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Principle of Covariance   (Einstein, 1916)

“Universal laws of nature are to be expressed by

equations which hold good for all systems of coordinates […] ”

“The inference of CNNs is to be expressed by

equations which hold good for all systems of coordinates […] ”



Equivariant convolutions



active transformations  -  acting on the data itself:

passive transformations  -  acting on coordinatization of data:

vs.
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equivariant NNs

coordinate independent CNNs
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+  weight sharing
   over

   coordinate chartspassive transformations  -  acting on coordinatization of data:



Outline

Data gauges  &  gauge independent  neural networks

Coordinate independent CNNs  on  Riemannian manifolds



Gauge theories

physical systems  or  data  often have  no canonical mathematical description

a  gauge  has to be chosen arbitrarily

gauge theories  ensure that their prediction is equivalent for any gauge

space / coordinates set / ordering potential / reference potential graph / node indexing



Weighing scale gauging

physical mass has no canonical units

gauging:  introduce units by choosing some reference weight

different gauges are equally valid

gauge transformations translate between these choices  (= unit conversions)

-   within some set of structurally distinguished gauges

determines gauge 
group
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Euclidean affine space gauging

Euclidean affine spaces         are coordinate free

gauges  =  coordinate charts 

gauge transformations  =  chart transition maps

additional geometric structure map prefer a subset of charts and reduce the gauge group



(Multi) set gauging

(multi) sets have no canonical order

a gauge introduces an order of set elements,  representing the set by a tuple

gauge transformations are permutations

the (multi) set can be viewed as an equivalence class (orbit) of tuples



Coordinate independent NN layers



Coordinate independent NN layers  +  equivariance

‘’almost’’ an equivariance constraint:



Coordinate independent NN layers  +  equivariance

‘’almost’’ an equivariance constraint:

in which gauge should a given layer        be applied? 
ambiguous!            weight sharing over gauges:



Local reference frame independence

on manifolds: 
   

independence from local reference frames (observers)

local gauge equivariance



Local reference frame independence

on manifolds: 
   

independence from local reference frames (observers)

local gauge equivariance



Coordinate independent CNNs
on Riemannian manifolds



Convolutions on Riemannian manifolds

mesh segmentation shape correspondence deformations (metric field) spherical CNNs

artery wall stress estimation general relativity Euclidean CNNs



Design questions

how to ...

Image adapted from Konakovic-Lukovic et al.

... define feature fields on       ?

... define convolution kernels on       ?

... share weights over       ?

... guarantee isometry equivariance ?



weight sharing by demanding equivariance w.r.t. global symmetries  (isometries)

can only share over symmetry orbits  (in general non-transitive)

SO(2) orbits trivial orbits

Weight sharing  -  via global symmetries

homogeneous spaces,  
transitive orbits



sharing weights by “shifting” kernel over manifold  ?

parallel transport in general path dependent

Weight sharing  -  via parallel transport



solution approaches in the literature:

the kernel alignment (“gauge”) on manifolds is inherently ambiguous!

Weight sharing  -  approaches in the literature

topological obstructions
to the existence
of G-structures

1)  gauge invariant features      low expressiveness 2)  heuristic gauges instable under deformations

3) spectral approaches      gauge independent but 
     instable under deformations

4) gauge equivariant features    (ours, covers 1,2 as special cases)



identify kernel alignment with a choice of reference frame

tangent space
(vector space)

reference frame
(basis)

Reference frames and kernel alignments



identify kernel alignment with a choice of reference frame

frame field  kernel field   

standard (canonical)
frame / kernel field / CNN 

on      

alternative
frame / kernel field / CNN 

on        

Reference frames and kernel alignments



identify kernel alignment with a choice of reference frame

frame field  kernel field   

Reference frames and kernel alignments

ambiguity of kernel alignments   ==   ambiguity of reference frames

“G-structure”



G-structures

frame bundle FM   =   “set” of all frames (GL(d)-valued transition functions)

G-structures GM    =    sub-bundles of frames with                         valued transition functions



G-structures GM    =    sub-bundles of frames with                         valued transition functions

G-structures

frame bundle FM   =   “set” of all frames (GL(d)-valued transition functions)



all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM

                      -  in gauge A,     is expressed by coefficients  

                      -  in gauge B,     is expressed by coefficients  

                      -  gauge trafos                     relate coefficients:  

different coefficients,
same information content!

GM-coordinate independence  -  tangent vectors

example:      -  tangent vectors                     are coordinate free



coordinate independent  feature vectors  transform according to  group representation     : 

 

GM-coordinate independence  -  feature vector fields

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM

scalar field trivial representation        

tangent vector field standard representation   

tensor field tensor representation       

irrep field irreducible representation

regular feature field regular representation



coordinate independent  feature vectors  transform according to  group representation     : 
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     any  object  or  morphism  should be expressible relative to any frame in GM

formally, feature vectors are elements of a  G-associated feature vector bundle
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GM-coordinate independence  -  feature vector fields

all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM

formally, feature vectors are elements of a  G-associated feature vector bundle

feature vector fields are bundle sections  ==  a choice of feature vector at each point 



all frames of the G-structure are equally valid

     any  object  or  morphism  should be expressible relative to any frame in GM

example:      -  linear maps                                       are coordinate free

                      -  in gauge A,        is expressed by coefficients  

                      -  in gauge B,        is expressed by coefficients  

GM-coordinate independence  -  linear maps on TpM

                      -  gauge trafos                     relate coefficients:  



GM-convolutions

coordinate free, global (kernel field): 
 

(allowing potentially for a different
kernel at each               ,

i.e. here pre-weight-sharing)

we want to design a convolution operation that is

1)  mapping a       -field to a          -field

2)  parameterized by a spatially shared kernel

3)  GM-coordinate independent

in coordinates, a convolution kernel is a map 

how to define kernels / kernel fields?

coordinate free, at                : 
 

(      are the feature bundles)

convolutional kernel fields should have the same kernel at each position

will require     -steerability!



GM-convolutions

relation between coordinate free kernels         and their coordinate expressions           and          :

the coordinate expressions relate by

in which gauge should we share a given template kernel?    Ambiguous, need to share in all gauges X:

GM-coordinate independence
spatial weight sharing

requires G-steerability

only coordinate independence,
no equivariance constraint!



the corresponding  GM-convolution  is performed by:

GM-convolutions

… a Riemannian manifold M

… a G-structure GM

… a G-compatible connection

… a G-steerable convolution kernel

given ...

1)  applying “transporter pullbacks”               of the feature field to the tangent spaces

2)  matching this pullback with the kernel  

the kernel’s G-steerability ensures that the chosen gauge / kernel alignment is irrelevant

(a local observer’s viewpoint)



Isometry equivariance

       “kernel field transform”: similar to convolution,  but not assuming weight sharing

parameterized by a  kernel field

SO(2)-invariant
kernel field

O(2)-invariant
kernel field

Theorem (Isometry equivariance)

     -equivariant kernel 
field transform

    -invariant 
kernel field

Let     , then:



Isometry equivariance  -  GM-convolutions

- horizontal translations

- horizontal translations
- vertical translations
- horizontal reflections

Let   be the subgroup of isometries that are symmetries of GM

GM-convolutions are                    -equivariant

G-steerable (convolutional) kernel fields inherit this                      -invariance



Isometry equivariance  -  GM-convolutions



Möbius CNNs  -  geometry

locally flat geometry

regular pixel grid

Levi-Civita connection has holonomy group          (reflections)   

admits        -structure

github:
https://github.com/mauriceweiler/MobiusCNNs



Möbius CNNs  -  implementation

cut and flatten the strip

parallel transport: - trivial within strip

- “reflection padding” over the cut

after transport padding:   Euclidean convolution with        -steerable kernels



Möbius CNNs  -  experiments

Möbius MNIST toy dataset

performance depends on field types

perfect isometry equivariance



Icosahedral CNNs  -  geometry

Platonic solid

locally flat approximation of the sphere

hexagonal grid

Levi-Civita connection has holonomy group

admits        -structure



Icosahedral CNNs  -  implementation

flatten icosahedron by cutting it at north and south pole

parallel transport non-trivial over cut edges



Icosahedral CNNs  -  implementation

flatten icosahedron by cutting it at north and south pole

parallel transport non-trivial over cut edges



Icosahedral CNNs  -  experiments

Image credits:   Jiang et al., 2018

climate pattern segmentation omnidirectional RGB-D image segmentation

perfect isometry equivariance non-steerable
kernel

        -steerable



Gauge Equivariant Mesh CNNs

Pim de Haan



Coordinate independent CNNs
unify a wide range of related work:

Möbius

general
2d surfaces / 
meshes

spherical / icosahedral

punctured Euclidean

Euclidean steerable CNNs

Literature review
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