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Topological Deep Learning

PhD Proposal (2020)

This talk is an attempt to describe the vision for a
research programme on Topological Deep Learning.1

1This term and similar ones have been used informally and in printCarlsson, Topological Deep Learning, 2021; Hajij and Istvan, “Topological Deep
Learning: Classification Neural Networks”, 2021; Rieck, Topological Representation Learning: A Differentiable Perspective, 2022
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Topological Deep Learning

A research programme studying deep learning on data attached to topological spaces and
topological aspects of machine learning models.
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Geometric Deep Learning

Data often resides on structured domains: molecules, meshes, manifolds . . .
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Is geometry all you need?

We must work with a chain of structural dependencies and not all spaces can be equipped
with geometrical structure.

6 / 104



Geometry on graphs

Graphs, the most prevalent space in GDL do not have a “natural” geometric structure2.

?
2The diagram is inspired from Bronstein, Graph Neural Networks through the lens of Differential Geometry and Algebraic Topology, 2022
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Topological Obstructions

The structure of the topological layer affects the geometrical layer. Therefore, the
topology of the space also affect the properties of the models working on it.

The Hairy Ball Theorem (Source: wikipedia).

The Borsuk–Ulam Theorem.
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A structure to rule them all

By adopting this very general viewpoint, we can treat all the spaces of interest in a
unified manner.

We can understand all types of spaces in terms of its neighbourhood or open set structure.
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A bottom up approach

Sets

Topological Spaces

Topological Manifolds

Smooth Manifolds

Riemannian Manifolds The topological perspective provides us with
a bottom-up approach for learning from non-
Euclidean data.

We will see that in this way we can recover (to
some degree) these higher-level structures even on
ill-behaved spaces like graphs.
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Noise robustness

Topological properties are by construction invariant under smooth deformations and
therefore, robust to noise. This observation led to Topological Quantum Computers.

To a topologist, a donut and a mug are the same.
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A categorical foundation of data processing

Category theory was invented by Samuel Eilenberg and Saunders Mac Lane during their
work on algebraic topology. It is a general theory of mathematical structures.

Category theory allows us to translate relations between spaces to relation between groups.
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Topological Spaces

A topological space is a set X together with a collection T of subsets of X called the
open sets of X and satisfying certain axioms:

1. The empty set and X belong to T .
2. Any finite intersection and arbitrary union of open sets is an open set.

A topological space X and its open sets. These sets provide neighbourhood structure for the points of X .
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A subfield of Geometric Deep Learning?

Henri Poincaré
(Source: wikipedia).

In “Analysis Situs” Poincaré discusses the group of home-
omorphisms of a space and topology as the study of the
invariants of the actions of this group. Thus he considered
topology as a subfield of (Klein’s) geometry.

In this sense, Topological Deep Learning can be seen as a
subfield of Geometric Deep Learning.
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Topological Message Passing
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Graph Machine Learning

Two typical tasks showing up in graph ML:

Graph-Level Tasks

e.g. predicting solubility of molecules

Node-level Tasks

e.g. fraud detection
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Message Passing Neural Networks

Most Graph Neural Networks (GNNs) can be understood as message passing:

mk
v := AGGREGATE

({
hk−1
u | u ∈ N (v)

})
hkv := COMBINE

(
hk−1
v ,mk

v

)
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Limitations of Graph Neural Networks

Message Passing GNNs come with a series of limitations...

Higher-order interactions Higher-order structures Higher-order features

WL

3-WL

Expressive power Long-range interactions
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Higher-dimensional generalisations of graphs

We will see that these limitations are to some degree related to the underlying space.

Graph Simplicial Complex Cell Complex

Graphs are part of a hierarchy of combinatorial topological spaces that are built from
d-dimensional cells.

Idea

How can we extend message passing to simplicial and cell complexes?
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Message Passing Simplicial Networks
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Simplicial Complexes

Let V be a non-empty vertex set. A simplicial complex K is a collection of nonempty
subsets of V , called simplices, such that:

1. K contains all the singleton subsets of V .

2. K is closed under taking subsets.

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}

} {
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}

27 / 104



Simplicial Complexes

Let V be a non-empty vertex set. A simplicial complex K is a collection of nonempty
subsets of V , called simplices, such that:

1. K contains all the singleton subsets of V .

2. K is closed under taking subsets.

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}

} {
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}

28 / 104



Simplicial Complexes

Let V be a non-empty vertex set. A simplicial complex K is a collection of nonempty
subsets of V , called simplices, such that:

1. K contains all the singleton subsets of V .

2. K is closed under taking subsets.

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}

} {
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}

29 / 104



Simplicial Complexes

Let V be a non-empty vertex set. A simplicial complex K is a collection of nonempty
subsets of V , called simplices, such that:

1. K contains all the singleton subsets of V .

2. K is closed under taking subsets.

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}

}

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}

30 / 104



Simplicial Complexes

Let V be a non-empty vertex set. A simplicial complex K is a collection of nonempty
subsets of V , called simplices, such that:

1. K contains all the singleton subsets of V .

2. K is closed under taking subsets.

{
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 4}, {3, 4}

} {
{1}, {2}, {3}, {4}, {1, 2}, {1, 3}, {2, 3}, {3, 4}, {1, 2, 3}

}
31 / 104



Orientations

An oriented simplex is a simplex with a specified order of its vertices.
These can be visualised as a walk on the simplex in the order specified by the vertices.

The orientations of the 1-simplex {1, 2}

Two orientations of the 2-simplex {1, 2, 3}

We represent oriented simplices as tuples (·) and unoriented ones as sets {·}.
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Orientations

Ignoring the starting point, each k-simplex with k > 0 has two distinct orientations.

We can choose a representative for each of these two equivalence classes:

123 := {(1, 2, 3), (2, 3, 1), (3, 1, 2)} ←− Even permutations

132 := {(1, 3, 2), (2, 1, 3), (3, 2, 1)} ←− Odd permutations
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Oriented Simplicial Complexes

An oriented simplicial complex is a simplicial complex with a choice of orientation for
each of its simplices.

An easy way to choose an orientation for a complex is to choose a global order for the
vertices [v0, . . . , vn] and then use this order for the vertices of any simplex σ.
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Chains

The vector space of k-chains Ck(K ,R) is the vector space with real coefficients having as
a basis the oriented k-simplices of K .

Consider the 1-chain c1 ∈ C1(K ,R).

c1 = 2.5(0, 1)− (3, 4) + 3.14(1, 3)

= 2.5(0, 1) + (4, 3) + 3.14(1, 3)

Consider the 2-chain c2 ∈ C2(K ,R).

c2 = 5.0(0, 1, 2) + 4.0(1, 2, 3)
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Boundary operator

Denote by σ−i := (v0, . . . , v̂i , . . . , vk) the simplex obtained by dropping the vertex vi .

The boundary operator ∂k : Ck(K ,R)→ Ck−1(K ,R) is the linear operator:

∂k(v0, . . . , vk) =
k∑

i=0

(−1)i (v0, . . . , v̂i , . . . , vk)

∂(v0, v1, v2) = (v1, v2)− (v0, v2) + (v0, v1) = (v1, v2) + (v2, v0) + (v0, v1) (1)

∂∂(v0, v1, v2) = ∂(v1, v2) + ∂(v2, v0) + ∂(v0, v1) (2)

= (v2 − v1) + (v0 − v2) + (v1 − v0) = 0 (3)
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Boundary of a Boundary

Is the last result a coincidence? Does it actually work for more complicated cases?

Proposition

The boundary of a boundary is zero: ∂k−1 ◦ ∂k = 0⇔ im ∂k ⊆ ker ∂k−1

Proof.

(∂k−1 ◦ ∂k)(v0, . . . , vk) = ∂k−1

k∑
i=0

(−1)i (v0, . . . , v̂i , . . . , vk) (4)

=
∑
j<i

(−1)j(−1)iσ−i ,−j +
∑
j>i

(−1)j−1(−1)iσ−i ,−j = 0 (5)
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What is a topological hole?

What is the difference between these two 1-chains? One is a hole and the other is not.

Two 1-cochains, c1 and c2. The second is a hole, while the first is not.

First, ∂1c1 = ∂1c2 = 0 (they are cycles). But c1 ∈ im ∂2 (it is the boundary of a 2-chain).

This leads to a definition of k-dimensional holes, given by the k-th Homology group

Hk(K ) := ker ∂k/im ∂k+1
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Boundary matrices

We can represent the boundary operator for each dimension using a matrix.
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Hodge Laplacian

The k-th Hodge Laplacian3 Lk : Ck(K ,R)→ Ck(K ,R) is given by:

Lk = L↓
k + L↑

k = B⊤
k Bk + Bk+1B⊤

k+1

Denote by σi ∨ σj if σi , σj share a (k − 1)-simplex and σi ∧ σj if they are on the boundary
of the same (k + 1)-simplex.

L↓
k(i , j) =


k + 1 if i = j

±1 if i ̸= j and σi ∨ σj
0 otherwise

L↑
k(i , j) =


deg↑(σi ) if i = j

±1 if i ̸= j and σi ∧ σj
0 otherwise

Importantly, L0 = B1B⊤
1 = D − A is the usual graph Laplacian.

3Horak and Jost, “Spectra of combinatorial Laplace operators on simplicial complexes”, 2013; Muhammad and Egerstedt, “Control using higher order
Laplacians in network topologies”, 2006; Lim, “Hodge Laplacians on graphs”, 2020; Barbarossa and Sardellitti, “Topological signal processing over
simplicial complexes”, 2020; Schaub et al., “Random walks on simplicial complexes and the normalized Hodge 1-Laplacian”, 2020.
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Hodge Theorem

Harmonic eigenvector of L1

Credits to Andrei C. Popescu

Plotting the harmonic eigenvector of L1 we notice
that its energy is concentrated around the hole of
the complex. What is going on?

Theorem (Hodge Theorem)

ker Lk and Hk(K ) are isomorphic vector spaces.

Moreover, βk = dim(ker Lk) = dim(Hk) gives
us the k-th Betti number, counting the number
of k-dim holes in the complex.
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Simplicial Convolutional Networks

Let K be a simplicial complex with normalised Hodge Laplacian ∆k = αLk with α > 0,
and k-simplex features X ∈ Rnk×d .

We can build a simplicial equivalent of GCN4: Y := σ
(
(I −∆0)XW

)
.

Define λ∗ = maxλi ̸=0(1− λi )2, where λi denotes the eigenvalues of ∆k and assume
σ = id. Additionally, define the Dirichlet energy E of a signal X as trace(X⊤∆kX ).

Applying the proof technique of Cai and Wang5, we have:

Theorem

E (Y ) ≤ λ∗∥W⊤∥22E (X ) and if α is sufficiently low, the model converges exponentially
fast to ker ∆k .

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.
5Cai and Yusu Wang, “A note on over-smoothing for graph neural networks”, 2020.
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and k-simplex features X ∈ Rnk×d .

We can build a simplicial equivalent of GCN4: Y := σ
(
(I −∆0)XW

)
.

Define λ∗ = maxλi ̸=0(1− λi )2, where λi denotes the eigenvalues of ∆k and assume
σ = id. Additionally, define the Dirichlet energy E of a signal X as trace(X⊤∆kX ).

Applying the proof technique of Cai and Wang5, we have:

Theorem

E (Y ) ≤ λ∗∥W⊤∥22E (X ) and if α is sufficiently low, the model converges exponentially
fast to ker ∆k .

4Kipf and Welling, “Semi-supervised classification with graph convolutional networks”, 2017.
5Cai and Yusu Wang, “A note on over-smoothing for graph neural networks”, 2020.
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Implications

Main idea

The asymptotic behaviour of Deep Linear GCNs and its simplicial version is topological.

(Linear) GCN

The features converge to a signal depending
only on the connected components of the graph

and their degrees.

Linear Simplicial CN

The features converge to a signal whose energy
is concentrated around the holes of the

complex.

Finally, remark that because βk is a topological invariant, the dimension of the subspace
the model converges to remains invariant under homeomorphisms.
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The Hodge Decomposition

Theorem (Hodge Decomposition)

Ck(K ,R) = im ∂⊤k
⊕

ker Lk
⊕

im ∂k+1

Chain decomposed into rotational, harmonic, and gradient parts. Diagram inspired from K. Crane6

6Crane et al., “Digital Geometry Processing with Discrete Exterior Calculus”, 2013.
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The Zoo of Simplicial Convolutional Networks

Equipped with a Laplacian, one can define all sorts of simplicial convolutions7. All of
these can be seen as a form of message passing8.

Let X0 ∈ RV×F , X1 ∈ RE×F , X2 ∈ RT×F be matrices of 0, 1, 2-chains respectively, Wi a
set of weights. Then the convolutions above typically look like below, where
L↓
1,L

↑
1,B

⊤
1 ,B2 can be replaced by any matrix with the same sparsity pattern (e.g.

attention matrix).

Y = ψ
(
L↓
1X1W1︸ ︷︷ ︸

Lower adj.

+L↑
1X1W2︸ ︷︷ ︸

Upper adj.

+ B⊤
1 X0W3︸ ︷︷ ︸

Boundary adj.

+ B2X2W4︸ ︷︷ ︸
Coboundary adj.

+ X1W5

)
This factorisation can be interpreted via the Hodge decomposition.

7Ebli et al., “Simplicial Neural Networks”, 2020; Bunch et al., “Simplicial 2-Complex Convolutional Neural Networks”, 2020; Glaze et al., “Principled
Simplicial Neural Networks for Trajectory Prediction”, 2021; Keros et al., “Dist2cycle: A simplicial neural network for homology localization”, 2022; Goh
et al., “Simplicial Attention Networks”, 2022; Giusti et al., “Simplicial Attention Networks”, 2022.

8Bodnar, Frasca, Yuguang Wang, et al., “Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks”, 2021.
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Symmetries: Permutation Equivariance

A simplicial complex of dimention d can be specified by all its boundary matrices
B = (B1, . . . ,Bd). Similarly define a tuple of permutation matrices P = (P0, . . . ,Pd)
and denote by PB = (P0B1P⊤

1 , . . . ,Pd−1BdP⊤
d ).

f : Ck(K ,R)F1 → Ck(K ,R)F2 is permutation equivariant if f (PB,PkX ) = Pk f (B,X )

Proposition

The function f (B,X ) := ψ
(
L↓
1X1W1 + L↑

1X1W2

)
is permutation equivariant.

Proof sketch.
Considering only lower adjacencies:
(P0B1P⊤

1 )⊤(P0B1P⊤
1 )(P1X1)W1 = P1B⊤

1 B1X1W = P1(L
↓
1X1W )

Upper adjacencies proceed similarly and the nonlinearity ψ commutes with P1.
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Symmetries: Orientation Equivariance

Mathematically, the choice of orientation is irrelevant. Therefore, we would like our model
to produce the same outputs up to a change in orientation.

The function f must be odd.
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Symmetries: Orientation Equivariance

If a simplex changes its orientation, then it flips its relative orientation with respect to its
adjacent neighbours.

This amounts to flipping the sign in the corresponding rows and columns of the boundary matrices.
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Symmetries: Orientation Equivariance

Consider a tuple of matrices T = (T0, . . . ,Td), where each Ti is a diagonal matrix with
values in {±1}. Additionally, because vertices always have a positive orientation, we
restrict T0 = I . Then denote by T B = (T0B1T1, . . . ,Td−1BdTd)

f : Ck(K ,R)F1 → Ck(K ,R)F2 is orientation equivariant if f (T B,TkX ) = Tk f (B,X )

Proposition

f (B,X ) := ψ
(
L↓
1X1W1 + L↑

1X1W2

)
is orientation equivariant when ψ is odd.

Proof sketch.
ψ
(
(T0B1T1)

⊤(T0B1T1)T1X1W
)
= ψ

(
T1L

↓
1X1W ). Odd ψ commutes with T1.

This idea can be generalised to general simplicial message passing architectures9,
including attention10.

9Bodnar, Frasca, Yuguang Wang, et al., “Weisfeiler and Lehman Go Topological: Message Passing Simplicial Networks”, 2021.
10Goh et al., “Simplicial Attention Networks”, 2022.
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Convolutions on Chains Complexes

The boundary maps produce a chain complex, which is a sequence of vector spaces:

0→ Cn(K ,R)→ · · ·
∂k+1−−−→ Ck(K ,R)

∂k−→ Ck−1(K ,R) · · ·
∂2−→ C1(K ,R)

∂1−→ C0(K ,R)→ 0

We can see our convolution works on chain complexes and boundary matrices ensure
communication between different dimensions of this chain.

Y = ψ
(
L↓
1X1W1 + L↑

1X1W2 + B⊤
1 X0W3 + B2X2W4 + X1W5

)
Proposition

ψ must be non-linear for simplices that are more than two dimensions apart to
communicate.

Proof sketch.
If ψ is the identity, consider how 2-chains propagate to the 0-chain level:
B1(B2X2W 1

4 )W
2
4 = (B1B2)X2W 1

4 = 0
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Application: Trajectory Classification

We are interested in classifying trajectories repre-
sented as 1-chains. At train time we use a fixed
orientation and, at test time, we randomly flip the
orientations of the edges.

Method
Synthetic Flow Ocean Drifters

Train Test Train Test

GNN L0-inv 63.9±2.4 61.0±4.2 70.1±2.3 63.5±6.0
MPSN L0-inv 88.2±5.1 85.3±5.8 84.6±4.0 71.5±4.1
MPSN - ReLU 100.0±0.0 50.0±0.0 100.0±0.0 46.5±5.7
MPSN - Id 88.0±3.1 82.6±3.0 94.6±0.9 73.0±2.7
MPSN - Tanh 97.9±0.7 95.2±1.8 99.7±0.5 72.5±0.0

Trajectory classification accuracy. The tasks are inspired
from Schaub et al.18.

The task is to classify random walks.

The task is to classify ocean drifter
trajectories around Madagascar.

18Schaub et al., “Random walks on simplicial complexes and the normalized Hodge 1-Laplacian”, 2020
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Message Passing on Cell Complexes
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Cell complexes

The subset inclusion property of simpli-
cial complexes can be restrictive, but we
still want to exploit the topological tools
they come with.

A finite (regular) cell complex is a topo-
logical space X formed of a finite disjoint
union of subspaces called cells such that:

1. Each cell is homeomorphic to Rn,
for some n.

2. The closure of each cell is
homeomorphic to a closed ball in
Rn.

A cell complex X and the corresponding
homeomorphisms to the closed balls for three
cells of different dimensions in the complex.
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Constructing cell complexes

Cell complexes can be constructed hier-
arhically:

1. Start with a set of vertices.

2. Glue the boundary of a set of line
segments to these vertices.

3. Glue the boundary of
two-dimensional disks to cycles
present in the graph previously
obtained.
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The Weisfeiler Lehman Test

The WL test is an heuristic algorithm for testing the isomorphims of two graphs. It
performs iterative colour-refinement.

If the two graphs converge to the same histogram, the test is inconclusive. In this case, the WL test fails
to distinguish these non-isomorphic graphs.
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The Cellular Weisfeiler Lehman Test

Generalising the Weisfeiler-Lehman algorithm for graphs, we can define a cellular version
of the WL test11. We call this cellular WL.

Edge Boundary Coboundary Upper adj. Lower adj.
{ { { {{

An example of a colour refinement step of CWL for an edge of the cell complex. This iteration is
performed over all the cells in the complex until convergence.

11Bodnar, Frasca, Otter, et al., “Weisfeiler and Lehman Go Cellular: CW Networks”, 2021.
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Expressive power of CWL

Let k-CL, k-IC, k-C be the “lifting” maps attaching cells to all the cliques, induced
cycles and simple cycles, respectively, of size at most k .

Theorem

For k ≥ 3, CWL(k-CL), CWL(k-IC) and CWL(k-C) are strictly more powerful than WL.

Pairs of graphs WL cannot distinguish but CWL can.
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Sparse adjacencies

Considering all these adjacencies might make the computational complexity explode.

Even though the star graph is sparse, all the edges are lower adjacent to each other and they exchange
messages.

Theorem

CWL without coboundary and lower adjacencies is as expressive as CWL with the full set
of adjacencies.
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Topological Message Passing

Orange arrows indicate
boundary messages received by
cells σ and τ , while blue ones
show upper messages received

by cells τ and δ

The cells receive two types of messages:

mt+1
B (σ) = AGGτ∈B(σ)

(
MB

(
htσ, h

t
τ

))
mt+1

↑ (σ) = AGGτ∈N↑(σ),δ∈C(σ,τ)

(
M↑

(
htσ, h

t
τ , h

t
δ

))

The update function takes as input these messages:

ht+1
σ = U

(
htσ,m

t
B(σ),m

t+1
↑ (σ)

)
A readout function computes a final representation:

READOUT({{hLσ}}dim(σ)=0, {{hLσ}}dim(σ)=1, {{hLσ}}dim(σ)=2)

Message passing on cell complexes has also been considered by
Hajij, Istvan, and Zamzmi, “Cell Complex Neural Networks”,
2020
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Expressive power

Theorem

When using injective neighbourhood aggregators and a sufficient number of layers,
topological message passing is as powerful as CWL.

SR(16,6,2,2)

SR(25,12,5,6)

SR(26,10,3,4)

SR(28,12,6,4)

SR(29,14,6,7)

SR(35,16,6,8)

SR(35,18,9,9)

SR(36,14,4,6)

SR(40,12,2,4)
Family

0

10 5

10 4

10 3

10 2

10 1

100
Failure rate

MLP-sum(4)
CIN(4)

MLP-sum(5)
CIN(5)

MLP-sum(6)
CIN(6)

3WL
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Expressive power
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Long-range interactions

The neighbourhood structure induced by cell complex naturally allows long-range
interactions with a reduced number of computational steps.

Comparison between regular message passing on graphs and topological message passing.
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A more sophisticated topological structure

Given a cell σ define the star of σ, denoted by st σ, as the union of all the cells having σ
as a face. The stars of all cells form the basis of a topology for the cell complex.

In the graph case (left), the open neighbourhoods of the two nodes do not intersect. In the
higher-dimensional cell complex (right), the neighbourhoods of the nodes are significantly expanded.
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Long-range interactions experiment

We validated the benefits of long-range interactions with an experiment where the model
has to transfer a value from one side of the ring to the other.
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Domain alignment

This type of space aligns well with certain applications such as molecular modelling.
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Molecular Property Prediction

ZINC (MAE), ZINC-FULL (MAE) and Mol-HIV (ROC-AUC).

Method
ZINC ↓ ZINC-FULL ↓ MOLHIV ↑

No Edge Feat. With Edge Feat. All methods All methods

GCN 0.469±0.002 N/A N/A 76.06±0.97
GAT 0.463±0.002 N/A N/A N/A
GatedGCN 0.422±0.006 0.363±0.009 N/A N/A
GIN 0.408±0.008 0.252±0.014 0.088±0.002 77.07±1.49
PNA 0.320±0.032 0.188±0.004 N/A 79.05±1.32
DGN 0.219±0.010 0.168±0.003 N/A 79.70±0.97
HIMP N/A 0.151±0.006 0.036±0.002 78.80±0.82
GSN 0.139±0.007 0.108±0.018 N/A 77.99±1.00

CIN-small (Ours) 0.139±0.008 0.094±0.004 0.044±0.003 80.55±1.04
CIN (Ours) 0.115±0.003 0.079±0.006 0.022±0.002 80.94±0.57
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Thanks for your attention!

Email: cb2015@cam.ac.uk
Twitter: @crisbodnar
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