-cochains C 0(G ;F) :=
⊕

v∈V F(v) and
1-cochains C 1(G ;F) :=

⊕
e∈E F(e). This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge e = u → v ∈ E , define the linear
coboundary map δ : C 0(G ,F)→ C 1(G ,F) by δ(x)e := Fv⊴exv −Fu⊴exu.

The transpose boundary operator behaves like a
gradient. This is the coboundary of the sheaf with

stalks R and identity restrictions.

The sheaf coboundary operator behaves like a
covariant derivative.

62 / 109

Cochains and the coboundary operator

For a sheaf (F ,G) we define the space of 0-cochains C 0(G ;F) :=
⊕

v∈V F(v) and
1-cochains C 1(G ;F) :=

⊕
e∈E F(e). This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge e = u → v ∈ E , define the linear
coboundary map δ : C 0(G ,F)→ C 1(G ,F) by δ(x)e := Fv⊴exv −Fu⊴exu.

The transpose boundary operator behaves like a
gradient. This is the coboundary of the sheaf with

stalks R and identity restrictions.

The sheaf coboundary operator behaves like a
covariant derivative.

63 / 109

The Dual Picture

In the previous talk, we saw how boundary operators ∂k create a chain complex:

0→ Cn(K ,R)→ · · · ∂k+1−−−→ Ck(K ,R) ∂k−→ Ck−1(K ,R) · · · ∂2−→ C1(K ,R) ∂1−→ C0(K ,R)→ 0

Informally, we could have used the operators δk−1 = ∂⊤
k to create a cochain complex:

0← Cn(K ,R)← · · · δk←− C k(K ,R) δ2←− C k−1(K ,R) · · · δ1←− C 1(K ,R) δ0←− C 0(K ,R)← 0

Similarly, we can define a cohomology group Hk(K ,R) := ker δk/im δk−1
∼= Hk(K ,R)

64 / 109

The Dual Picture

In the previous talk, we saw how boundary operators ∂k create a chain complex:

0→ Cn(K ,R)→ · · · ∂k+1−−−→ Ck(K ,R) ∂k−→ Ck−1(K ,R) · · · ∂2−→ C1(K ,R) ∂1−→ C0(K ,R)→ 0

Informally, we could have used the operators δk−1 = ∂⊤
k to create a cochain complex:

0← Cn(K ,R)← · · · δk←− C k(K ,R) δ2←− C k−1(K ,R) · · · δ1←− C 1(K ,R) δ0←− C 0(K ,R)← 0

Similarly, we can define a cohomology group Hk(K ,R) := ker δk/im δk−1
∼= Hk(K ,R)

65 / 109

The Dual Picture

In the previous talk, we saw how boundary operators ∂k create a chain complex:

0→ Cn(K ,R)→ · · · ∂k+1−−−→ Ck(K ,R) ∂k−→ Ck−1(K ,R) · · · ∂2−→ C1(K ,R) ∂1−→ C0(K ,R)→ 0

Informally, we could have used the operators δk−1 = ∂⊤
k to create a cochain complex:

0← Cn(K ,R)← · · · δk←− C k(K ,R) δ2←− C k−1(K ,R) · · · δ1←− C 1(K ,R) δ0←− C 0(K ,R)← 0

Similarly, we can define a cohomology group Hk(K ,R) := ker δk/im δk−1

∼= Hk(K ,R)

66 / 109

The Dual Picture

In the previous talk, we saw how boundary operators ∂k create a chain complex:

0→ Cn(K ,R)→ · · · ∂k+1−−−→ Ck(K ,R) ∂k−→ Ck−1(K ,R) · · · ∂2−→ C1(K ,R) ∂1−→ C0(K ,R)→ 0

Informally, we could have used the operators δk−1 = ∂⊤
k to create a cochain complex:

0← Cn(K ,R)← · · · δk←− C k(K ,R) δ2←− C k−1(K ,R) · · · δ1←− C 1(K ,R) δ0←− C 0(K ,R)← 0

Similarly, we can define a cohomology group Hk(K ,R) := ker δk/im δk−1
∼= Hk(K ,R)

67 / 109

Sheaf Cohomology

Notice that the sheaf coboundary operator defines a cochain complex over the graph:

0←− C 1(G ;F) δ←− C 0(G ;F)← 0

We can define the zero-th sheaf cohomology group as

H0(G ;F) := ker δ0/im δ−1 = ker δ0

So what is the point?

The cohomology group H0(K ,R) ∼= H0(K ,R) is boring. The sheaf structure gives us a
much more interesting H0(G ;F).

68 / 109

Sheaf Cohomology

Notice that the sheaf coboundary operator defines a cochain complex over the graph:

0←− C 1(G ;F) δ←− C 0(G ;F)← 0

We can define the zero-th sheaf cohomology group as

H0(G ;F) := ker δ0/im δ−1 = ker δ0

So what is the point?

The cohomology group H0(K ,R) ∼= H0(K ,R) is boring. The sheaf structure gives us a
much more interesting H0(G ;F).

69 / 109

Sheaf Cohomology

Notice that the sheaf coboundary operator defines a cochain complex over the graph:

0←− C 1(G ;F) δ←− C 0(G ;F)← 0

We can define the zero-th sheaf cohomology group as

H0(G ;F) := ker δ0/im δ−1 = ker δ0

So what is the point?

The cohomology group H0(K ,R) ∼= H0(K ,R) is boring. The sheaf structure gives us a
much more interesting H0(G ;F).

70 / 109

The Sheaf Laplacian

The sheaf Laplacian9 is the linear operator δ⊤δ and it is defined node-wise as

LF (x)v :=
∑
v ,u⊴e

F⊤
v⊴e(Fv⊴exv −Fu⊴exu)

{

The normalised Laplacian ∆F := D−1/2LFD
−1/2, where D is the block-diagonal of LF .

When d = 1 and Fv⊴e = 1, we obtain the (normalised) graph Laplacian.

9Hansen and Ghrist, “Toward a spectral theory of cellular sheaves”, 2019.

71 / 109

The Sheaf Laplacian

The sheaf Laplacian9 is the linear operator δ⊤δ and it is defined node-wise as

LF (x)v :=
∑
v ,u⊴e

F⊤
v⊴e(Fv⊴exv −Fu⊴exu)

{

The normalised Laplacian ∆F := D−1/2LFD
−1/2, where D is the block-diagonal of LF .

When d = 1 and Fv⊴e = 1, we obtain the (normalised) graph Laplacian.

9Hansen and Ghrist, “Toward a spectral theory of cellular sheaves”, 2019.

72 / 109

Discrete Vector Bundles

The sheaves (G ,F) with orthogonal restriction maps are discrete O(d)-bundles10.
Notice how easily we obtain some sort of geometric structure over the graph.

Analogy between parallel transport on a sphere and transport on a discrete vector bundle. A tangent
vector is moved from F(w) → F(v) → F(u) and back.

10Singer and Wu, “Vector diffusion maps and the connection Laplacian”, 2012.
73 / 109

The Expressive Power of Sheaf Diffusion

74 / 109

Sheaf Diffusion

We now consider the sheaf diffusion process governed by the PDE:

X(0) = X, Ẋ(t) = −∆FX(t) {Feature Channels

{

Theorem (Hodge Theorem)

As t →∞, the features converge to the projection of X(0) into ker ∆F ∼= H0(G ;F)

75 / 109

Sheaf Diffusion

We now consider the sheaf diffusion process governed by the PDE:

X(0) = X, Ẋ(t) = −∆FX(t) {Feature Channels

{

Theorem (Hodge Theorem)

As t →∞, the features converge to the projection of X(0) into ker ∆F ∼= H0(G ;F)
76 / 109

The Separation Power of Sheaf Diffusion

We want to look at what classes of sheaves can linearly separate the nodes of a graph in
the infinite time limit of their diffusion process.

For that, we need to understand the properties of ker ∆F . In particular, when is
ker ∆F = 0? We certainly do not want to converge to zero.

77 / 109

The Separation Power of Sheaf Diffusion

We want to look at what classes of sheaves can linearly separate the nodes of a graph in
the infinite time limit of their diffusion process.

For that, we need to understand the properties of ker ∆F . In particular, when is
ker ∆F = 0? We certainly do not want to converge to zero.

78 / 109

Harmonic Space of the Sheaf Laplacian

The transport is not
path-independent because the

vector returns in another
position.

Let (G ,F) be a discrete O(d)-bundle. Given nodes
v , u ∈ V and a path γv→u = (v , v1, . . . , vℓ, u) from v
to u, we consider a notion of transport from the stalk
F(v) to the stalk F(u) via map composition:

Pγ
v→u := (F⊤

u⊴eFvL⊴e) . . . (F⊤
v1⊴eFv⊴e) : F(v)→ F(u).

Main idea

The harmonic space of the Laplacian is related to the
path-independence of the transport.

79 / 109

Harmonic Space of the Sheaf Laplacian

The transport is not
path-independent because the

vector returns in another
position.

Let (G ,F) be a discrete O(d)-bundle. Given nodes
v , u ∈ V and a path γv→u = (v , v1, . . . , vℓ, u) from v
to u, we consider a notion of transport from the stalk
F(v) to the stalk F(u) via map composition:

Pγ
v→u := (F⊤

u⊴eFvL⊴e) . . . (F⊤
v1⊴eFv⊴e) : F(v)→ F(u).

Main idea

The harmonic space of the Laplacian is related to the
path-independence of the transport.

80 / 109

Harmonic Space of the Sheaf Laplacian

The transport is not
path-independent because the

vector returns in another
position.

Let F be a discrete O(d) bundle over a connected graph
G with n nodes.

Proposition

Let r := maxγv→u ,γ′
v→u
||Pγ

v→u − Pγ′
v→u||, then we have

λF
0 ≤ r2

2 .

Proposition

Let ||(Pγ
v→v − I)x|| ≥ ϵ||x|| for all cycles γv→v . Then

λF
0 ≥ ϵ2kG , where kG is a constant.

When the transport is path independent, r = 0 and ϵ = 0 and so λF
0 = 0. This means

there is at least one harmonic eigenvector and ker ∆F ̸= 0.

81 / 109

Harmonic Space of the Sheaf Laplacian

The transport is not
path-independent because the

vector returns in another
position.

Let F be a discrete O(d) bundle over a connected graph
G with n nodes.

Proposition

Let r := maxγv→u ,γ′
v→u
||Pγ

v→u − Pγ′
v→u||, then we have

λF
0 ≤ r2

2 .

Proposition

Let ||(Pγ
v→v − I)x|| ≥ ϵ||x|| for all cycles γv→v . Then

λF
0 ≥ ϵ2kG , where kG is a constant.

When the transport is path independent, r = 0 and ϵ = 0 and so λF
0 = 0. This means

there is at least one harmonic eigenvector and ker ∆F ̸= 0.

82 / 109

Harmonic Space of the Sheaf Laplacian

The transport is not
path-independent because the

vector returns in another
position.

Let F be a discrete O(d) bundle over a connected graph
G with n nodes.

Proposition

Let r := maxγv→u ,γ′
v→u
||Pγ

v→u − Pγ′
v→u||, then we have

λF
0 ≤ r2

2 .

Proposition

Let ||(Pγ
v→v − I)x|| ≥ ϵ||x|| for all cycles γv→v . Then

λF
0 ≥ ϵ2kG , where kG is a constant.

When the transport is path independent, r = 0 and ϵ = 0 and so λF
0 = 0. This means

there is at least one harmonic eigenvector and ker ∆F ̸= 0.

83 / 109

Diffusion on Weighted Graphs

Consider the class of sheaves with stalks R and symmetric and non-zero scalar maps:

H1
sym := {(F ,G) | F(v) = R,Fv⊴e = Fu⊴e , Fv⊴e ̸= 0,∀v ∈ G}

Proposition

Let G be the set of connected graphs G = (V ,E) with two classes A,B ⊂ V such that
for each v ∈ A, there exists u ∈ A and an edge (v , u) ∈ E. Then H1

sym has linear
separation power over G.

Proposition

Let G be the set of connected bipartite graphs G = (A,B,E), with partitions A,B
forming two classes and |A| = |B|. Then H1

sym cannot linearly separate any graph in G for

any initial conditions X(0) ∈ Rn×f .

84 / 109

Diffusion on Weighted Graphs

Consider the class of sheaves with stalks R and symmetric and non-zero scalar maps:

H1
sym := {(F ,G) | F(v) = R,Fv⊴e = Fu⊴e , Fv⊴e ̸= 0,∀v ∈ G}

Proposition

Let G be the set of connected graphs G = (V ,E) with two classes A,B ⊂ V such that
for each v ∈ A, there exists u ∈ A and an edge (v , u) ∈ E. Then H1

sym has linear
separation power over G.

Proposition

Let G be the set of connected bipartite graphs G = (A,B,E), with partitions A,B
forming two classes and |A| = |B|. Then H1

sym cannot linearly separate any graph in G for

any initial conditions X(0) ∈ Rn×f .

85 / 109

Diffusion on Weighted Graphs

Consider the class of sheaves with stalks R and symmetric and non-zero scalar maps:

H1
sym := {(F ,G) | F(v) = R,Fv⊴e = Fu⊴e , Fv⊴e ̸= 0,∀v ∈ G}

Proposition

Let G be the set of connected graphs G = (V ,E) with two classes A,B ⊂ V such that
for each v ∈ A, there exists u ∈ A and an edge (v , u) ∈ E. Then H1

sym has linear
separation power over G.

Proposition

Let G be the set of connected bipartite graphs G = (A,B,E), with partitions A,B
forming two classes and |A| = |B|. Then H1

sym cannot linearly separate any graph in G for

any initial conditions X(0) ∈ Rn×f .

86 / 109

Feature polarisation

Let G be a conected graph with two classes A,B. Consider a sheaf with Fv⊴e = −αe if
v ∈ A and Fu⊴e = αe if u ∈ B with αe > 0 for all e ∈ E .

Diffusion with opposite signs leads to feature polarisation.

Proposition (Informal)

This type of sheaf can linearly separate the classes of any such graph for almost any
initial conditions.

87 / 109

Feature polarisation

Let G be a conected graph with two classes A,B. Consider a sheaf with Fv⊴e = −αe if
v ∈ A and Fu⊴e = αe if u ∈ B with αe > 0 for all e ∈ E .

Diffusion with opposite signs leads to feature polarisation.

Proposition (Informal)

This type of sheaf can linearly separate the classes of any such graph for almost any
initial conditions.

88 / 109

The blessing of dimensionality

Even with all this additional flexibility, dimension d = 1 still has a major limitation.

Proposition

Let G be a connected graph with C ≥ 3 classes. If d = 1, no sheaf can separate the
classes for any X(0) ∈ Rn×f .

This is a consequence of the fact the the features are projected on a subspace that is at
most one-dimensional. In the best case, the classes are pairwise linearly separable.

89 / 109

The blessing of dimensionality

Even with all this additional flexibility, dimension d = 1 still has a major limitation.

Proposition

Let G be a connected graph with C ≥ 3 classes. If d = 1, no sheaf can separate the
classes for any X(0) ∈ Rn×f .

This is a consequence of the fact the the features are projected on a subspace that is at
most one-dimensional. In the best case, the classes are pairwise linearly separable.

90 / 109

Diagonal Restriction Maps

We can fix this by increasing the stalk dimension. Consider the class of sheaves with
diagonal invertible maps and d-dimensional stalks:

Hd
diag := {(F ,G) | Fv⊴e = invertible diagonal matrix,F(v) = Rd}

Proposition

Let G be the set of connected graphs with nodes belonging to C ≥ 3 classes. Then for
d ≥ C, Hd

diag has linear separation power over G.

91 / 109

Diagonal Restriction Maps

We can fix this by increasing the stalk dimension. Consider the class of sheaves with
diagonal invertible maps and d-dimensional stalks:

Hd
diag := {(F ,G) | Fv⊴e = invertible diagonal matrix,F(v) = Rd}

Proposition

Let G be the set of connected graphs with nodes belonging to C ≥ 3 classes. Then for
d ≥ C, Hd

diag has linear separation power over G.

92 / 109

Beyond diagonal maps

Diagonal restriction maps are extremely simple. Can we do better?

We use the class of discrete O(d)-bundles Hd
orth := {(F ,G) | Fv⊴e ∈ O(d)}

Theorem

Let G be the class of connected graphs with C ≤ 2d classes. Then, for all d ∈ {2, 4},
Hd

orth has linear separation power over G.

93 / 109

Beyond diagonal maps

Diagonal restriction maps are extremely simple. Can we do better?
We use the class of discrete O(d)-bundles Hd

orth := {(F ,G) | Fv⊴e ∈ O(d)}

Theorem

Let G be the class of connected graphs with C ≤ 2d classes. Then, for all d ∈ {2, 4},
Hd

orth has linear separation power over G.

94 / 109

Beyond diagonal maps

Diagonal restriction maps are extremely simple. Can we do better?
We use the class of discrete O(d)-bundles Hd

orth := {(F ,G) | Fv⊴e ∈ O(d)}

Theorem

Let G be the class of connected graphs with C ≤ 2d classes. Then, for all d ∈ {2, 4},
Hd

orth has linear separation power over G.

95 / 109

Beyond diagonal maps

Diagonal restriction maps are extremely simple. Can we do better?
We use the class of discrete O(d)-bundles Hd

orth := {(F ,G) | Fv⊴e ∈ O(d)}

Theorem

Let G be the class of connected graphs with C ≤ 2d classes. Then, for all d ∈ {2, 4},
Hd

orth has linear separation power over G.

96 / 109

The Power of Sheaf Diffusion: Review

Takeaway

Different classes of sheaves induce diffusion processes with different capabilities.
Furthermore, any node-classification problem can be reduced to performing diffusion with
the right sheaf.

97 / 109

Learning Sheaves

98 / 109

Learning sheaves

Each d × d matrix Fv⊴e is learned via a parametric function Φ : Rd×2 → Rd×d :

Fv⊴e:=(v ,u) = Φ(xv , xu) (3)

The restriction maps are learned from data.

99 / 109

Time-evolving sheaves11

We want to learn a sheaf from the latest available features.

Ẋ(t) = −σ
(
∆F(t)(In ⊗W1)X(t)W2

)
, (4)

We also consider a discrete version of this equation, with different weights at each layer t.

Xt+1 = Xt − σ
(
∆F(t)(I⊗Wt

1)XtW
t
2

)
, (5)

Main idea

The sheaf evolves over time as a function of the data (G ,F(t)) = g(G ,X(t); θ).

11A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, “Sheaf Neural Networks”, 2020

100 / 109

Time-evolving sheaves11

We want to learn a sheaf from the latest available features.

Ẋ(t) = −σ
(
∆F(t)(In ⊗W1)X(t)W2

)
, (4)

We also consider a discrete version of this equation, with different weights at each layer t.

Xt+1 = Xt − σ
(
∆F(t)(I⊗Wt

1)XtW
t
2

)
, (5)

Main idea

The sheaf evolves over time as a function of the data (G ,F(t)) = g(G ,X(t); θ).

11A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, “Sheaf Neural Networks”, 2020

101 / 109

Time-evolving sheaves11

We want to learn a sheaf from the latest available features.

Ẋ(t) = −σ
(
∆F(t)(In ⊗W1)X(t)W2

)
, (4)

We also consider a discrete version of this equation, with different weights at each layer t.

Xt+1 = Xt − σ
(
∆F(t)(I⊗Wt

1)XtW
t
2

)
, (5)

Main idea

The sheaf evolves over time as a function of the data (G ,F(t)) = g(G ,X(t); θ).

11A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, “Sheaf Neural Networks”, 2020

102 / 109

Sheaves at pre-processing time

In a recent paper12 we showed how by assuming that the graph is sampled from a
manifold, we can construct a reasonable sheaf at pre-processing time.

We adapt existent methods13 to learn the connection that best aligns the tangent spaces of the nodes.

12Barbero et al., “Sheaf Neural Networks with Connection Laplacians”, 2022.
13Singer and Wu, “Vector diffusion maps and the connection Laplacian”, 2012. 103 / 109

Results

104 / 109

Synthetic Experiment: Opinion Polarisation

We have a bipartite graph with equally sized partitions that we try to distinguish. X(0) is
not linearly separable. We use a simple sheaf diffusion process with a learned sheaf
Laplacian (i.e. no weights and non-linearities)

Training (Left) and Testing (Middle) accuracy as a function of diffusion time. Learned sheaf Laplacian for
t >> 0. (Right)

105 / 109

Real-World Evaluation

We evaluate on multiple node-classifications tasks with various degrees of homophily14.

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

Diag-NSD 85.67±6.95 88.63±2.75 37.79±1.01 54.78±1.81 68.68±1.73 86.49±7.35 77.14±1.85 89.42±0.43 87.14±1.06

O(d)-NSD 85.95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.04±1.58 84.86±4.71 76.70±1.57 89.49±0.40 86.90±1.13

Gen-NSD 82.97±5.13 89.21±3.84 37.80±1.22 53.17±1.31 67.93±1.58 85.68±6.51 76.32±1.65 89.33±0.35 87.30±1.15

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05

H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20

GPRGNN 78.38±4.36 82.94±4.21 34.63±1.22 31.61±1.24 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18

FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 42.59±0.79 55.22±3.19 79.19±9.79 N/A N/A N/A
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25

Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57

PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 50.44±2.04 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27

GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 75.69±2.00 87.16±0.37

14Rozemberczki et al., “Multi-scale attributed node embedding”, 2021; Pei et al., “Geom-gcn: Geometric graph convolutional networks”, 2020.

106 / 109

The Bigger Picture: A Category Theory Perspective

From the perspective of category theory, cellular sheaves are functors from the category
describing the incidence structure of a graph to some other category.

107 / 109

Collaborators

Many of the ideas and results presented in these talks are the results of many
collaborations and interactions with:

• Fabrizio Frasca (Twitter)

• Francesco di Giovanni (Twitter)

• Federico Barbero (University of Cambridge)

• Yu Guang Wang (Shanghai Jiao Tong University)

• Guido Montufar (UCLA & Max Planck Institute for Mathematics in the Sciences)

• Nina Otter (Queen Mary University of London)

• Ben Chamberlain (Twitter)

• Michael Bronstein (Twitter & University of Oxford)

• Pietro Liò (University of Cambridge)

108 / 109

Thank you for your attention!

Email: cb2015@cam.ac.uk
Twitter: @crisbodnar

109 / 109

	The Big Picture
	Heterophily and Oversmoothing in GNNs
	Sheaves
	The Expressive Power of Sheaf Diffusion
	Learning Sheaves
	Results

