# **Topological Deep Learning**

#### Part 2: Sheaf Neural Networks

Cristian Bodnar University of Cambridge

Geometric Deep Learning Summer School Pescara, Italy July 26, 2022



# The Big Picture

# **Geometry on graphs**

Graphs, the most prevalent space in GDL do not have a "natural" geometric structure<sup>1</sup>



<sup>1</sup>The diagram is inspired from Bronstein, Graph Neural Networks through the lens of Differential Geometry and Algebraic Topology, 2022

**Riemannian Manifolds** 

Smooth Manifolds

Topological Manifolds

**Topological Spaces** 

Sets

In this talk, starting from topological spaces, we will work our way up to recover some of the elements of this hierarchy.

# **Topological Spaces**

A topological space is a set X together with a collection  $\mathcal{T}$  of subsets of X called the open sets of X and satisfying certain axioms:

- 1. The empty set and X belong to  $\mathcal{T}$ .
- 2. Any finite intersection and arbitrary union of open sets is an open set.



A topological space X and its open sets. These sets provide neighbourhood structure for the points of X.

We can see graphs as topological spaces. Each node v (and edge e) has an associated open set  $U_v$  (and  $U_e$ , respectively). These are given by the star operator we saw in the previous talk.



We can see graphs as topological spaces. Each node v (and edge e) has an associated open set  $U_v$  (and  $U_e$ , respectively). These are given by the star operator we saw in the previous talk.



In what follows, we will see how this perspective can help us understand and develop better GNNs.

# Heterophily and Oversmoothing in GNNs

Let G = (V, E) be a graph with *n* nodes and a node feature matrix  $\mathbf{X} \in \mathbb{R}^{n \times d}$ . We want to label the gray nodes by training on the red and blue nodes.



## The Oversmoothing Problem

In some  ${\sf GNNs}^2$  features become progressively smoother with increased depth.



With more layers, GCN approaches a "smooth" subspace where all the node features are constant<sup>1</sup>.

<sup>&</sup>lt;sup>2</sup>Oono and Suzuki, "Graph neural networks exponentially lose expressive power for node classification", 2019; Cai and Wang, "A note on over-smoothing for graph neural networks", 2020.

It was remarked<sup>3</sup> that GNNs struggle in heterophilic settings (i.e. graphs where a node tends to be connected to nodes belonging to other classes).



The performance of GNNs is strongly correlated to the homophily level of a  $graph^2$ .

<sup>&</sup>lt;sup>3</sup>Zhu et al., "Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs", 2020.

Let *G* be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

 $\dot{\mathbf{X}}(t) = -\Delta_0 \mathbf{X}(t)$ 

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

$$\dot{\mathsf{X}}(t) = - \Delta_0 \mathsf{X}(t) \iff \mathsf{X}(t+1) = \mathsf{X}(t) - \Delta_0 \mathsf{X}(t)$$

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

$$\dot{\mathbf{X}}(t) = -\Delta_0 \mathbf{X}(t) \longrightarrow \mathbf{X}(t+1) = \mathbf{X}(t) - \Delta_0 \mathbf{X}(t) = (\mathbf{I} - \Delta_0) \mathbf{X}(t)$$
 (1)

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

$$\dot{\mathbf{X}}(t) = -\Delta_0 \mathbf{X}(t) \longrightarrow \mathbf{X}(t+1) = \mathbf{X}(t) - \Delta_0 \mathbf{X}(t) = (\mathbf{I} - \Delta_0) \mathbf{X}(t)$$
 (1)

This is strikingly similar to GCN<sup>4</sup>:

$$\operatorname{GCN}(\mathbf{X}, \mathbf{A}) := \sigma \Big( \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{X} \mathbf{W} \Big)$$

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

$$\dot{\mathbf{X}}(t) = -\Delta_0 \mathbf{X}(t) \longrightarrow \mathbf{X}(t+1) = \mathbf{X}(t) - \Delta_0 \mathbf{X}(t) = (\mathbf{I} - \Delta_0) \mathbf{X}(t)$$
(1)

This is strikingly similar to GCN<sup>4</sup>:

$$\operatorname{GCN}(\mathbf{X}, \mathbf{A}) := \sigma \left( \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{X} \mathbf{W} \right) = \sigma \left( (\mathbf{I} - \Delta_0) \mathbf{X} \mathbf{W} \right)$$
(2)

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Let G be a graph with self loops, degree matrix **D**, adjacency matrix **A**, normalised Laplacian  $\Delta_0 := I - \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2}$ , and node features  $\mathbf{X} \in \mathbb{R}^{n \times d}$ .

Heat diffusion is a simple process suffering from oversmoothing and heterophily:

$$\dot{\mathbf{X}}(t) = -\Delta_0 \mathbf{X}(t) \longrightarrow \mathbf{X}(t+1) = \mathbf{X}(t) - \Delta_0 \mathbf{X}(t) = (\mathbf{I} - \Delta_0) \mathbf{X}(t)$$
 (1)

This is strikingly similar to GCN<sup>4</sup>:

$$\operatorname{GCN}(\mathbf{X}, \mathbf{A}) := \sigma \left( \mathbf{D}^{-1/2} \mathbf{A} \mathbf{D}^{-1/2} \mathbf{X} \mathbf{W} \right) = \sigma \left( (\mathbf{I} - \Delta_0) \mathbf{X} \mathbf{W} \right)$$
(2)

#### Question

How can we make the base diffusion process more powerful?

<sup>&</sup>lt;sup>4</sup>Kipf and Welling, "Semi-supervised classification with graph convolutional networks", 2017.

Informally, *Pre-sheaves* are an assignment of some data to the open sets of a space X.



Informally, *Pre-sheaves* are an assignment of some data to the open sets of a space X.



For each open set U, we denote the data attached to it by  $\mathcal{F}(U)$ . Whenever  $U \subseteq X$ , we can follow an arrow  $\mathcal{F}(X) \to \mathcal{F}(U)$  to "restrict" the data of X to a smaller region U.





A *presheaf* of sets  $\mathcal{F}$  over a topological space X consists of:

1. For each open set  $U \subseteq X$ , a set  $\mathcal{F}(U)$ . Its elements are called *sections* of  $\mathcal{F}$  over U.



A *presheaf* of sets  $\mathcal{F}$  over a topological space X consists of:

- 1. For each open set  $U \subseteq X$ , a set  $\mathcal{F}(U)$ . Its elements are called *sections* of  $\mathcal{F}$  over U.
- 2. For each inclusion of open sets  $V \subseteq U$ , a function  $\mathcal{F}_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$  with the property that if  $W \subseteq V \subseteq U$ , then  $\mathcal{F}_{U,W} = \mathcal{F}_{V,W} \circ \mathcal{F}_{U,V}$  and  $\mathcal{F}_{U,U} = \mathrm{id}_{\mathcal{F}(U)}$ .

# The presheaf of continuous functions over $\ensuremath{\mathbb{R}}$

Let  $X = \mathbb{R}$ ,  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is continous}\}$  and let  $V \subseteq U \mathcal{F}_{U:V} : \mathcal{F}(U) \to \mathcal{F}(V)$ be the restriction map sending  $f \mapsto f|_V$ . This presheaf satisfies two nice properties:

# The presheaf of continuous functions over $\ensuremath{\mathbb{R}}$

Let  $X = \mathbb{R}$ ,  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is continous}\}$  and let  $V \subseteq U \mathcal{F}_{U:V} : \mathcal{F}(U) \to \mathcal{F}(V)$ be the restriction map sending  $f \mapsto f|_V$ . This presheaf satisfies two nice properties:

### Locality

```
Let (U_i)_{i \in I} be an open cover for U. For
any s, t \in \mathcal{F}(U), if s|_{U_i} = t|_{U_i} for all i \in I,
then s = t.
```

# The presheaf of continuous functions over $\ensuremath{\mathbb{R}}$

Let  $X = \mathbb{R}$ ,  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is continous}\}$  and let  $V \subseteq U \mathcal{F}_{U:V} : \mathcal{F}(U) \to \mathcal{F}(V)$ be the restriction map sending  $f \mapsto f|_V$ . This presheaf satisfies two nice properties:

#### Glueing

#### Locality

Let  $(U_i)_{i \in I}$  be an open cover for U. For any  $s, t \in \mathcal{F}(U)$ , if  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

## Let $(U_i)_{i \in I}$ be an open cover for U and $(s_i \in \mathcal{F}(U_i))_{i \in I}$ . If for all $i, j \in I$ , $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ , then there is a unique $s \in \mathcal{F}(U)$ such that $s|_{U_i} = s_i$ for all $i \in I$ .



For  $s \in \mathcal{F}(U)$  and  $V \subseteq U$ , denote by  $s|_V := \mathcal{F}_{U,V}(s)$ .

For  $s \in \mathcal{F}(U)$  and  $V \subseteq U$ , denote by  $s|_V := \mathcal{F}_{U,V}(s)$ . Then, a *sheaf* is a presheaf that also satisfies the locality and glueing conditions.

For  $s \in \mathcal{F}(U)$  and  $V \subseteq U$ , denote by  $s|_V := \mathcal{F}_{U,V}(s)$ . Then, a *sheaf* is a presheaf that also satisfies the locality and glueing conditions.

#### Locality

Let  $(U_i)_{i \in I}$  be an open cover for U. For any  $s, t \in \mathcal{F}(U)$ , if  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

## Glueing

Let  $(U_i)_{i \in I}$  be an open cover for U and  $(s_i \in \mathcal{F}(U_i))_{i \in I}$ . If for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_i} = s_i|_{U_i \cap U_i}$ , then there is a unique  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$ .

For  $s \in \mathcal{F}(U)$  and  $V \subseteq U$ , denote by  $s|_V := \mathcal{F}_{U,V}(s)$ . Then, a *sheaf* is a presheaf that also satisfies the locality and glueing conditions.

#### Locality

Let  $(U_i)_{i \in I}$  be an open cover for U. For any  $s, t \in \mathcal{F}(U)$ , if  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

## Glueing

Let  $(U_i)_{i \in I}$  be an open cover for U and  $(s_i \in \mathcal{F}(U_i))_{i \in I}$ . If for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_i} = s_j|_{U_i \cap U_i}$ , then there is a unique  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$ .

## **Examples of sheaves**



We can glue two vector fields that agree on their overlap.

We have already seen that the presheaf of continuous functions over  $\ensuremath{\mathbb{R}}$  is a sheaf.

Another example is the sheaf of vector fields over a smooth manifold M.

 $\mathcal{F}(U) = \{ f : U \to TU \mid f \text{ is a vector field} \}$ 

The restriction maps are simply restrictions of the vector field.

## **Examples of sheaves**



We can glue two vector fields that agree on their overlap.

We have already seen that the presheaf of continuous functions over  $\ensuremath{\mathbb{R}}$  is a sheaf.

Another example is the sheaf of vector fields over a smooth manifold M.

 $\mathcal{F}(U) = \{ f : U \to TU \mid f \text{ is a vector field} \}$ 

The restriction maps are simply restrictions of the vector field.

#### Key idea

Sheaves are about creating big(ger) data from small(er) data.

## Presheaves that are not sheaves

Let  $X = \mathbb{R}$  and consider the assignment  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is cont. and bounded}\}$ . Then if we glue over  $\mathbb{R}$  infinitely many functions bounded on subsets of  $\mathbb{R}$ , we can easily obtain an ubounded function over  $\mathbb{R}$ . Therefore, this is not a sheaf.



## Presheaves that are not sheaves

Let  $X = \mathbb{R}$  and consider the assignment  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is cont. and bounded}\}$ . Then if we glue over  $\mathbb{R}$  infinitely many functions bounded on subsets of  $\mathbb{R}$ , we can easily obtain an ubounded function over  $\mathbb{R}$ . Therefore, this is not a sheaf.



Another example is the presheaf of constant functions over  $\mathbb{R}$ :  $\mathcal{F}(U) = \{f : U \to \mathbb{R} \mid f \text{ is constant}\}.$  Can you see why?

## **Towards Sheaves on Graphs**

Given a topological space X, an open base is a collection of open subsets  $\mathcal{B}$  such that any other open subsets of X can be expressed as a union of subsets in  $\mathcal{B}$ . The elements of  $\mathcal{B}$  are called *basic open sets*.



<sup>&</sup>lt;sup>5</sup>Hu, "A Brief Note for Sheaf Structures on Posets", 2020.
## **Towards Sheaves on Graphs**

Given a topological space X, an open base is a collection of open subsets  $\mathcal{B}$  such that any other open subsets of X can be expressed as a union of subsets in  $\mathcal{B}$ . The elements of  $\mathcal{B}$  are called *basic open sets*.



We will now consider graphs with the topology generated by the basis of open stars of all the vertices and edges. We will show how this space can be equipped with a sheaf, following an approach inspired by CS  $Hu^5$ .

<sup>&</sup>lt;sup>5</sup>Hu, "A Brief Note for Sheaf Structures on Posets", 2020.

#### **Base presheaves on Graphs**

A *B*-presheaf is a presheaf where we only care about basic open sets. More formally: 1. For each open set  $U \in \mathcal{B}$ , a set  $\mathcal{F}(U)$ .

## Base presheaves on Graphs

A  $\mathcal{B}$ -presheaf is a presheaf where we only care about basic open sets. More formally:

- 1. For each open set  $U \in \mathcal{B}$ , a set  $\mathcal{F}(U)$ .
- 2. For each pair  $V \subseteq U$  of members of  $\mathcal{B}$ , a function  $\mathcal{F}_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$  with the usual properties.

### Base presheaves on Graphs

A  $\mathcal{B}$ -presheaf is a presheaf where we only care about basic open sets. More formally:

- 1. For each open set  $U \in \mathcal{B}$ , a set  $\mathcal{F}(U)$ .
- 2. For each pair  $V \subseteq U$  of members of  $\mathcal{B}$ , a function  $\mathcal{F}_{U,V} : \mathcal{F}(U) \to \mathcal{F}(V)$  with the usual properties.

Now, we can easily define a *B*-presheaf on graphs:



We can similarly define a  $\mathcal{B}$ -sheaf. It is a  $\mathcal{B}$ -presheaf such that it satisfies:

1. Locality: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

We can similarly define a  $\mathcal{B}$ -sheaf. It is a  $\mathcal{B}$ -presheaf such that it satisfies:

- 1. Locality: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.
- 2. **Glueing**: Suppose  $U \in \mathcal{B}$  and U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  with local sections  $s_i \in \mathcal{F}(U_i)$  such that for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ . Then there is an  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$

We can similarly define a  $\mathcal{B}$ -sheaf. It is a  $\mathcal{B}$ -presheaf such that it satisfies:

- 1. Locality: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.
- 2. **Glueing**: Suppose  $U \in \mathcal{B}$  and U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  with local sections  $s_i \in \mathcal{F}(U_i)$  such that for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ . Then there is an  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$

Now a little miracle happens:

#### Theorem

Any  $\mathcal{B}$ -presheaf on a graph with the topology generated by the open stars is a  $\mathcal{B}$ -sheaf.

## **Proving Locality**

**Locality**: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

# **Proving Locality**

**Locality**: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

#### Proof.

Notice that we only have only two types of open sets in  $\mathcal{B}$ :



For  $U_e$  the only cover is the trivial one:  $\{U_e\}$ . Thus,  $s = s|_{U_e} = t|_{U_e} = t$ .

# **Proving Locality**

**Locality**: Let  $U \in \mathcal{B}$  and  $s, t \in \mathcal{F}(U)$ . If U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  such that  $s|_{U_i} = t|_{U_i}$  for all  $i \in I$ , then s = t.

#### Proof.

Notice that we only have only two types of open sets in  $\mathcal{B}$ :



For  $U_e$  the only cover is the trivial one:  $\{U_e\}$ . Thus,  $s = s|_{U_e} = t|_{U_e} = t$ . For  $U_v$ , notice that  $U_v \in (U_i)_{i \in I}$  because the vertex v cannot be covered by other open sets in  $\mathcal{B}$ . Then again we have  $s = s|_{U_v} = t|_{U_v} = t$ .

# **Proving Glueing**

**Glueing**: Suppose  $U \in \mathcal{B}$  and U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  with local sections  $s_i \in \mathcal{F}(U_i)$  such that for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ . Then there is an  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$ 

# **Proving Glueing**

**Glueing**: Suppose  $U \in \mathcal{B}$  and U is covered by  $(U_i)_{i \in I} \subseteq \mathcal{B}$  with local sections  $s_i \in \mathcal{F}(U_i)$  such that for all  $i, j \in I$ ,  $s_i|_{U_i \cap U_j} = s_j|_{U_i \cap U_j}$ . Then there is an  $s \in \mathcal{F}(U)$  such that  $s|_{U_i} = s_i$  for all  $i \in I$ 

Proof.



As before, for open sets of type  $U_e$ , the proof is trivial. For open sets of type  $U_v$  we exploit again that  $U_v = U_k$  for some  $k \in I$ . Let  $s_k \in \mathcal{F}(U_k) = \mathcal{F}(U_v)$ . We have that  $s_k|_{U_i} = s_k|_{U_k \cap U_i} = s_i|_{U_v \cap U_i} = s_i|_{U_v \cap U_i} = s_i|_{U_i} = s_i$ 

Now we know that our  $\mathcal{B}$ -presheaf is a  $\mathcal{B}$ -sheaf. But how do we get a sheaf now?



To each open star we assign a set and for each  $U_e \subseteq U_v$  a restriction map.

Now we know that our  $\mathcal{B}$ -presheaf is a  $\mathcal{B}$ -sheaf. But how do we get a sheaf now?



To each open star we assign a set and for each  $U_e \subseteq U_v$  a restriction map.

It turns out, that sheaves behave a bit like a linear operator. It is sufficient to specify how it behaves on a basis to fully specify its behaviour.

#### Theorem

A  $\mathcal{B}$ -sheaf  $\mathcal{F}$  on a space X uniquely induces a sheaf  $\mathcal{F}^+$  on X such that  $\mathcal{F}$  and  $\mathcal{F}^+$  are canonically isomorphic.

#### Theorem

A  $\mathcal{B}$ -sheaf  $\mathcal{F}$  on a space X uniquely induces a sheaf  $\mathcal{F}^+$  on X such that  $\mathcal{F}$  and  $\mathcal{F}^+$  are canonically isomorphic.

Let  $I(U) = \{V \mid V \in \mathcal{B}, V \subseteq U\}$ . Then the sections of  $\mathcal{F}^+$  are constructed as follows:  $\mathcal{F}^+(U) := \left\{ (s_V)_{V \in I(U)} \in \prod_{V \in I(U)} \mathcal{F}(V) \mid \mathcal{F}_{V,W}(s_V) = s_W, \ \forall W \subseteq V \right\}$ 

#### Theorem

A  $\mathcal{B}$ -sheaf  $\mathcal{F}$  on a space X uniquely induces a sheaf  $\mathcal{F}^+$  on X such that  $\mathcal{F}$  and  $\mathcal{F}^+$  are canonically isomorphic.

Let  $I(U) = \{V \mid V \in \mathcal{B}, V \subseteq U\}$ . Then the sections of  $\mathcal{F}^+$  are constructed as follows:  $\mathcal{F}^+(U) := \left\{ (s_V)_{V \in I(U)} \in \prod_{V \in I(U)} \mathcal{F}(V) \mid \mathcal{F}_{V,W}(s_V) = s_W, \ \forall W \subseteq V \right\}$ 



**Example:** For  $U = U_v \cup U_u$ :  $\mathcal{F}^+(U) = \{(s_{U_v}, s_{U_e}, s_{U_u}) \mid s_{U_e} = \mathcal{F}_{U_v, U_e}(s_v) = \mathcal{F}_{U_u, U_e}(s_u)\}$ 

#### Theorem

A  $\mathcal{B}$ -sheaf  $\mathcal{F}$  on a space X uniquely induces a sheaf  $\mathcal{F}^+$  on X such that  $\mathcal{F}$  and  $\mathcal{F}^+$  are canonically isomorphic.

Let  $I(U) = \{V \mid V \in \mathcal{B}, V \subseteq U\}$ . Then the sections of  $\mathcal{F}^+$  are constructed as follows:  $\mathcal{F}^+(U) := \left\{ (s_V)_{V \in I(U)} \in \prod_{V \in I(U)} \mathcal{F}(V) \mid \mathcal{F}_{V,W}(s_V) = s_W, \ \forall W \subseteq V \right\}$ 



**Example:** For  $U = U_v \cup U_u$ :  $\mathcal{F}^+(U) = \{(s_{U_v}, s_{U_e}, s_{U_u}) \mid s_{U_e} = \mathcal{F}_{U_v, U_e}(s_v) = \mathcal{F}_{U_u, U_e}(s_u)\}$ 

For each open  $W \subseteq U$ ,  $\mathcal{F}_{U,W}^+$  simply drops all the  $s_V$ , where  $V \in I(U)$  but  $V \notin I(W)$ .



A cellular sheat  $^{67}(G, \mathcal{F})$  of vector spaces on an undirected graph G = (V, E) consists of: 1. A vector space  $\mathcal{F}(v)$  for each  $v \in V$ .

<sup>&</sup>lt;sup>6</sup>Curry, Sheaves, cosheaves and applications, 2014.

<sup>&</sup>lt;sup>7</sup>Shepard, "A cellular description of the derived category of a stratified space", 1985.



A cellular sheat  $^{67}(G, \mathcal{F})$  of vector spaces on an undirected graph G = (V, E) consists of: 1. A vector space  $\mathcal{F}(v)$  for each  $v \in V$ .

2. A vector space  $\mathcal{F}(e)$  for each  $e \in E$ .

<sup>&</sup>lt;sup>6</sup>Curry, Sheaves, cosheaves and applications, 2014.

<sup>&</sup>lt;sup>7</sup>Shepard, "A cellular description of the derived category of a stratified space", 1985.



A cellular sheaf  $^{67}(G, \mathcal{F})$  of vector spaces on an undirected graph G = (V, E) consists of: 1. A vector space  $\mathcal{F}(v)$  for each  $v \in V$ .

- 2. A vector space  $\mathcal{F}(e)$  for each  $e \in E$ .
- 3. A linear map  $\mathcal{F}_{v \leq e} : \mathcal{F}(v) \rightarrow \mathcal{F}(e)$  for each incident  $v \leq e$  node-edge pair.

<sup>&</sup>lt;sup>6</sup>Curry, Sheaves, cosheaves and applications, 2014.

<sup>&</sup>lt;sup>7</sup>Shepard, "A cellular description of the derived category of a stratified space", 1985.



A cellular sheat  $^{67}(G, \mathcal{F})$  of vector spaces on an undirected graph G = (V, E) consists of: 1. A vector space  $\mathcal{F}(v)$  for each  $v \in V$ .

- 2. A vector space  $\mathcal{F}(e)$  for each  $e \in E$ .
- 3. A linear map  $\mathcal{F}_{v \leq e} : \mathcal{F}(v) \to \mathcal{F}(e)$  for each incident  $v \leq e$  node-edge pair.

The vector spaces are called stalks and the linear maps are also known as restriction maps.

<sup>&</sup>lt;sup>6</sup>Curry, Sheaves, cosheaves and applications, 2014.

<sup>&</sup>lt;sup>7</sup>Shepard, "A cellular description of the derived category of a stratified space", 1985.

# **Opinion Dynamics**

Opinion dynamics<sup>8</sup> provides a nice mental picture of cellular sheaves.



Nodes connected by edges represent people who are communicating. The vertex stalks contain the private opinions of the individuals, the edge stalks form a discourse space and the linear maps describe how the private opinions manifest publicly.

<sup>&</sup>lt;sup>8</sup>Hansen and Ghrist, "Opinion dynamics on discourse sheaves", 2021.

For a sheaf  $(\mathcal{F}, G)$  we define the space of 0-cochains  $C^0(G; \mathcal{F}) := \bigoplus_{v \in V} \mathcal{F}(v)$  and 1-cochains  $C^1(G; \mathcal{F}) := \bigoplus_{e \in E} \mathcal{F}(e)$ . This just gathers all the stalks into a vector space.

For a sheaf  $(\mathcal{F}, G)$  we define the space of 0-cochains  $C^0(G; \mathcal{F}) := \bigoplus_{v \in V} \mathcal{F}(v)$  and 1-cochains  $C^1(G; \mathcal{F}) := \bigoplus_{e \in E} \mathcal{F}(e)$ . This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge  $e = u \rightarrow v \in E$ , define the linear coboundary map  $\delta \colon C^0(G, \mathcal{F}) \rightarrow C^1(G, \mathcal{F})$  by  $\delta(\mathbf{x})_e := \mathcal{F}_{v \leq e} \mathbf{x}_v - \mathcal{F}_{u \leq e} \mathbf{x}_u$ .

For a sheaf  $(\mathcal{F}, G)$  we define the space of 0-cochains  $C^0(G; \mathcal{F}) := \bigoplus_{v \in V} \mathcal{F}(v)$  and 1-cochains  $C^1(G; \mathcal{F}) := \bigoplus_{e \in E} \mathcal{F}(e)$ . This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge  $e = u \rightarrow v \in E$ , define the linear coboundary map  $\delta \colon C^0(G, \mathcal{F}) \rightarrow C^1(G, \mathcal{F})$  by  $\delta(\mathbf{x})_e := \mathcal{F}_{v \leq e} \mathbf{x}_v - \mathcal{F}_{u \leq e} \mathbf{x}_u$ .



The transpose boundary operator behaves like a gradient. This is the coboundary of the sheaf with stalks  $\mathbb{R}$  and identity restrictions.

For a sheaf  $(\mathcal{F}, G)$  we define the space of 0-cochains  $C^0(G; \mathcal{F}) := \bigoplus_{v \in V} \mathcal{F}(v)$  and 1-cochains  $C^1(G; \mathcal{F}) := \bigoplus_{e \in E} \mathcal{F}(e)$ . This just gathers all the stalks into a vector space.

For some arbitrary choice of orientation for each edge  $e = u \rightarrow v \in E$ , define the linear coboundary map  $\delta \colon C^0(G, \mathcal{F}) \rightarrow C^1(G, \mathcal{F})$  by  $\delta(\mathbf{x})_e := \mathcal{F}_{v \leq e} \mathbf{x}_v - \mathcal{F}_{u \leq e} \mathbf{x}_u$ .





The transpose boundary operator behaves like a gradient. This is the coboundary of the sheaf with stalks  $\mathbb{R}$  and identity restrictions.

The sheaf coboundary operator behaves like a covariant derivative.

$$0 \to C_n(K,\mathbb{R}) \to \cdots \xrightarrow{\partial_{k+1}} C_k(K,\mathbb{R}) \xrightarrow{\partial_k} C_{k-1}(K,\mathbb{R}) \cdots \xrightarrow{\partial_2} C_1(K,\mathbb{R}) \xrightarrow{\partial_1} C_0(K,\mathbb{R}) \to 0$$

$$0 \to C_n(K,\mathbb{R}) \to \cdots \xrightarrow{\partial_{k+1}} C_k(K,\mathbb{R}) \xrightarrow{\partial_k} C_{k-1}(K,\mathbb{R}) \cdots \xrightarrow{\partial_2} C_1(K,\mathbb{R}) \xrightarrow{\partial_1} C_0(K,\mathbb{R}) \to 0$$

Informally, we could have used the operators  $\delta_{k-1} = \partial_k^{\top}$  to create a *cochain complex*:

$$0 \leftarrow C^{n}(K,\mathbb{R}) \leftarrow \cdots \xleftarrow{\delta_{k}} C^{k}(K,\mathbb{R}) \xleftarrow{\delta_{2}} C^{k-1}(K,\mathbb{R}) \cdots \xleftarrow{\delta_{1}} C^{1}(K,\mathbb{R}) \xleftarrow{\delta_{0}} C^{0}(K,\mathbb{R}) \leftarrow 0$$

$$0 \to C_n(K,\mathbb{R}) \to \cdots \xrightarrow{\partial_{k+1}} C_k(K,\mathbb{R}) \xrightarrow{\partial_k} C_{k-1}(K,\mathbb{R}) \cdots \xrightarrow{\partial_2} C_1(K,\mathbb{R}) \xrightarrow{\partial_1} C_0(K,\mathbb{R}) \to 0$$

Informally, we could have used the operators  $\delta_{k-1} = \partial_k^{\top}$  to create a *cochain complex*:

$$0 \leftarrow C^n(K,\mathbb{R}) \leftarrow \cdots \xleftarrow{\delta_k} C^k(K,\mathbb{R}) \xleftarrow{\delta_2} C^{k-1}(K,\mathbb{R}) \cdots \xleftarrow{\delta_1} C^1(K,\mathbb{R}) \xleftarrow{\delta_0} C^0(K,\mathbb{R}) \leftarrow 0$$

Similarly, we can define a cohomology group  $H^k(K,\mathbb{R}) := \ker \delta_k / \operatorname{im} \delta_{k-1}$ 

$$0 \to C_n(K,\mathbb{R}) \to \cdots \xrightarrow{\partial_{k+1}} C_k(K,\mathbb{R}) \xrightarrow{\partial_k} C_{k-1}(K,\mathbb{R}) \cdots \xrightarrow{\partial_2} C_1(K,\mathbb{R}) \xrightarrow{\partial_1} C_0(K,\mathbb{R}) \to 0$$

Informally, we could have used the operators  $\delta_{k-1} = \partial_k^{\top}$  to create a *cochain complex*:

$$0 \leftarrow C^n(K,\mathbb{R}) \leftarrow \cdots \xleftarrow{\delta_k} C^k(K,\mathbb{R}) \xleftarrow{\delta_2} C^{k-1}(K,\mathbb{R}) \cdots \xleftarrow{\delta_1} C^1(K,\mathbb{R}) \xleftarrow{\delta_0} C^0(K,\mathbb{R}) \leftarrow 0$$

Similarly, we can define a cohomology group  $H^k(K,\mathbb{R}) := \ker \delta_k / \operatorname{im} \delta_{k-1} \cong H_k(K,\mathbb{R})$ 

# Sheaf Cohomology

Notice that the sheaf coboundary operator defines a *cochain complex* over the graph:

$$0 \leftarrow C^1(G; \mathcal{F}) \xleftarrow{\delta} C^0(G; \mathcal{F}) \leftarrow 0$$

## Sheaf Cohomology

Notice that the sheaf coboundary operator defines a *cochain complex* over the graph:

$$0 \leftarrow C^1(G; \mathcal{F}) \xleftarrow{\delta} C^0(G; \mathcal{F}) \leftarrow 0$$

We can define the zero-th sheaf cohomology group as

$$H^0(G;\mathcal{F}) := \ker \delta_0 / \operatorname{im} \delta_{-1} = \ker \delta_0$$

## Sheaf Cohomology

Notice that the sheaf coboundary operator defines a *cochain complex* over the graph:

$$0 \leftarrow C^1(G; \mathcal{F}) \xleftarrow{\delta} C^0(G; \mathcal{F}) \leftarrow 0$$

We can define the zero-th sheaf cohomology group as

$$H^0(G;\mathcal{F}) := \ker \, \delta_0 / \mathrm{im} \, \delta_{-1} = \ker \, \delta_0$$

#### So what is the point?

The cohomology group  $H^0(K, \mathbb{R}) \cong H_0(K, \mathbb{R})$  is boring. The sheaf structure gives us a much more interesting  $H^0(G; \mathcal{F})$ .

## The Sheaf Laplacian

The sheaf Laplacian<sup>9</sup> is the linear operator  $\delta^{\top}\delta$  and it is defined node-wise as

$$\mathcal{L}_{\mathcal{F}}(\mathsf{x})_{\mathsf{v}} := \sum_{\mathsf{v}, u \trianglelefteq e} \mathcal{F}_{\mathsf{v} \trianglelefteq e}^{ op} (\mathcal{F}_{\mathsf{v} \trianglelefteq e} \mathsf{x}_{\mathsf{v}} - \mathcal{F}_{u \trianglelefteq e} \mathsf{x}_{u})$$



<sup>&</sup>lt;sup>9</sup>Hansen and Ghrist, "Toward a spectral theory of cellular sheaves", 2019.

### The Sheaf Laplacian

The sheaf Laplacian<sup>9</sup> is the linear operator  $\delta^{\top}\delta$  and it is defined node-wise as

$$\mathcal{L}_{\mathcal{F}}(\mathsf{x})_{\mathsf{v}} := \sum_{\mathsf{v}, u \trianglelefteq e} \mathcal{F}_{\mathsf{v} \trianglelefteq e}^{ op} (\mathcal{F}_{\mathsf{v} \trianglelefteq e} \mathsf{x}_{\mathsf{v}} - \mathcal{F}_{u \trianglelefteq e} \mathsf{x}_{u})$$



The normalised Laplacian  $\Delta_{\mathcal{F}} := D^{-1/2} L_{\mathcal{F}} D^{-1/2}$ , where D is the block-diagonal of  $L_{\mathcal{F}}$ . When d = 1 and  $\mathcal{F}_{v \leq e} = 1$ , we obtain the (normalised) graph Laplacian.

<sup>&</sup>lt;sup>9</sup>Hansen and Ghrist, "Toward a spectral theory of cellular sheaves", 2019.
### **Discrete Vector Bundles**

The sheaves  $(G, \mathcal{F})$  with orthogonal restriction maps are *discrete* O(d)-bundles<sup>10</sup>. Notice how easily we obtain some sort of geometric structure over the graph.



Analogy between parallel transport on a sphere and transport on a discrete vector bundle. A tangent vector is moved from  $\mathcal{F}(w) \to \mathcal{F}(v) \to \mathcal{F}(u)$  and back.

 $<sup>^{10}\</sup>mathsf{Singer}$  and Wu, "Vector diffusion maps and the connection Laplacian", 2012.

# The Expressive Power of Sheaf Diffusion

# **Sheaf Diffusion**

We now consider the *sheaf diffusion* process governed by the PDE:

$$\mathbf{X}(0)=\mathbf{X}, \quad \dot{\mathbf{X}}(t)=-\Delta_{\mathcal{F}}\mathbf{X}(t)$$



# **Sheaf Diffusion**

We now consider the *sheaf diffusion* process governed by the PDE:

$$\mathbf{X}(0) = \mathbf{X}, \quad \dot{\mathbf{X}}(t) = -\Delta_{\mathcal{F}} \mathbf{X}(t)$$



### Theorem (Hodge Theorem)

As  $t \to \infty$ , the features converge to the projection of X(0) into ker  $\Delta_{\mathcal{F}} \cong H^0(G; \mathcal{F})$ 

# The Separation Power of Sheaf Diffusion

We want to look at what classes of sheaves can linearly separate the nodes of a graph in the infinite time limit of their diffusion process.



# The Separation Power of Sheaf Diffusion

We want to look at what classes of sheaves can linearly separate the nodes of a graph in the infinite time limit of their diffusion process.



For that, we need to understand the properties of ker  $\Delta_{\mathcal{F}}$ . In particular, when is ker  $\Delta_{\mathcal{F}} = 0$ ? We certainly do not want to converge to zero.



The transport is not path-independent because the vector returns in another position. Let  $(G, \mathcal{F})$  be a discrete O(d)-bundle. Given nodes  $v, u \in V$  and a path  $\gamma_{v \to u} = (v, v_1, \dots, v_{\ell}, u)$  from v to u, we consider a notion of **transport** from the stalk  $\mathcal{F}(v)$  to the stalk  $\mathcal{F}(u)$  via map composition:

$$\mathbf{P}_{v \to u}^{\gamma} := (\mathcal{F}_{u \trianglelefteq e}^{\top} \mathcal{F}_{v_{L} \trianglelefteq e}) \dots (\mathcal{F}_{v_{1} \trianglelefteq e}^{\top} \mathcal{F}_{v \trianglelefteq e}) : \mathcal{F}(v) \to \mathcal{F}(u).$$



The transport is not path-independent because the vector returns in another position. Let  $(G, \mathcal{F})$  be a discrete O(d)-bundle. Given nodes  $v, u \in V$  and a path  $\gamma_{v \to u} = (v, v_1, \dots, v_{\ell}, u)$  from v to u, we consider a notion of **transport** from the stalk  $\mathcal{F}(v)$  to the stalk  $\mathcal{F}(u)$  via map composition:

$$\mathbf{P}_{\nu \to u}^{\gamma} := (\mathcal{F}_{u \trianglelefteq e}^{\top} \mathcal{F}_{\nu_{L} \trianglelefteq e}) \dots (\mathcal{F}_{\nu_{1} \trianglelefteq e}^{\top} \mathcal{F}_{\nu_{\square} \bowtie e}) : \mathcal{F}(\nu) \to \mathcal{F}(u).$$

#### Main idea

The harmonic space of the Laplacian is related to the path-independence of the transport.



The transport is not path-independent because the vector returns in another position. Let  $\mathcal{F}$  be a discrete O(d) bundle over a connected graph G with n nodes.

### Proposition

Let 
$$r := \max_{\gamma_{\nu \to u}, \gamma'_{\nu \to u}} ||\mathbf{P}_{\nu \to u}^{\gamma} - \mathbf{P}_{\nu \to u}^{\gamma'}||$$
, then we have  $\lambda_0^{\mathcal{F}} \leq \frac{r^2}{2}$ .



The transport is not path-independent because the vector returns in another position. Let  $\mathcal{F}$  be a discrete O(d) bundle over a connected graph G with n nodes.

### Proposition

Let 
$$r := \max_{\gamma_{\nu \to u}, \gamma'_{\nu \to u}} ||\mathbf{P}_{\nu \to u}^{\gamma} - \mathbf{P}_{\nu \to u}^{\gamma'}||$$
, then we have  $\lambda_0^{\mathcal{F}} \leq \frac{r^2}{2}$ .

### Proposition

Let  $||(\mathbf{P}_{\nu \to \nu}^{\gamma} - \mathbf{I})\mathbf{x}|| \ge \epsilon ||\mathbf{x}||$  for all cycles  $\gamma_{\nu \to \nu}$ . Then  $\lambda_0^{\mathcal{F}} \ge \epsilon^2 k_G$ , where  $k_G$  is a constant.



The transport is not path-independent because the vector returns in another position. Let  $\mathcal{F}$  be a discrete O(d) bundle over a connected graph G with n nodes.

#### Proposition

Let 
$$r := \max_{\gamma_{\nu \to u}, \gamma'_{\nu \to u}} ||\mathbf{P}_{\nu \to u}^{\gamma} - \mathbf{P}_{\nu \to u}^{\gamma'}||$$
, then we have  $\lambda_0^{\mathcal{F}} \leq \frac{r^2}{2}$ .

### Proposition

Let  $||(\mathbf{P}_{v \to v}^{\gamma} - \mathbf{I})\mathbf{x}|| \ge \epsilon ||\mathbf{x}||$  for all cycles  $\gamma_{v \to v}$ . Then  $\lambda_0^{\mathcal{F}} \ge \epsilon^2 k_G$ , where  $k_G$  is a constant.

When the transport is path independent, r = 0 and  $\epsilon = 0$  and so  $\lambda_0^{\mathcal{F}} = 0$ . This means there is at least one harmonic eigenvector and ker  $\Delta_{\mathcal{F}} \neq 0$ .

### **Diffusion on Weighted Graphs**

Consider the class of sheaves with stalks  $\mathbb R$  and symmetric and non-zero scalar maps:

$$\mathcal{H}^1_{ ext{sym}} \coloneqq \{(\mathcal{F}, \mathcal{G}) \mid \mathcal{F}(\mathbf{v}) = \mathbb{R}, \mathcal{F}_{\mathbf{v} ext{le}} = \mathcal{F}_{u ext{le}}, \ \mathcal{F}_{\mathbf{v} ext{le}} 
eq 0, orall \mathbf{v} \in \mathcal{G} \}$$

### **Diffusion on Weighted Graphs**

Consider the class of sheaves with stalks  $\mathbb R$  and symmetric and non-zero scalar maps:

$$\mathcal{H}^1_{ ext{sym}} := \{(\mathcal{F}, \mathcal{G}) \mid \mathcal{F}(\mathbf{v}) = \mathbb{R}, \mathcal{F}_{\mathbf{v} ext{le}} = \mathcal{F}_{u ext{le}}, \ \mathcal{F}_{\mathbf{v} ext{le}} 
eq 0, orall \mathbf{v} \in \mathcal{G}\}$$

#### Proposition

Let  $\mathcal{G}$  be the set of connected graphs G = (V, E) with two classes  $A, B \subset V$  such that for each  $v \in A$ , there exists  $u \in A$  and an edge  $(v, u) \in E$ . Then  $\mathcal{H}^1_{sym}$  has linear separation power over  $\mathcal{G}$ .

### **Diffusion on Weighted Graphs**

Consider the class of sheaves with stalks  $\mathbb R$  and symmetric and non-zero scalar maps:

$$\mathcal{H}^1_{ ext{sym}} := \{(\mathcal{F}, \mathcal{G}) \mid \mathcal{F}(\mathbf{v}) = \mathbb{R}, \mathcal{F}_{\mathbf{v} ext{le}} = \mathcal{F}_{u ext{le}}, \ \mathcal{F}_{\mathbf{v} ext{le}} 
eq 0, orall \mathbf{v} \in \mathcal{G}\}$$

#### Proposition

Let  $\mathcal{G}$  be the set of connected graphs G = (V, E) with two classes  $A, B \subset V$  such that for each  $v \in A$ , there exists  $u \in A$  and an edge  $(v, u) \in E$ . Then  $\mathcal{H}^1_{sym}$  has linear separation power over  $\mathcal{G}$ .

#### Proposition

Let  $\mathcal{G}$  be the set of connected bipartite graphs G = (A, B, E), with partitions A, B forming two classes and |A| = |B|. Then  $\mathcal{H}^1_{sym}$  cannot linearly separate any graph in  $\mathcal{G}$  for any initial conditions  $\mathbf{X}(0) \in \mathbb{R}^{n \times f}$ .

### **Feature polarisation**

Let G be a conected graph with two classes A, B. Consider a sheaf with  $\mathcal{F}_{v \leq e} = -\alpha_e$  if  $v \in A$  and  $\mathcal{F}_{u \leq e} = \alpha_e$  if  $u \in B$  with  $\alpha_e > 0$  for all  $e \in E$ .



Diffusion with opposite signs leads to feature polarisation.

### **Feature polarisation**

Let G be a conected graph with two classes A, B. Consider a sheaf with  $\mathcal{F}_{v \leq e} = -\alpha_e$  if  $v \in A$  and  $\mathcal{F}_{u \leq e} = \alpha_e$  if  $u \in B$  with  $\alpha_e > 0$  for all  $e \in E$ .



Diffusion with opposite signs leads to feature polarisation.

### Proposition (Informal)

This type of sheaf can linearly separate the classes of any such graph for almost any initial conditions.

Even with all this additional flexibility, dimension d = 1 still has a major limitation.

### Proposition

Let G be a connected graph with  $C \ge 3$  classes. If d = 1, no sheaf can separate the classes for any  $\mathbf{X}(0) \in \mathbb{R}^{n \times f}$ .

Even with all this additional flexibility, dimension d = 1 still has a major limitation.

### Proposition

Let G be a connected graph with  $C \ge 3$  classes. If d = 1, no sheaf can separate the classes for any  $\mathbf{X}(0) \in \mathbb{R}^{n \times f}$ .



This is a consequence of the fact the the features are projected on a subspace that is at most one-dimensional. In the best case, the classes are *pairwise* linearly separable.

We can fix this by increasing the stalk dimension. Consider the class of sheaves with diagonal invertible maps and d-dimensional stalks:

 $\mathcal{H}^d_{\mathrm{diag}} := \{ (\mathcal{F}, \mathcal{G}) \mid \mathcal{F}_{v \leq e} = \text{ invertible diagonal matrix}, \mathcal{F}(v) = \mathbb{R}^d \}$ 

We can fix this by increasing the stalk dimension. Consider the class of sheaves with diagonal invertible maps and d-dimensional stalks:

 $\mathcal{H}^d_{\mathrm{diag}} := \{ (\mathcal{F}, \mathcal{G}) \mid \mathcal{F}_{v \trianglelefteq e} = \text{ invertible diagonal matrix}, \mathcal{F}(v) = \mathbb{R}^d \}$ 

### Proposition

Let  $\mathcal{G}$  be the set of connected graphs with nodes belonging to  $C \geq 3$  classes. Then for  $d \geq C$ ,  $\mathcal{H}^d_{diag}$  has linear separation power over  $\mathcal{G}$ .

Diagonal restriction maps are extremely simple. Can we do better?

Diagonal restriction maps are extremely simple. Can we do better? We use the class of discrete O(d)-bundles  $\mathcal{H}^d_{orth} := \{(\mathcal{F}, G) \mid \mathcal{F}_{v \leq e} \in O(d)\}$ 

Diagonal restriction maps are extremely simple. Can we do better? We use the class of discrete O(d)-bundles  $\mathcal{H}^d_{orth} := \{(\mathcal{F}, G) \mid \mathcal{F}_{v \leq e} \in O(d)\}$ 

#### Theorem

Let  $\mathcal{G}$  be the class of connected graphs with  $C \leq 2d$  classes. Then, for all  $d \in \{2,4\}$ ,  $\mathcal{H}^d_{\mathrm{orth}}$  has linear separation power over  $\mathcal{G}$ .

Diagonal restriction maps are extremely simple. Can we do better? We use the class of discrete O(d)-bundles  $\mathcal{H}^d_{orth} := \{(\mathcal{F}, G) \mid \mathcal{F}_{v \leq e} \in O(d)\}$ 

#### Theorem

Let  $\mathcal{G}$  be the class of connected graphs with  $C \leq 2d$  classes. Then, for all  $d \in \{2, 4\}$ ,  $\mathcal{H}^d_{\mathrm{orth}}$  has linear separation power over  $\mathcal{G}$ .



#### Takeaway

Different classes of sheaves induce diffusion processes with different capabilities. Furthermore, any node-classification problem can be reduced to performing diffusion with the right sheaf.

# **Learning Sheaves**

### Learning sheaves

Each  $d \times d$  matrix  $\mathcal{F}_{v \triangleleft e}$  is learned via a parametric function  $\Phi : \mathbb{R}^{d \times 2} \rightarrow \mathbb{R}^{d \times d}$ :

$$\mathcal{F}_{v \leq e := (v, u)} = \Phi(\mathbf{x}_v, \mathbf{x}_u) \tag{3}$$



The restriction maps are learned from data.

We want to learn a sheaf from the latest available features.

$$\dot{\mathbf{X}}(t) = -\sigma \Big( \Delta_{\mathcal{F}(t)} (\mathbf{I}_n \otimes \mathbf{W}_1) \mathbf{X}(t) \mathbf{W}_2 \Big), \tag{4}$$

 $<sup>^{11}</sup>$ A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, "Sheaf Neural Networks", 2020

We want to learn a sheaf from the latest available features.

$$\dot{\mathbf{X}}(t) = -\sigma \Big( \Delta_{\mathcal{F}(t)} (\mathbf{I}_n \otimes \mathbf{W}_1) \mathbf{X}(t) \mathbf{W}_2 \Big), \tag{4}$$

We also consider a discrete version of this equation, with different weights at each layer t.

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \sigma \Big( \Delta_{\mathcal{F}(t)} (\mathbf{I} \otimes \mathbf{W}_1^t) \mathbf{X}_t \mathbf{W}_2^t \Big),$$
(5)

 $<sup>^{11}</sup>$ A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, "Sheaf Neural Networks", 2020

We want to learn a sheaf from the latest available features.

$$\dot{\mathbf{X}}(t) = -\sigma \Big( \Delta_{\mathcal{F}(t)} (\mathbf{I}_n \otimes \mathbf{W}_1) \mathbf{X}(t) \mathbf{W}_2 \Big), \tag{4}$$

We also consider a discrete version of this equation, with different weights at each layer t.

$$\mathbf{X}_{t+1} = \mathbf{X}_t - \sigma \Big( \Delta_{\mathcal{F}(t)} (\mathbf{I} \otimes \mathbf{W}_1^t) \mathbf{X}_t \mathbf{W}_2^t \Big),$$
(5)

#### Main idea

The sheaf evolves over time as a function of the data  $(G, \mathcal{F}(t)) = g(G, \mathbf{X}(t); \theta)$ .

 $<sup>^{11}</sup>$ A sheaf convolutional model with hand-crafted sheaves was originally proposed by Hansen and Gebhart, "Sheaf Neural Networks", 2020

### Sheaves at pre-processing time

In a recent  $paper^{12}$  we showed how by assuming that the graph is sampled from a manifold, we can construct a reasonable sheaf at pre-processing time.



We adapt existent methods<sup>13</sup> to learn the connection that best aligns the tangent spaces of the nodes.

<sup>&</sup>lt;sup>12</sup>Barbero et al., "Sheaf Neural Networks with Connection Laplacians", 2022.

 $<sup>^{13}{\</sup>rm Singer}$  and Wu, "Vector diffusion maps and the connection Laplacian", 2012.

# Results

# Synthetic Experiment: Opinion Polarisation

We have a bipartite graph with equally sized partitions that we try to distinguish. X(0) is not linearly separable. We use a simple sheaf diffusion process with a learned sheaf Laplacian (i.e. no weights and non-linearities)



Training (Left) and Testing (Middle) accuracy as a function of diffusion time. Learned sheaf Laplacian for t >> 0. (Right)

# **Real-World Evaluation**

|           | Texas                          | Wisconsin                    | Film                           | Squirrel                       | Chameleon                      | Cornell                        | Citeseer                                | Pubmed                         | Cora                           |
|-----------|--------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--------------------------------|-----------------------------------------|--------------------------------|--------------------------------|
| Hom level | 0.11                           | 0.21                         | 0.22                           | 0.22                           | 0.23                           | 0.30                           | 0.74                                    | 0.80                           | 0.81                           |
| #Nodes    | 183                            | 251                          | 7,600                          | 5,201                          | 2,277                          | 183                            | 3,327                                   | 18,717                         | 2,708                          |
| #Edges    | 295                            | 466                          | 26,752                         | 198,493                        | 31,421                         | 280                            | 4,676                                   | 44,327                         | 5,278                          |
| #Classes  | 5                              | 5                            | 5                              | 5                              | 5                              | 5                              | 7                                       | 3                              | 6                              |
| Diag-NSD  | 85.67±6.95                     | 88.63±2.75                   | 37.79±1.01                     | 54.78±1.81                     | 68.68±1.73                     | 86.49±7.35                     | $\textbf{77.14}{\scriptstyle \pm 1.85}$ | 89.42±0.43                     | 87.14±1.06                     |
| O(d)-NSD  | 85.95±5.51                     | 89.41±4.74                   | 37.81±1.15                     | 56.34±1.32                     | 68.04±1.58                     | 84.86±4.71                     | $76.70 \pm 1.57$                        | $89.49{\scriptstyle \pm 0.40}$ | 86.90±1.13                     |
| Gen-NSD   | $82.97{\scriptstyle\pm5.13}$   | 89.21±3.84                   | 37.80±1.22                     | $53.17{\scriptstyle\pm1.31}$   | $67.93{\scriptstyle \pm 1.58}$ | 85.68±6.51                     | $76.32{\scriptstyle \pm 1.65}$          | $89.33{\scriptstyle \pm 0.35}$ | $87.30{\scriptstyle \pm 1.15}$ |
| GGCN      | 84.86±4.55                     | 86.86±3.29                   | $37.54{\scriptstyle\pm1.56}$   | 55.17±1.58                     | 71.14±1.84                     | 85.68±6.63                     | $\textbf{77.14}{\scriptstyle \pm 1.45}$ | 89.15±0.37                     | 87.95±1.05                     |
| H2GCN     | 84.86±7.23                     | 87.65±4.98                   | $35.70{\scriptstyle\pm1.00}$   | $36.48 \pm 1.86$               | $60.11 \pm 2.15$               | 82.70±5.28                     | $77.11 \pm 1.57$                        | $89.49{\scriptstyle \pm 0.38}$ | 87.87±1.20                     |
| GPRGNN    | $78.38{\scriptstyle\pm4.36}$   | $82.94 \pm 4.21$             | $34.63{\scriptstyle \pm 1.22}$ | $31.61 \pm 1.24$               | $46.58 \pm 1.71$               | $80.27 \pm 8.11$               | $77.13 \pm 1.67$                        | 87.54±0.38                     | 87.95±1.18                     |
| FAGCN     | $82.43{\scriptstyle\pm6.89}$   | 82.94±7.95                   | $34.87 \pm 1.25$               | $42.59{\scriptstyle \pm 0.79}$ | 55.22±3.19                     | $79.19{\scriptstyle\pm9.79}$   | N/A                                     | N/A                            | N/A                            |
| MixHop    | 77.84±7.73                     | 75.88±4.90                   | $32.22 \pm 2.34$               | $43.80{\scriptstyle\pm1.48}$   | 60.50±2.53                     | $73.51 \pm 6.34$               | 76.26±1.33                              | $85.31 \pm 0.61$               | $87.61 \pm 0.85$               |
| GCNII     | 77.57±3.83                     | 80.39±3.40                   | $37.44 \pm 1.30$               | $38.47 \pm 1.58$               | 63.86±3.04                     | 77.86±3.79                     | 77.33±1.48                              | 90.15±0.43                     | 88.37±1.25                     |
| Geom-GCN  | $66.76{\scriptstyle \pm 2.72}$ | 64.51±3.66                   | $31.59{\scriptstyle \pm 1.15}$ | $38.15{\scriptstyle \pm 0.92}$ | $60.00 \pm 2.81$               | 60.54±3.67                     | 78.02±1.15                              | 89.95±0.47                     | 85.35±1.57                     |
| PairNorm  | 60.27±4.34                     | $48.43{\scriptstyle\pm6.14}$ | $27.40{\scriptstyle\pm1.24}$   | 50.44±2.04                     | 62.74±2.82                     | $58.92 \pm 3.15$               | $73.59{\scriptstyle \pm 1.47}$          | $87.53 \pm 0.44$               | $85.79{\scriptstyle\pm1.01}$   |
| GraphSAGE | $82.43{\scriptstyle\pm6.14}$   | $81.18 \pm 5.56$             | $34.23{\scriptstyle \pm 0.99}$ | $41.61 \pm 0.74$               | $58.73{\scriptstyle \pm 1.68}$ | $75.95{\scriptstyle \pm 5.01}$ | $76.04{\scriptstyle\pm1.30}$            | $88.45{\scriptstyle \pm 0.50}$ | $86.90{\scriptstyle \pm 1.04}$ |
| GCN       | $55.14{\scriptstyle\pm5.16}$   | 51.76±3.06                   | $27.32{\scriptstyle\pm1.10}$   | $53.43{\scriptstyle\pm2.01}$   | 64.82±2.24                     | 60.54±5.30                     | $76.50{\scriptstyle \pm 1.36}$          | $88.42 \pm 0.50$               | 86.98±1.27                     |
| GAT       | 52.16±6.63                     | 49.41±4.09                   | $27.44{\pm}0.89$               | $40.72{\scriptstyle\pm1.55}$   | 60.26±2.50                     | $61.89{\pm}5.05$               | $76.55{\scriptstyle \pm 1.23}$          | $87.30{\scriptstyle\pm1.10}$   | 86.33±0.48                     |
| MLP       | 80.81±4.75                     | 85.29±3.31                   | $36.53 \pm 0.70$               | $28.77 \pm 1.56$               | 46.21±2.99                     | $81.89{\pm}6.40$               | $74.02{\scriptstyle\pm1.90}$            | $75.69{\scriptstyle \pm 2.00}$ | 87.16±0.37                     |

We evaluate on multiple node-classifications tasks with various degrees of homophily<sup>14</sup>.

<sup>14</sup>Rozemberczki et al., "Multi-scale attributed node embedding", 2021; Pei et al., "Geom-gcn: Geometric graph convolutional networks", 2020.

# The Bigger Picture: A Category Theory Perspective

From the perspective of category theory, cellular sheaves are *functors* from the category describing the incidence structure of a graph to some other category.



Many of the ideas and results presented in these talks are the results of many collaborations and interactions with:

- Fabrizio Frasca (Twitter)
- Francesco di Giovanni (Twitter)
- Federico Barbero (University of Cambridge)
- Yu Guang Wang (Shanghai Jiao Tong University)
- Guido Montufar (UCLA & Max Planck Institute for Mathematics in the Sciences)
- Nina Otter (Queen Mary University of London)
- Ben Chamberlain (Twitter)
- Michael Bronstein (Twitter & University of Oxford)
- Pietro Liò (University of Cambridge)
## Thank you for your attention!

Email: cb2015@cam.ac.uk Twitter: @crisbodnar