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Why Equivariance?

• Symmetry transformations relate “equivalent” descriptions of an object

• Equivariant maps respect symmetries, i.e. process equivalent inputs in essentially the same way
• Fundamental idea of GDL
• Bronstein, Bruna, Cohen, Velickovic, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, 2021 

• Symmetry groups have some particular properties:
• Invertibility: no information is lost; transformations can be undone

• Composability: any two symmetry transformations can be composed

• In many cases we may want to loosen these assumptions
• à This leads us to Categories, Functors, and Natural Transformations

• à Generalizations of Groups, Representations, and Equivariant Maps

• à Potential for less restricted network architectures & new application areas
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A General Theory of Natural Equivalences (1945, first paper on categories)S. Eilenberg & S. Mac Lane

This may be regarded as a continuation of the Klein Erlanger 
Program, in the sense that a geometrical space with its group 
of transformations is generalized to a category with its algebra 

of mappings.

“
“
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First example: the category of sets & mappings

• Categories consist of objects and arrows / maps / morphisms

• Arrows f : A à B with appropriate domain/codomain can be composed

The category only encodes how maps compose; doesn’t care what objects/maps are “made of”

Set
Ob(Set) = “all sets”

Hom(Set) = “all functions”

X Y

{0}

Lawvere, Sets for Mathematics
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General Definition of Category

• A Category C consists of Objects and Arrows, such that:
• For any object A there is an identity map idA : A à A

• For any two arrows f : A à B and g : B à C, there is a composite arrow g f : A à C
• A is called the domain of f, and B the codomain

• Such that id acts as a unit: f idA = idB f = f (for all f)

• Composition is associative: (f g) h = f (g h)

• Examples:
• Categories of mathematical gadgets: Set, Vect, Top, Grp

• Mathematical gadgets as categories: Groups, Groupoids, Preorders,

• Applied category theory: Resource theories, Markov Categories, Bayes Nets, Causal Theories, Monoidal Categories, 
Chemical Reaction Networks, …
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Example: Preorders as Categories

• Gadget as a category

• Classical definition: a relation A ≤ B that is:
• Reflexive: A ≤ A

• Transitive: A ≤ B and B ≤ C then A ≤ C
• (Not necessarily antisymmetric as in a partial order; A ≤ B and B ≤ A then not necessarily A = B)

• Examples:
• Reachability in graphs, ordering of numbers, ordering of subsets, …

• Categorical definition: a category with at most one arrow from any A to any B
• Interpretation: we have A ≤ B if and only if there is an arrow A à B

• ✅ Reflexive: in any category we have an identity arrow A à A

• ✅ Transitive: the composition operation takes arrows A à B and B à C and produces an arrow A à C
• Since a preorder category has at most one arrow A à C there is nothing to choose

P
A

C
EB

D
Z

X Y
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Example: Groups as Categories

• Isomorphism: a map f : A à B in a category is called an isomorphism if there exists g : B à A s.t.
g f = idA and     f g = idB

• Classical definition: a set with an associative binary relation, identity maps, and inverses (…)

• Categorical definition: a category with one object ⋆, where each morphism 𝑔:⋆→⋆ is an isomorphism
• ✅ All arows 𝑔: ⋆→⋆ and h: ⋆→⋆ can be composed and composition is associative

• ✅ G has an identity id⋆: ⋆→⋆
• ✅ Since all arrows are iso, we have inverses

G ⋆
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Groupoids

• A Groupoid 𝒢 is a category where every morphism is an isomorphism
• A group is a groupoid with one object

• Example: the category of graphs, restricted to only contain graph isomorphisms

• A groupoid has two kinds of maps: general isomorphisms A à B and automorphisms A à A

• Automorphisms are symmetries. The automorphisms of an object 𝑋 form a group

• Isomorphism classes are connected by isomorphisms: { 𝑋, 𝑌 , 𝑍 }

𝒢
X

Y

Z 𝐴𝑢𝑡𝒢 𝑋 = X
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Group Actions & Representations as Functors

• A group action 𝐹 of a group 𝐺 on a set 𝑋, 
• Has for each element 𝑔 ∈ 𝐺, a bijection 𝐹(𝑔): 𝑋 → 𝑋
• Respecting group multiplication: 𝐹 𝑔 𝑔" = 𝐹 𝑔 ∘ 𝐹 𝑔"

• A group representation 𝜌 of a group 𝐺 is a linear action on a vector space 𝑉

• A functor 𝐹: 𝐶 → 𝐷between categories is:
• A mapping on objects 𝐹: 𝑂𝑏 𝐶 → 𝑂𝑏 𝐷
• A mapping on morphisms that takes 𝑓: 𝐴 → 𝐵 ∈ 𝐶 to 𝐹 𝑓 : 𝐹 𝐴 → 𝐹 𝐵 ∈ 𝐷
• Such that 𝐹 id# = id$ # , F 𝑓 ∘ 𝑔 = 𝐹 𝑓 ∘ 𝐹(𝑔)

• Examples:
• A functor between groups is a group homomorphism

• A functor between preorders is a monotone map

• A group action is a functor 𝜌: 𝐺 → 𝑆𝑒𝑡, 𝜌 ⋆ = 𝑋, 𝜌 𝑔 : 𝑋 → 𝑋
• A group representation is a functor 𝜌: 𝐺 → 𝑉𝑒𝑐, 𝜌 ⋆ = 𝑉, 𝜌 𝑔 : 𝑉 → 𝑉
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Equivariant Maps as Natural Transformations

• An equivariant linear map 𝑓: 𝑉 → 𝑉" between group representations 
(𝜌, 𝑉), (𝜌", 𝑉") is a map satisfying for each 𝑔 ∈ 𝐺:

𝑓 ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝑓

• A Natural Transformation 𝜂 between Functors 𝜌, 𝜌": 𝐶 → 𝐷
• Written 𝜂: 𝜌 ⇒ 𝜌"

• For each object 𝐴 of 𝐶, a mapping 𝜂%: 𝜌 𝐴 → 𝜌′(𝐴) such that for every arrow 𝑔 ∶ 𝐴 → 𝐵 in 𝐶:
𝜂& ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝜂%

• Hence, an equivariant map is a natural transformation between functors 
𝜌, 𝜌": 𝐺 → 𝑉𝑒𝑐 :
• For the one and only object ⋆, 𝜌 ⋆ = 𝑉, 𝜌" ⋆ = 𝑉′
• Single linear mapping 𝑓 = 𝜂⋆: 𝜌 ⋆ → 𝜌" ⋆ , such that tor every 𝑔: ⋆→⋆ in 𝐺:

𝜂 ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝜂
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Natural Graph Networks
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Graph Iso- and automorphisms

• There are many ways to encode the same graph!
• All of these should be treated in an equivalent manner by the neural network

• This is the central problem of graph neural network design

• Mathematically: consider the groupoid of graphs and graph isomorphisms

• Example: encode graphs as adjacency matrix
• Any permutation of rows and columns is an isomorphism

• Permutations of n nodes form a group Sn

13

2

4

iso

auto

13

4

2

23

1

4
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Graph Features

• Graph feature == representation of Sn

• Sn is the group of permutations of n nodes

Group / groupoid representations

Scalar feature
e.g network output in 
graph classification

Vector feature
e.g. one feature 

per node

Tensor feature
e.g. one feature per 
edge or node pair

⇢1(P12)v = P12v

<latexit sha1_base64="K5CIZEEESw1ldACJnDDNUQbkhkg=">AAACBHicbZC7SgNBFIbPxluMt1XLNINBiE3YDQG1EAI2lhHMBZJlmZ1MkiGzO8vMbCAsKWx8FRsLRWx9CDvfxkmyhSb+MPDxn3M4c/4g5kxpx/m2chubW9s7+d3C3v7B4ZF9fNJSIpGENongQnYCrChnEW1qpjntxJLiMOC0HYxv5/X2hErFRPSgpzH1QjyM2IARrI3l28WeHAnfLTf81K3OLtAE3aAlo4lvl5yKsxBaBzeDEmRq+PZXry9IEtJIE46V6rpOrL0US80Ip7NCL1E0xmSMh7RrMMIhVV66OGKGzo3TRwMhzYs0Wri/J1IcKjUNA9MZYj1Sq7W5+V+tm+jBlZeyKE40jchy0SDhSAs0TwT1maRE86kBTCQzf0VkhCUm2uRWMCG4qyevQ6tacWuV6/taqV7P4shDEc6gDC5cQh3uoAFNIPAIz/AKb9aT9WK9Wx/L1pyVzZzCH1mfP2R1lgY=</latexit>

⇢2(P12)M = P12MPT
12

<latexit sha1_base64="+ffdnILH8vaw0gQ4JmjlJElqvi8=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AV6qbMlIK6EApu3AgVeoN2HDJp2oZmkiHJCGXoC7jxVdy4UMSte3e+jWlnFtr6Q+DjP+dwcv4gYlRpx/m2ciura+sb+c3C1vbO7p69f9BSIpaYNLFgQnYCpAijnDQ11Yx0IklQGDDSDsbXs3r7gUhFBW/oSUS8EA05HVCMtLF8+6QnR8KvlOp+4lamZ/AWXsGUDaZw3/DtolN25oLL4GZQBJnqvv3V6wsch4RrzJBSXdeJtJcgqSlmZFroxYpECI/RkHQNchQS5SXza6bw1Dh9OBDSPK7h3P09kaBQqUkYmM4Q6ZFarM3M/2rdWA8uvITyKNaE43TRIGZQCziLBvapJFiziQGEJTV/hXiEJMLaBFgwIbiLJy9Dq1J2q+XLu2qxVsviyIMjcAxKwAXnoAZuQB00AQaP4Bm8gjfryXqx3q2PtDVnZTOH4I+szx/e+pjr</latexit>

⇢0(P12)s = 1 · s

<latexit sha1_base64="KcpYZ6AOMJvuRWPf1HvyYaqW/QM=">AAACBXicbVDLSsNAFJ34rPUVdamLwSLUTUlKQV0IBTcuK9gHNCFMJpN26GQmzEyEErpx46+4caGIW//BnX/jtM1CWw9cOJxzL/feE6aMKu0439bK6tr6xmZpq7y9s7u3bx8cdpTIJCZtLJiQvRApwignbU01I71UEpSEjHTD0c3U7z4Qqajg93qcEj9BA05jipE2UmCfeHIoAqfaCnK3PjmHCl5DF3o4EhqqwK44NWcGuEzcglRAgVZgf3mRwFlCuMYMKdV3nVT7OZKaYkYmZS9TJEV4hAakbyhHCVF+PvtiAs+MEsFYSFNcw5n6eyJHiVLjJDSdCdJDtehNxf+8fqbjSz+nPM004Xi+KM4Y1AJOI4ERlQRrNjYEYUnNrRAPkURYm+DKJgR38eVl0qnX3Ebt6q5RaTaLOErgGJyCKnDBBWiCW9ACbYDBI3gGr+DNerJerHfrY966YhUzR+APrM8f+kyWVg==</latexit>
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Equivariant Graph Networks

• Common approach[1,2,3]: interpret adjacency matrix as a 2nd order graph feature, stack with other 
features along channel dim, and use this as input to the network:

• Network should be equivariant:

• For linear maps:
• Order 1 -> 0 (Invariant Deep Sets): 1 parameter

• Order 1 -> 1 (Equivariant Deep Sets): 2 parameters

• Order 2 -> 2 (PPGN [1]): 15 parameters

• Not a lot of parameters!

[1] Provably Powerful Graph Networks, Haggai Maron*, Heli Ben-Hamu*, Hadar Serviansky*, Yaron Lipman (*equal contribution), NeurIPS 2019
[2] Invariant and Equivariant Graph Networks, Haggai Maron, Heli Ben-Hamu, Nadav Shamir and Yaron Lipman, ICLR 2019 
[3] Incidence Networks for Geometric Deep Learning, Albooyeh, Marjan, Bertolini, Daniele, and Ravanbakhsh, ICML 2020

�([G, f ]) = f 0

<latexit sha1_base64="tseIY3Nf2JFIvw5BHJwhMGPo9qU=">AAAB+nicbVDLSgNBEOyNrxhfGz16GQxiBAm7ElAPQtCDHiOYB2yWMDuZTYbMPpiZVcKaT/HiQRGvfok3/8ZJsgdNLGgoqrrp7vJizqSyrG8jt7S8srqWXy9sbG5t75jF3aaMEkFog0Q8Em0PS8pZSBuKKU7bsaA48DhtecPrid96oEKyKLxXo5i6Ae6HzGcEKy11zWKnPmBl5+YE+e4xukT+UdcsWRVrCrRI7IyUIEO9a351ehFJAhoqwrGUjm3Fyk2xUIxwOi50EkljTIa4Tx1NQxxQ6abT08foUCs95EdCV6jQVP09keJAylHg6c4Aq4Gc9ybif56TKP/cTVkYJ4qGZLbITzhSEZrkgHpMUKL4SBNMBNO3IjLAAhOl0yroEOz5lxdJ87RiVysXd9VS7SqLIw/7cABlsOEManALdWgAgUd4hld4M56MF+Pd+Ji15oxsZg/+wPj8AQPIkeo=</latexit>

�(⇢in(P )[G, f ]) = ⇢out(P )�([G, f ])

<latexit sha1_base64="MaRaMEw58p0pVA72uWU52IjmkKc=">AAACL3icbVBNS8NAFNzUr1q/qh69LBahgpREBPUgiIJ6jGCt0ISy2W7apZts2H0RS8g/8uJf6UVEEa/+C7exB60OLAwz83j7JkgE12DbL1ZpZnZufqG8WFlaXlldq65v3GqZKsqaVAqp7gKimeAxawIHwe4SxUgUCNYKBudjv3XPlOYyvoFhwvyI9GIeckrASJ3qhef2ed1TfdnJPGAPkCYZj/O87u62L/dw6O/iE/zblikUPi5GTcqEOtWa3bAL4L/EmZAamsDtVEdeV9I0YjFQQbRuO3YCfkYUcCpYXvFSzRJCB6TH2obGJGLaz4p7c7xjlC4OpTIvBlyoPycyEmk9jAKTjAj09bQ3Fv/z2imER765P0mBxfR7UZgKDBKPy8NdrhgFMTSEUMXNXzHtE0UomIorpgRn+uS/5Ha/4Rw0jq8PaqdnkzrKaAttozpy0CE6RVfIRU1E0SMaoVf0Zj1Zz9a79fEdLVmTmU30C9bnF+NpqFM=</latexit>
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Natural Graph Networks: global version
• Groupoid 𝐺𝑟𝑎𝑝ℎ

• Groupoid representation 𝜌: 𝐺𝑟𝑎𝑝ℎ → 𝑉𝑒𝑐, e.g.
• Node feature 𝜌 𝐺 = ℝ',
• Permutation 𝜌 𝑔 :ℝ' → ℝ'

• Natural transformation 𝜂: 𝜌#$ ⇒ 𝜌%&', contains
• For each graph 𝐺 ∈ 𝑂𝑏(𝐺𝑟𝑎𝑝ℎ), a map 𝜂(: 𝜌)* 𝐺 → 𝜌+,-(𝐺)
• Such that

• Isomorphism gives weight sharing
• Non-isomorphic graphs untied weights

• Automorphism gives constraint
• Non-symmetric graph unconstrained
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Natural Graph Networks: example
Message passing – 7 parameters

13

2

4

23

1

4

13

4

2

Automorphism (1,4, 3, 2)

Isomorphism (2,4,3,1)
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Equivariant vs Natural Networks

Equivariant Graph Networks

• Symmetry group G = Sn

• Feature space: Functor G à Vect
• (Group representation)

• Network layer: natural transformation
• (Equivariant map)

• One constraint per permutation

• The same map for every graph

Natural Graph Networks

• Symmetry groupoid G = {adjacency mats} // Sn

• Called the action groupoid

• Feature space: Functor G à Vect
• (Groupoid representation)

• Network layer: natural transformation
• One constraint per automorphism

• Different maps for non-isomorphic graphs

G : 

…

G :  
e g1

g2

g3

g4

g5
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Going local

• Global methods are not scalable to large graphs

• Vanilla NGNs do not generalize across non-isomorphic graphs
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Natural Graph Networks

• For each node and edge, define a neighbourhood
• Edge neigbourhoods should include the node neighbourhoods of the start and end node

• E.g. one-hop neighbourhood

• Neighbourhood isomorphisms give node and graph isomorphisms

• To each node, attach a graph feature
• I.e. a representation of Sn where n is the size of the node neighbourhood

• Typically we use a vector feature (i.e. one number per neigbour)

• Constraints:
• Weight matrix for an edge is constrained by the automorphisms of the edge neighbourhood

• Weight matrices on isomorphic edges share weights

Local version
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Natural Message Passing – local version

p0

q0

p
q 𝐾"#

𝒢

𝐾"%#%
𝒢
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Node groupoid

• For each node 𝑝 find neighbourhood 𝑁(
• Graph isomorphism 𝜙: 𝑁( → 𝑁(.

• Node groupoid 𝒩
• Objects are nodes 𝑝
• Morphisms are neighbourhood isomorphisms 𝜙: 𝑝 → 𝑝"

p0

q0

p
q

𝜙
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Edge groupoid

• For each edge 𝑝𝑞 find neighbourhood 𝑁()
• Graph isomorphism 𝜓: 𝑁() → 𝑁(.).

• Edge groupoid ℰ
• Objects are edge 𝑝𝑞
• Morphisms are neighbourhood isomorphisms

𝜓: 𝑝𝑞 → 𝑝"𝑞′

• Edge/node correspondence:
• Edge 𝑝𝑞 has start node 𝑝
• Edge isomorphism 𝜓: 𝑝𝑞 → 𝑝"𝑞′ has start node 

isomorphism 𝑝 → 𝑝"

• Functor 𝐹*: ℰ → 𝒩
• Maps 𝐹/(𝑝𝑞) = 𝑝
• Maps 𝐹/ 𝜓 = 𝑝 → 𝑝′

• Similar for tail node: 𝐹+: ℰ → 𝒩

p0

q0

p
q 𝑝𝑞

𝑝′𝑞′
𝜓

𝐹/ 𝜓

𝐹0 𝜓
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Natural Graph Network - abstractly

• Node features 𝜌:𝒩 → 𝑉𝑒𝑐
• 𝜌(𝑝) is graph feature of neighbourhood 𝑁1, e.g. ℝ'!

• Node iso 𝜙: 𝑝 → 𝑝" becomes linear transformation 𝜌 𝜙 : 𝜌 𝑝 → 𝜌(𝑝"), e.g. permutation

• Compose functors

• Message passing kernel is natural transformation 𝑘: 𝜌#$ ∘ 𝐹* ⇒ 𝜌%&' ∘ 𝐹+

𝒩 Vec
𝜌JK

ℰ

𝐹L

𝐹M
𝒩 Vec

𝜌NOP
𝑘
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Natural Graph Networks

𝜌)*𝜓/ ρ+,-ψ0

𝑝𝑞

𝑝"𝑞"

𝑎𝑏

𝜓

ℰ

𝜌)*𝑝

𝜌)*𝑝"

𝜌+,-𝑞

𝜌+,-𝑞"

𝑘12

𝑘1"2"

𝜌)*𝑎 𝜌345𝑏
𝑘67

Natural Graph Kernel 𝑘

• Isomorphism = weight sharing
• Automorphism = constraints
• Linear kernel: solve linear constraints
• Layer: 𝑣!" = ∑#$(&,!) 𝑘&!(𝑣&)
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Local Natural Graph Network

21
3

5
4

&

6

7

31
2

5
4

&′ 7

6
*!

+(*!)∈ +(/!) +(/!!" ) ∋

21
3

5
4
1

6

7

31
2

5
4
1′ 7

6

+′(*#)∈ +(/#) +(/#!" ) ∋

2!# 2!!#!

*#

𝜌(𝑝)

𝜌(𝑞)

𝜌(𝑝′)

𝜌(𝑞′)
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Reduction to Group / Manifold Equivariance 

• If graph is a grid

• Node category 𝒩
• Objects are elements of grid

• Automorphisms are 𝐷8
• Rotations

• Mirrors

• Representation 𝜌:𝒩 → 𝑉𝑒𝑐, equivalent to 𝐷, representation
• E.g. regular representation ℝ8

• Edge automorphisms: mirror

• Equivalent to 𝐷,-CNN
• Cohen & Welling (2016): Group Equivariant CNNs

𝑝 𝑞
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Equivalent to coordinate free CNN

• Graph = grid on manifold

• Equivalent to Icosahedral CNN
• Cohen, Weiler, Kicanaoglu, Welling et al (2019): Gauge Equivariant CNNs

• Except at corners: these should have different weights
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Basic Algorithm

• Precompute:

1. Define node and edge neighbourhoods

2. Classify edge neighbourhood isomorphism classes

3. Compute edge automorphisms

4. Solve kernel constraint, initialise params

• During training:

1. Linearly combine kernel solutions using parameters

2. Transport kernels by isomorphisms

3. Compute convolution

• Cost linear in number of edges, expensive in neighbourhood size
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Connection to sheafs?

• Sheaf 𝐹
• Node 𝑝, 𝐹 𝑝 = graph feature for 𝑁1 e.g. ℝ'!
• 𝐹 𝑝 = 𝜌(𝑝)

• Edge 𝑝𝑞, 𝐹 𝑝𝑞 = graph feature for 𝑁12 e.g. ℝ'!#

• 𝐹1←12: 𝐹 𝑝𝑞 → 𝐹(𝑝) projection

• 𝑓(): 𝐹 𝑝𝑞 → 𝐹(𝑝𝑞) graph network

• 𝑓() “global” natural graph network ⇒ 𝑘() natural message passing

𝑝 𝑞

𝑔 ∈ 𝐴𝑢𝑡ℰ(𝑝𝑞)
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Challenges

• 1000s of edge iso classes

• How to find common parametrization for 𝑓()?

• Only treat common edges as non-trivial

• Canonization
• Unique order for each graph – up to auto

• One common 𝑓:ℝ' → ℝ'

• Symmetrize with automorphism group

• Make 𝑓()(𝑣) a graph neural net Φ(𝑁(), 𝑣) - hypernetwork
• E.g. graph CNN

• Only consider subgraphs with nice automorphism groups
• Chains, cycles

• Thiede et al, “Autobahn: Automorphism-based Graph Neural Nets” (2021)
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Natural Graph Networks: Summary

• Graph networks must respect graph symmetries, & treat isomorphic graphs equivalently

• Graph symmetries = autmomorphisms ≠ permutation of nodes

• Network layer = natural transformation between functors

• Global NGN = natural transformation between graph symmetries

• Local NGN = natural transformation between edge symmetries
• Induces Global NGN

• More expressive message passing

• Exploiting local symmetries yields efficient and powerful graph networks

p0

q0

p
q
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Applications to point clouds and meshes

Work in progress

Euclidean Natural Message Passing
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General Natural Message Passing

Natural Message Passing Kernel 𝑘

𝜌)*𝑝 𝜌+,-𝑞
𝑘A

𝜌)*𝑞 𝜌+,-𝑞"
𝑘A"

𝜌)*𝜓/ 𝜌+,-𝜓0

𝑒 = (𝑝, 𝑞)

𝑒" = (𝑝", 𝑞")

𝜓

ℰ

𝒩
ℰ

𝐹L

𝐹M
𝒩

Vec
𝜌JK

Vec
𝜌NOP

𝑘
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Point Clouds

• Set of 𝑛 points in ℝ-, data of shape ℝ. × -

• Neural network 𝑓:ℝ. × - → ℝ. ×0

• If cloud oriented arbitrarily, equivariant to
• Translations

• Permutations

• Rotations

• For all 𝑔 ∈ 𝑆𝐸 3 ×𝑆', 𝑓 𝑔𝑣 = 𝑔𝑓(𝑣)

• Examples:
• Molecule

• Car pose

• Translation equivariance via differences

• Permutation equivariance via message passing

• Rotation equivariance: 𝑅 ∈ 𝑆𝑂 3 , 𝑓 𝑅𝑣 = 𝑅𝑓(𝑣)

𝑓

ℝ' × C
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𝑆𝑂(3) equivariant message passing

• Node features SO(3) representations (𝜌)*, ℝ+), (𝜌,-., ℝ+
!)

• Examples: ℝ$ invariant; ℝ% 3-vector; ℝ& 3x3 matrix

• Message Network: 𝐾:ℝ/×ℝ+ → ℝ+!

• Layer: 𝑣!" = ∑&!𝐾 𝑥! − 𝑥&, 𝑣&

• Equivariance constraint: 𝐾 𝑅 𝑥! − 𝑥& , 𝑅𝑣& = 𝑅𝐾 𝑥! − 𝑥&, 𝑣&

• Difficulties:

• 𝑆𝑂(3) representation theory involves varying dimensions and Clebsch-Gordan coefficients. Difficult to 
implement cleanly and efficiently

• The network is conditional on the direction, making it different for all edges. Additional computational cost



37

Natural Message Passing

• Node groupoid 𝒩 = ℝ- //𝑆𝐸(3)
• Objects are points 𝑝 ∈ ℝD

• Isomorphisms 𝑔1: 𝑝 → 𝑝", 𝑔 ∈ 𝑆𝐸 3 , 𝑔 𝑝 = 𝑝"

• All points isomorphic

• Edge groupoid ℰ = (ℝ-×ℝ-)//𝑆𝐸(3)
• Objects are pairs of points 𝑝, 𝑞 ∈ ℝD

• Isomorphisms 𝑔12: 𝑝𝑞 → 𝑝"𝑞", 𝑔 ∈ 𝑆𝐸 3 , 𝑔 𝑝 = 𝑝", 𝑔 𝑞 = 𝑞"

• Edges of same length isomorphic

• Node features 𝜌:𝒩 → 𝑉𝑒𝑐 is 𝑆𝑂(3) representation
• 𝜌 𝑝 = ℝC

• 𝜌 𝑔1 = 𝜌(𝑔)

• Natural Message Passing 𝑘: 𝜌#$ ∘ 𝐹* ⇒ 𝜌%&' ∘ 𝐹+

reduction of 3D symmetry to 2D symmetry of edges

𝑝

𝑞

0

𝑥E = (𝑟, 0,0)

𝑔 ∈ 𝑆𝐸(3)
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Natural Message Passing

• Automorphisms: 𝑆𝑂(2) aroud 𝑥 axis

reduction of 3D symmetry to 2D symmetry of edges

𝑝

𝑞

0

𝑥E = (𝑟, 0,0)

𝑔 ∈ 𝑆𝐸(3)

ℎ ∈ 𝑆𝑂(2)

𝜌)*𝑔 𝜌+,-𝑔

ℝC

ℝC

ℝC"

ℝC"

𝑘12

𝑘/F'

ℝC 𝜌345𝑏
𝑘/F'

Natural Graph Kernel 𝑘

𝜌)*ℎ 𝜌+,-ℎ
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Algorithm

Precompute:

• For each edge (𝑝, 𝑞) precompute 𝑔 ∈ 𝑆𝐸(3) to move edge to (0, 𝑟, 0,0 )

• Construct 𝑆𝑂(2) radius-conditional network 𝑓1: ℝ0 → ℝ0.

In network:

1. Move feature 𝑣 from 𝑝 to 0 with 𝑆𝑂(3) action 𝑔

2. Message pass from 0 to 𝑥1 with 𝑓1
3. Move output feature from 𝑥1 to 𝑞 with 𝑆𝑂(3) action 𝑔2+

4. Sum over incomming messages

Used 𝑆𝑂(2) equivariance to make 𝑆𝑂(3) equivariant network!

• Simpler to construct

• More available non-linearities
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Planar case: trivial automorphism

• Symmetry group 𝑆𝐸(2)
• Features are representations of 𝑆𝑂(2)

• Edges have no automorphism constraints

• Message passing with unconstrained
𝑓1: ℝ0 → ℝ0.

• ReLU non-linearities

• Also usable for Gauge Equivariant Mesh CNN
𝑝

𝑞

0 𝑥E = (𝑟, 0)

𝑔 ∈ 𝑆𝐸(2)
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Conclusion

• Generalize groups to groupoids

• Generalize equivariance to natural transformations

• Message passing on graphs
• Weight sharing if edges have isomorphic neighbourhoods

• Local symmetries give constraints

• More expressive

• Pointcloud equivariance via 𝑆𝑂(2) symmetry
• Easier to implement

• Better non-linearities

• Planar equivariance via unconstrained network
• ReLU non-linearities

• Many more groups, groupoids, categories and representations to explore!

• Open question: link local – global naturality more formally
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Postscriptum

Categories & Causality
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Grounded Causal Models

• Set of actions / interventions 𝐴

• Dynamics do 𝑎 : 𝑋 → 𝑋

• Effects proc: 𝑋 → 𝑌

Cohen 2022: Towards a Grounded Theory of Causation for Embodied AI

A model is grounded if there is a natural transformation like this
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String diagrammatic proofs
Brehmer, De Haan, Lippe, Cohen: Weakly supervised causal representation learning (2022)
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Causal Model – interventions as 2-cell
Bhat, Van Belle, De Haan, Lopez, Román (in progress)
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Further reading

• Books:
• Fong & Spivak, Seven Sketches in Compositionality: an invitation to applied category theory
• Perrone, Introduction to category theory
• Riehl, Category Theory in Context
• Lawvere & Schanuel, Conceptual Mathematics: a first introduction to categories

• Papers:
• De Haan, Cohen, Welling, Natural Graph Networks

• Dudzik & Velickovic, Graph Neural Networks are Dynamic Programmers

• Gavranovic, https://github.com/bgavran/Category_Theory_Machine_Learning
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