
Pim de Haan
Reseach Associate @ Qualcomm Technologies Netherlands B.V.

PhD student @ University of Amsterdam

First Italian GDL Summer School 2022-07-27

pim@qti.qualcomm.com

From Equivariance to Naturality

2

Why Equivariance?

• Symmetry transformations relate “equivalent” descriptions of an object

• Equivariant maps respect symmetries, i.e. process equivalent inputs in essentially the same way
• Fundamental idea of GDL
• Bronstein, Bruna, Cohen, Velickovic, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges, 2021

• Symmetry groups have some particular properties:
• Invertibility: no information is lost; transformations can be undone

• Composability: any two symmetry transformations can be composed

• In many cases we may want to loosen these assumptions
• à This leads us to Categories, Functors, and Natural Transformations

• à Generalizations of Groups, Representations, and Equivariant Maps

• à Potential for less restricted network architectures & new application areas

3

A General Theory of Natural Equivalences (1945, first paper on categories)S. Eilenberg & S. Mac Lane

This may be regarded as a continuation of the Klein Erlanger
Program, in the sense that a geometrical space with its group
of transformations is generalized to a category with its algebra

of mappings.

“
“

4

First example: the category of sets & mappings

• Categories consist of objects and arrows / maps / morphisms

• Arrows f : A à B with appropriate domain/codomain can be composed

The category only encodes how maps compose; doesn’t care what objects/maps are “made of”

Set
Ob(Set) = “all sets”

Hom(Set) = “all functions”

X Y

{0}

Lawvere, Sets for Mathematics

5

General Definition of Category

• A Category C consists of Objects and Arrows, such that:
• For any object A there is an identity map idA : A à A

• For any two arrows f : A à B and g : B à C, there is a composite arrow g f : A à C
• A is called the domain of f, and B the codomain

• Such that id acts as a unit: f idA = idB f = f (for all f)

• Composition is associative: (f g) h = f (g h)

• Examples:
• Categories of mathematical gadgets: Set, Vect, Top, Grp

• Mathematical gadgets as categories: Groups, Groupoids, Preorders,

• Applied category theory: Resource theories, Markov Categories, Bayes Nets, Causal Theories, Monoidal Categories,
Chemical Reaction Networks, …

6

Example: Preorders as Categories

• Gadget as a category

• Classical definition: a relation A ≤ B that is:
• Reflexive: A ≤ A

• Transitive: A ≤ B and B ≤ C then A ≤ C
• (Not necessarily antisymmetric as in a partial order; A ≤ B and B ≤ A then not necessarily A = B)

• Examples:
• Reachability in graphs, ordering of numbers, ordering of subsets, …

• Categorical definition: a category with at most one arrow from any A to any B
• Interpretation: we have A ≤ B if and only if there is an arrow A à B

• ✅ Reflexive: in any category we have an identity arrow A à A

• ✅ Transitive: the composition operation takes arrows A à B and B à C and produces an arrow A à C
• Since a preorder category has at most one arrow A à C there is nothing to choose

P
A

C
EB

D
Z

X Y

7

Example: Groups as Categories

• Isomorphism: a map f : A à B in a category is called an isomorphism if there exists g : B à A s.t.
g f = idA and f g = idB

• Classical definition: a set with an associative binary relation, identity maps, and inverses (…)

• Categorical definition: a category with one object ⋆, where each morphism 𝑔:⋆→⋆ is an isomorphism
• ✅ All arows 𝑔: ⋆→⋆ and h: ⋆→⋆ can be composed and composition is associative

• ✅ G has an identity id⋆: ⋆→⋆
• ✅ Since all arrows are iso, we have inverses

G ⋆

8

Groupoids

• A Groupoid 𝒢 is a category where every morphism is an isomorphism
• A group is a groupoid with one object

• Example: the category of graphs, restricted to only contain graph isomorphisms

• A groupoid has two kinds of maps: general isomorphisms A à B and automorphisms A à A

• Automorphisms are symmetries. The automorphisms of an object 𝑋 form a group

• Isomorphism classes are connected by isomorphisms: { 𝑋, 𝑌 , 𝑍 }

𝒢
X

Y

Z 𝐴𝑢𝑡𝒢 𝑋 = X

9

Group Actions & Representations as Functors

• A group action 𝐹 of a group 𝐺 on a set 𝑋,
• Has for each element 𝑔 ∈ 𝐺, a bijection 𝐹(𝑔): 𝑋 → 𝑋
• Respecting group multiplication: 𝐹 𝑔 𝑔" = 𝐹 𝑔 ∘ 𝐹 𝑔"

• A group representation 𝜌 of a group 𝐺 is a linear action on a vector space 𝑉

• A functor 𝐹: 𝐶 → 𝐷between categories is:
• A mapping on objects 𝐹: 𝑂𝑏 𝐶 → 𝑂𝑏 𝐷
• A mapping on morphisms that takes 𝑓: 𝐴 → 𝐵 ∈ 𝐶 to 𝐹 𝑓 : 𝐹 𝐴 → 𝐹 𝐵 ∈ 𝐷
• Such that 𝐹 id# = id$ # , F 𝑓 ∘ 𝑔 = 𝐹 𝑓 ∘ 𝐹(𝑔)

• Examples:
• A functor between groups is a group homomorphism

• A functor between preorders is a monotone map

• A group action is a functor 𝜌: 𝐺 → 𝑆𝑒𝑡, 𝜌 ⋆ = 𝑋, 𝜌 𝑔 : 𝑋 → 𝑋
• A group representation is a functor 𝜌: 𝐺 → 𝑉𝑒𝑐, 𝜌 ⋆ = 𝑉, 𝜌 𝑔 : 𝑉 → 𝑉

10

Equivariant Maps as Natural Transformations

• An equivariant linear map 𝑓: 𝑉 → 𝑉" between group representations
(𝜌, 𝑉), (𝜌", 𝑉") is a map satisfying for each 𝑔 ∈ 𝐺:

𝑓 ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝑓

• A Natural Transformation 𝜂 between Functors 𝜌, 𝜌": 𝐶 → 𝐷
• Written 𝜂: 𝜌 ⇒ 𝜌"

• For each object 𝐴 of 𝐶, a mapping 𝜂%: 𝜌 𝐴 → 𝜌′(𝐴) such that for every arrow 𝑔 ∶ 𝐴 → 𝐵 in 𝐶:
𝜂& ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝜂%

• Hence, an equivariant map is a natural transformation between functors
𝜌, 𝜌": 𝐺 → 𝑉𝑒𝑐 :
• For the one and only object ⋆, 𝜌 ⋆ = 𝑉, 𝜌" ⋆ = 𝑉′
• Single linear mapping 𝑓 = 𝜂⋆: 𝜌 ⋆ → 𝜌" ⋆ , such that tor every 𝑔: ⋆→⋆ in 𝐺:

𝜂 ∘ 𝜌 𝑔 = 𝜌" 𝑔 ∘ 𝜂

11

Natural Graph Networks

12

Team

Pim de Haan
Qualcomm AI Research

Qualcomm Technologies Netherlands B.V.
University of Amsterdam

Max Welling
Work done while at

Qualcomm AI Research
QUVA, University of Amsterdam

CIFAR
Qualcomm Technologies Netherlands B.V.

Taco Cohen
Qualcomm AI Research

Qualcomm Technologies Netherlands B.V.

https://arxiv.org/abs/2007.08349

13

Graph Iso- and automorphisms

• There are many ways to encode the same graph!
• All of these should be treated in an equivalent manner by the neural network

• This is the central problem of graph neural network design

• Mathematically: consider the groupoid of graphs and graph isomorphisms

• Example: encode graphs as adjacency matrix
• Any permutation of rows and columns is an isomorphism

• Permutations of n nodes form a group Sn

13

2

4

iso

auto

13

4

2

23

1

4

14

Graph Features

• Graph feature == representation of Sn

• Sn is the group of permutations of n nodes

Group / groupoid representations

Scalar feature
e.g network output in
graph classification

Vector feature
e.g. one feature

per node

Tensor feature
e.g. one feature per
edge or node pair

⇢1(P12)v = P12v

<latexit sha1_base64="K5CIZEEESw1ldACJnDDNUQbkhkg=">AAACBHicbZC7SgNBFIbPxluMt1XLNINBiE3YDQG1EAI2lhHMBZJlmZ1MkiGzO8vMbCAsKWx8FRsLRWx9CDvfxkmyhSb+MPDxn3M4c/4g5kxpx/m2chubW9s7+d3C3v7B4ZF9fNJSIpGENongQnYCrChnEW1qpjntxJLiMOC0HYxv5/X2hErFRPSgpzH1QjyM2IARrI3l28WeHAnfLTf81K3OLtAE3aAlo4lvl5yKsxBaBzeDEmRq+PZXry9IEtJIE46V6rpOrL0US80Ip7NCL1E0xmSMh7RrMMIhVV66OGKGzo3TRwMhzYs0Wri/J1IcKjUNA9MZYj1Sq7W5+V+tm+jBlZeyKE40jchy0SDhSAs0TwT1maRE86kBTCQzf0VkhCUm2uRWMCG4qyevQ6tacWuV6/taqV7P4shDEc6gDC5cQh3uoAFNIPAIz/AKb9aT9WK9Wx/L1pyVzZzCH1mfP2R1lgY=</latexit>

⇢2(P12)M = P12MPT
12

<latexit sha1_base64="+ffdnILH8vaw0gQ4JmjlJElqvi8=">AAACDXicbZDLSgMxFIYz9VbrbdSlm2AV6qbMlIK6EApu3AgVeoN2HDJp2oZmkiHJCGXoC7jxVdy4UMSte3e+jWlnFtr6Q+DjP+dwcv4gYlRpx/m2ciura+sb+c3C1vbO7p69f9BSIpaYNLFgQnYCpAijnDQ11Yx0IklQGDDSDsbXs3r7gUhFBW/oSUS8EA05HVCMtLF8+6QnR8KvlOp+4lamZ/AWXsGUDaZw3/DtolN25oLL4GZQBJnqvv3V6wsch4RrzJBSXdeJtJcgqSlmZFroxYpECI/RkHQNchQS5SXza6bw1Dh9OBDSPK7h3P09kaBQqUkYmM4Q6ZFarM3M/2rdWA8uvITyKNaE43TRIGZQCziLBvapJFiziQGEJTV/hXiEJMLaBFgwIbiLJy9Dq1J2q+XLu2qxVsviyIMjcAxKwAXnoAZuQB00AQaP4Bm8gjfryXqx3q2PtDVnZTOH4I+szx/e+pjr</latexit>

⇢0(P12)s = 1 · s

<latexit sha1_base64="KcpYZ6AOMJvuRWPf1HvyYaqW/QM=">AAACBXicbVDLSsNAFJ34rPUVdamLwSLUTUlKQV0IBTcuK9gHNCFMJpN26GQmzEyEErpx46+4caGIW//BnX/jtM1CWw9cOJxzL/feE6aMKu0439bK6tr6xmZpq7y9s7u3bx8cdpTIJCZtLJiQvRApwignbU01I71UEpSEjHTD0c3U7z4Qqajg93qcEj9BA05jipE2UmCfeHIoAqfaCnK3PjmHCl5DF3o4EhqqwK44NWcGuEzcglRAgVZgf3mRwFlCuMYMKdV3nVT7OZKaYkYmZS9TJEV4hAakbyhHCVF+PvtiAs+MEsFYSFNcw5n6eyJHiVLjJDSdCdJDtehNxf+8fqbjSz+nPM004Xi+KM4Y1AJOI4ERlQRrNjYEYUnNrRAPkURYm+DKJgR38eVl0qnX3Ebt6q5RaTaLOErgGJyCKnDBBWiCW9ACbYDBI3gGr+DNerJerHfrY966YhUzR+APrM8f+kyWVg==</latexit>

15

Equivariant Graph Networks

• Common approach[1,2,3]: interpret adjacency matrix as a 2nd order graph feature, stack with other
features along channel dim, and use this as input to the network:

• Network should be equivariant:

• For linear maps:
• Order 1 -> 0 (Invariant Deep Sets): 1 parameter

• Order 1 -> 1 (Equivariant Deep Sets): 2 parameters

• Order 2 -> 2 (PPGN [1]): 15 parameters

• Not a lot of parameters!

[1] Provably Powerful Graph Networks, Haggai Maron*, Heli Ben-Hamu*, Hadar Serviansky*, Yaron Lipman (*equal contribution), NeurIPS 2019
[2] Invariant and Equivariant Graph Networks, Haggai Maron, Heli Ben-Hamu, Nadav Shamir and Yaron Lipman, ICLR 2019
[3] Incidence Networks for Geometric Deep Learning, Albooyeh, Marjan, Bertolini, Daniele, and Ravanbakhsh, ICML 2020

�([G, f]) = f 0

<latexit sha1_base64="tseIY3Nf2JFIvw5BHJwhMGPo9qU=">AAAB+nicbVDLSgNBEOyNrxhfGz16GQxiBAm7ElAPQtCDHiOYB2yWMDuZTYbMPpiZVcKaT/HiQRGvfok3/8ZJsgdNLGgoqrrp7vJizqSyrG8jt7S8srqWXy9sbG5t75jF3aaMEkFog0Q8Em0PS8pZSBuKKU7bsaA48DhtecPrid96oEKyKLxXo5i6Ae6HzGcEKy11zWKnPmBl5+YE+e4xukT+UdcsWRVrCrRI7IyUIEO9a351ehFJAhoqwrGUjm3Fyk2xUIxwOi50EkljTIa4Tx1NQxxQ6abT08foUCs95EdCV6jQVP09keJAylHg6c4Aq4Gc9ybif56TKP/cTVkYJ4qGZLbITzhSEZrkgHpMUKL4SBNMBNO3IjLAAhOl0yroEOz5lxdJ87RiVysXd9VS7SqLIw/7cABlsOEManALdWgAgUd4hld4M56MF+Pd+Ji15oxsZg/+wPj8AQPIkeo=</latexit>

�(⇢in(P)[G, f]) = ⇢out(P)�([G, f])

<latexit sha1_base64="MaRaMEw58p0pVA72uWU52IjmkKc=">AAACL3icbVBNS8NAFNzUr1q/qh69LBahgpREBPUgiIJ6jGCt0ISy2W7apZts2H0RS8g/8uJf6UVEEa/+C7exB60OLAwz83j7JkgE12DbL1ZpZnZufqG8WFlaXlldq65v3GqZKsqaVAqp7gKimeAxawIHwe4SxUgUCNYKBudjv3XPlOYyvoFhwvyI9GIeckrASJ3qhef2ed1TfdnJPGAPkCYZj/O87u62L/dw6O/iE/zblikUPi5GTcqEOtWa3bAL4L/EmZAamsDtVEdeV9I0YjFQQbRuO3YCfkYUcCpYXvFSzRJCB6TH2obGJGLaz4p7c7xjlC4OpTIvBlyoPycyEmk9jAKTjAj09bQ3Fv/z2imER765P0mBxfR7UZgKDBKPy8NdrhgFMTSEUMXNXzHtE0UomIorpgRn+uS/5Ha/4Rw0jq8PaqdnkzrKaAttozpy0CE6RVfIRU1E0SMaoVf0Zj1Zz9a79fEdLVmTmU30C9bnF+NpqFM=</latexit>

16

Natural Graph Networks: global version
• Groupoid 𝐺𝑟𝑎𝑝ℎ

• Groupoid representation 𝜌: 𝐺𝑟𝑎𝑝ℎ → 𝑉𝑒𝑐, e.g.
• Node feature 𝜌 𝐺 = ℝ',
• Permutation 𝜌 𝑔 :ℝ' → ℝ'

• Natural transformation 𝜂: 𝜌#$ ⇒ 𝜌%&', contains
• For each graph 𝐺 ∈ 𝑂𝑏(𝐺𝑟𝑎𝑝ℎ), a map 𝜂(: 𝜌)* 𝐺 → 𝜌+,-(𝐺)
• Such that

• Isomorphism gives weight sharing
• Non-isomorphic graphs untied weights

• Automorphism gives constraint
• Non-symmetric graph unconstrained

17

Natural Graph Networks: example
Message passing – 7 parameters

13

2

4

23

1

4

13

4

2

Automorphism (1,4, 3, 2)

Isomorphism (2,4,3,1)

18

Equivariant vs Natural Networks

Equivariant Graph Networks

• Symmetry group G = Sn

• Feature space: Functor G à Vect
• (Group representation)

• Network layer: natural transformation
• (Equivariant map)

• One constraint per permutation

• The same map for every graph

Natural Graph Networks

• Symmetry groupoid G = {adjacency mats} // Sn

• Called the action groupoid

• Feature space: Functor G à Vect
• (Groupoid representation)

• Network layer: natural transformation
• One constraint per automorphism

• Different maps for non-isomorphic graphs

G :

…

G :
e g1

g2

g3

g4

g5

19

Going local

• Global methods are not scalable to large graphs

• Vanilla NGNs do not generalize across non-isomorphic graphs

20

Natural Graph Networks

• For each node and edge, define a neighbourhood
• Edge neigbourhoods should include the node neighbourhoods of the start and end node

• E.g. one-hop neighbourhood

• Neighbourhood isomorphisms give node and graph isomorphisms

• To each node, attach a graph feature
• I.e. a representation of Sn where n is the size of the node neighbourhood

• Typically we use a vector feature (i.e. one number per neigbour)

• Constraints:
• Weight matrix for an edge is constrained by the automorphisms of the edge neighbourhood

• Weight matrices on isomorphic edges share weights

Local version

21

Natural Message Passing – local version

p0

q0

p
q 𝐾"#

𝒢

𝐾"%#%
𝒢

22

Node groupoid

• For each node 𝑝 find neighbourhood 𝑁(
• Graph isomorphism 𝜙: 𝑁(→ 𝑁(.

• Node groupoid 𝒩
• Objects are nodes 𝑝
• Morphisms are neighbourhood isomorphisms 𝜙: 𝑝 → 𝑝"

p0

q0

p
q

𝜙

23

Edge groupoid

• For each edge 𝑝𝑞 find neighbourhood 𝑁()
• Graph isomorphism 𝜓: 𝑁() → 𝑁(.).

• Edge groupoid ℰ
• Objects are edge 𝑝𝑞
• Morphisms are neighbourhood isomorphisms

𝜓: 𝑝𝑞 → 𝑝"𝑞′

• Edge/node correspondence:
• Edge 𝑝𝑞 has start node 𝑝
• Edge isomorphism 𝜓: 𝑝𝑞 → 𝑝"𝑞′ has start node

isomorphism 𝑝 → 𝑝"

• Functor 𝐹*: ℰ → 𝒩
• Maps 𝐹/(𝑝𝑞) = 𝑝
• Maps 𝐹/ 𝜓 = 𝑝 → 𝑝′

• Similar for tail node: 𝐹+: ℰ → 𝒩

p0

q0

p
q 𝑝𝑞

𝑝′𝑞′
𝜓

𝐹/ 𝜓

𝐹0 𝜓

24

Natural Graph Network - abstractly

• Node features 𝜌:𝒩 → 𝑉𝑒𝑐
• 𝜌(𝑝) is graph feature of neighbourhood 𝑁1, e.g. ℝ'!

• Node iso 𝜙: 𝑝 → 𝑝" becomes linear transformation 𝜌 𝜙 : 𝜌 𝑝 → 𝜌(𝑝"), e.g. permutation

• Compose functors

• Message passing kernel is natural transformation 𝑘: 𝜌#$ ∘ 𝐹* ⇒ 𝜌%&' ∘ 𝐹+

𝒩 Vec
𝜌JK

ℰ

𝐹L

𝐹M
𝒩 Vec

𝜌NOP
𝑘

25

Natural Graph Networks

𝜌)*𝜓/ ρ+,-ψ0

𝑝𝑞

𝑝"𝑞"

𝑎𝑏

𝜓

ℰ

𝜌)*𝑝

𝜌)*𝑝"

𝜌+,-𝑞

𝜌+,-𝑞"

𝑘12

𝑘1"2"

𝜌)*𝑎 𝜌345𝑏
𝑘67

Natural Graph Kernel 𝑘

• Isomorphism = weight sharing
• Automorphism = constraints
• Linear kernel: solve linear constraints
• Layer: 𝑣!" = ∑#$(&,!) 𝑘&!(𝑣&)

26

Local Natural Graph Network

21
3

5
4

&

6

7

31
2

5
4

&′ 7

6
*!

+(*!)∈ +(/!) +(/!!") ∋

21
3

5
4
1

6

7

31
2

5
4
1′ 7

6

+′(*#)∈ +(/#) +(/#!") ∋

2!# 2!!#!

*#

𝜌(𝑝)

𝜌(𝑞)

𝜌(𝑝′)

𝜌(𝑞′)

27

Reduction to Group / Manifold Equivariance

• If graph is a grid

• Node category 𝒩
• Objects are elements of grid

• Automorphisms are 𝐷8
• Rotations

• Mirrors

• Representation 𝜌:𝒩 → 𝑉𝑒𝑐, equivalent to 𝐷, representation
• E.g. regular representation ℝ8

• Edge automorphisms: mirror

• Equivalent to 𝐷,-CNN
• Cohen & Welling (2016): Group Equivariant CNNs

𝑝 𝑞

28

Equivalent to coordinate free CNN

• Graph = grid on manifold

• Equivalent to Icosahedral CNN
• Cohen, Weiler, Kicanaoglu, Welling et al (2019): Gauge Equivariant CNNs

• Except at corners: these should have different weights

29

Basic Algorithm

• Precompute:

1. Define node and edge neighbourhoods

2. Classify edge neighbourhood isomorphism classes

3. Compute edge automorphisms

4. Solve kernel constraint, initialise params

• During training:

1. Linearly combine kernel solutions using parameters

2. Transport kernels by isomorphisms

3. Compute convolution

• Cost linear in number of edges, expensive in neighbourhood size

30

Connection to sheafs?

• Sheaf 𝐹
• Node 𝑝, 𝐹 𝑝 = graph feature for 𝑁1 e.g. ℝ'!
• 𝐹 𝑝 = 𝜌(𝑝)

• Edge 𝑝𝑞, 𝐹 𝑝𝑞 = graph feature for 𝑁12 e.g. ℝ'!#

• 𝐹1←12: 𝐹 𝑝𝑞 → 𝐹(𝑝) projection

• 𝑓(): 𝐹 𝑝𝑞 → 𝐹(𝑝𝑞) graph network

• 𝑓() “global” natural graph network ⇒ 𝑘() natural message passing

𝑝 𝑞

𝑔 ∈ 𝐴𝑢𝑡ℰ(𝑝𝑞)

31

Challenges

• 1000s of edge iso classes

• How to find common parametrization for 𝑓()?

• Only treat common edges as non-trivial

• Canonization
• Unique order for each graph – up to auto

• One common 𝑓:ℝ' → ℝ'

• Symmetrize with automorphism group

• Make 𝑓()(𝑣) a graph neural net Φ(𝑁(), 𝑣) - hypernetwork
• E.g. graph CNN

• Only consider subgraphs with nice automorphism groups
• Chains, cycles

• Thiede et al, “Autobahn: Automorphism-based Graph Neural Nets” (2021)

32

Natural Graph Networks: Summary

• Graph networks must respect graph symmetries, & treat isomorphic graphs equivalently

• Graph symmetries = autmomorphisms ≠ permutation of nodes

• Network layer = natural transformation between functors

• Global NGN = natural transformation between graph symmetries

• Local NGN = natural transformation between edge symmetries
• Induces Global NGN

• More expressive message passing

• Exploiting local symmetries yields efficient and powerful graph networks

p0

q0

p
q

33

Applications to point clouds and meshes

Work in progress

Euclidean Natural Message Passing

34

General Natural Message Passing

Natural Message Passing Kernel 𝑘

𝜌)*𝑝 𝜌+,-𝑞
𝑘A

𝜌)*𝑞 𝜌+,-𝑞"
𝑘A"

𝜌)*𝜓/ 𝜌+,-𝜓0

𝑒 = (𝑝, 𝑞)

𝑒" = (𝑝", 𝑞")

𝜓

ℰ

𝒩
ℰ

𝐹L

𝐹M
𝒩

Vec
𝜌JK

Vec
𝜌NOP

𝑘

35

Point Clouds

• Set of 𝑛 points in ℝ-, data of shape ℝ. × -

• Neural network 𝑓:ℝ. × - → ℝ. ×0

• If cloud oriented arbitrarily, equivariant to
• Translations

• Permutations

• Rotations

• For all 𝑔 ∈ 𝑆𝐸 3 ×𝑆', 𝑓 𝑔𝑣 = 𝑔𝑓(𝑣)

• Examples:
• Molecule

• Car pose

• Translation equivariance via differences

• Permutation equivariance via message passing

• Rotation equivariance: 𝑅 ∈ 𝑆𝑂 3 , 𝑓 𝑅𝑣 = 𝑅𝑓(𝑣)

𝑓

ℝ' × C

36

𝑆𝑂(3) equivariant message passing

• Node features SO(3) representations (𝜌)*, ℝ+), (𝜌,-., ℝ+
!)

• Examples: ℝ$ invariant; ℝ% 3-vector; ℝ& 3x3 matrix

• Message Network: 𝐾:ℝ/×ℝ+ → ℝ+!

• Layer: 𝑣!" = ∑&!𝐾 𝑥! − 𝑥&, 𝑣&

• Equivariance constraint: 𝐾 𝑅 𝑥! − 𝑥& , 𝑅𝑣& = 𝑅𝐾 𝑥! − 𝑥&, 𝑣&

• Difficulties:

• 𝑆𝑂(3) representation theory involves varying dimensions and Clebsch-Gordan coefficients. Difficult to
implement cleanly and efficiently

• The network is conditional on the direction, making it different for all edges. Additional computational cost

37

Natural Message Passing

• Node groupoid 𝒩 = ℝ- //𝑆𝐸(3)
• Objects are points 𝑝 ∈ ℝD

• Isomorphisms 𝑔1: 𝑝 → 𝑝", 𝑔 ∈ 𝑆𝐸 3 , 𝑔 𝑝 = 𝑝"

• All points isomorphic

• Edge groupoid ℰ = (ℝ-×ℝ-)//𝑆𝐸(3)
• Objects are pairs of points 𝑝, 𝑞 ∈ ℝD

• Isomorphisms 𝑔12: 𝑝𝑞 → 𝑝"𝑞", 𝑔 ∈ 𝑆𝐸 3 , 𝑔 𝑝 = 𝑝", 𝑔 𝑞 = 𝑞"

• Edges of same length isomorphic

• Node features 𝜌:𝒩 → 𝑉𝑒𝑐 is 𝑆𝑂(3) representation
• 𝜌 𝑝 = ℝC

• 𝜌 𝑔1 = 𝜌(𝑔)

• Natural Message Passing 𝑘: 𝜌#$ ∘ 𝐹* ⇒ 𝜌%&' ∘ 𝐹+

reduction of 3D symmetry to 2D symmetry of edges

𝑝

𝑞

0

𝑥E = (𝑟, 0,0)

𝑔 ∈ 𝑆𝐸(3)

38

Natural Message Passing

• Automorphisms: 𝑆𝑂(2) aroud 𝑥 axis

reduction of 3D symmetry to 2D symmetry of edges

𝑝

𝑞

0

𝑥E = (𝑟, 0,0)

𝑔 ∈ 𝑆𝐸(3)

ℎ ∈ 𝑆𝑂(2)

𝜌)*𝑔 𝜌+,-𝑔

ℝC

ℝC

ℝC"

ℝC"

𝑘12

𝑘/F'

ℝC 𝜌345𝑏
𝑘/F'

Natural Graph Kernel 𝑘

𝜌)*ℎ 𝜌+,-ℎ

39

Algorithm

Precompute:

• For each edge (𝑝, 𝑞) precompute 𝑔 ∈ 𝑆𝐸(3) to move edge to (0, 𝑟, 0,0)

• Construct 𝑆𝑂(2) radius-conditional network 𝑓1: ℝ0 → ℝ0.

In network:

1. Move feature 𝑣 from 𝑝 to 0 with 𝑆𝑂(3) action 𝑔

2. Message pass from 0 to 𝑥1 with 𝑓1
3. Move output feature from 𝑥1 to 𝑞 with 𝑆𝑂(3) action 𝑔2+

4. Sum over incomming messages

Used 𝑆𝑂(2) equivariance to make 𝑆𝑂(3) equivariant network!

• Simpler to construct

• More available non-linearities

40

Planar case: trivial automorphism

• Symmetry group 𝑆𝐸(2)
• Features are representations of 𝑆𝑂(2)

• Edges have no automorphism constraints

• Message passing with unconstrained
𝑓1: ℝ0 → ℝ0.

• ReLU non-linearities

• Also usable for Gauge Equivariant Mesh CNN
𝑝

𝑞

0 𝑥E = (𝑟, 0)

𝑔 ∈ 𝑆𝐸(2)

41

Conclusion

• Generalize groups to groupoids

• Generalize equivariance to natural transformations

• Message passing on graphs
• Weight sharing if edges have isomorphic neighbourhoods

• Local symmetries give constraints

• More expressive

• Pointcloud equivariance via 𝑆𝑂(2) symmetry
• Easier to implement

• Better non-linearities

• Planar equivariance via unconstrained network
• ReLU non-linearities

• Many more groups, groupoids, categories and representations to explore!

• Open question: link local – global naturality more formally

42

Postscriptum

Categories & Causality

43

Grounded Causal Models

• Set of actions / interventions 𝐴

• Dynamics do 𝑎 : 𝑋 → 𝑋

• Effects proc: 𝑋 → 𝑌

Cohen 2022: Towards a Grounded Theory of Causation for Embodied AI

A model is grounded if there is a natural transformation like this

44

String diagrammatic proofs
Brehmer, De Haan, Lippe, Cohen: Weakly supervised causal representation learning (2022)

45

Causal Model – interventions as 2-cell
Bhat, Van Belle, De Haan, Lopez, Román (in progress)

46

Further reading

• Books:
• Fong & Spivak, Seven Sketches in Compositionality: an invitation to applied category theory
• Perrone, Introduction to category theory
• Riehl, Category Theory in Context
• Lawvere & Schanuel, Conceptual Mathematics: a first introduction to categories

• Papers:
• De Haan, Cohen, Welling, Natural Graph Networks

• Dudzik & Velickovic, Graph Neural Networks are Dynamic Programmers

• Gavranovic, https://github.com/bgavran/Category_Theory_Machine_Learning

Follow us on:

For more information, visit us at:

snapdragon.com & snapdragoninsiders.com

Nothing in these materials is an offer to sell any of the components
or devices referenced herein.

©2018-2022 Qualcomm Technologies, Inc. and/or its affiliated
companies. All Rights Reserved.

Qualcomm and Snapdragon are trademarks or registered trademarks of
Qualcomm Incorporated. Other products and brand names may be
trademarks or registered trademarks of their respective owners.

References in this presentation to “Qualcomm” may mean Qualcomm
Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or
business units within the Qualcomm corporate structure, as applicable.
Qualcomm Incorporated includes our licensing business, QTL, and the vast
majority of our patent portfolio. Qualcomm Technologies, Inc., a subsidiary
of Qualcomm Incorporated, operates, along with its subsidiaries,
substantially all of our engineering, research and development functions,
and substantially all of our products and services businesses, including our
QCT semiconductor business.

Thank you

