#### Qualcom

# Gauge Equivariant Mesh CNN

#### Pim de Haan

PhD studentUniversity of AmsterdamResearch AssociateQualcomm Technologies Netherlands B.V.



### **CNNs on Meshes**

- Representation of curved manifold
- E.g. human artery
- Predict wall stress vector due to blood flow
- No canonical orientation
- How to orient convolutional kernels?
- Gauge equivariance



### Collaboration







Maurice Weiler\*Taco CohenMax WellingUniversity of AmsterdamQualcomm AI ResearchUniversity of Amsterdam

\*Joint first author

## Outline

- CNN review
- Message passing on a mesh
- Scalar convolution
- Vector fields
- Gauge equivariant mesh convolutions
- Implementation
- Application to blood flow

### Convolutional neural networks on images

- Image feature  $f \in \mathbb{R}^{L \times L}$
- Kernel  $k \in \mathbb{R}^{3 \times 3}$

• 
$$f'_p = (k \star f)_p = \sum_q k(q)f(p-q)$$

- Alternate convolutions with non-linearities
- Learn kernels k



### Anisotropy



Anisotropic

- 9 parameters
- Detects any edge

Isotropic

3 parameters

Can not detect edges

Mesh



- Discretization of curved surface
- Triangular mesh = collection of triangular faces



### Manifold Mesh

- Edge touches two faces
  - Or one if a boundary
- Vertex must be surrounded by plane of faces
  - Or half-plane if boundary
- Oriented manifold







### Message passing on a mesh

- Feature at vertices
- Message passing

$$f'_p = \sum_{q \in \mathcal{N}(p)} k(q \to p) f_q$$



### Convolutions on a mesh



 Canonical relative (x, y) coordinates of neighbours



- Log map to tangent plane  $\log_p q \in T_p M$
- Polar coordinates
- What is  $\theta = 0$ ?
- Choice of coordinates: gauge

### Mesh Tangent Planes & Gauges

- Oriented Manifold Mesh
- Faces have normal vector n<sub>f</sub>
- Vertex normal  $n_p$  area-weighted average of adjacent face normals
- Tangent planes  $T_pM$  at vertex p normal to  $n_p$
- Inherit metric tensor from  $\mathbb{R}^3$  ambient space
- Gauge is basis  $w_p: T_pM \to \mathbb{R}^2$
- Gauge defined up to SO(2)
- Polar coordinates

 $\mathbf{w}_p(v) = (r, \theta), w_p'(v) = (r, \theta + g_p), g_p \in SO(2)$ 



### Gauge invariance, fixing & equivariance

- Gauge: choice of basis for each tangent plane
  - Reference neighbour
- Option 1: gauge invariance
  - Message  $q \rightarrow p$  independent of  $\theta_{pq}$
  - But: isotropic
- Option 2: gauge fixing
  - Principal curvature direction
  - But: ill-defined
- Option 3: Gauge equivariance [Cohen et al. 2019, Weiler et al. 2021]:
  - Features transform by known rule under gauge change
  - Network equivariant





### Invariance: Geodesic CNN

[Masci et al 2015]

- Fix any gauge
- Define kernel  $K(r, \theta) \in \mathbb{R}$ , unconstrained
- Compute convolution

$$(K \star f)_p = \max_{g \in SO(2)} \sum_{q \in \mathcal{N}(p)} K(r_q, \theta_q + g) f_q$$



• Invariant under gauge change

### Gauge equivariance with scalar features

• Feature  $f: M \to \mathbb{R}$ 

- Transformation rule under gauge transformation: invariant
- Gauges w, w', polar coordinates of neighbour q of p:  $w_p(\log_p q) = (r_q, \theta_q), \quad w'_p(\log_p q) = (r_q, \theta_q + g_p)$
- Kernel  $K(r, \theta) \in \mathbb{R}$
- In gauge w:  $(K \star f)_p = \sum_{q \in \mathcal{N}(p)} K(r_q, \theta_q) f_q$
- In gauge w':  $(K \star f)_p = \sum_{q \in \mathcal{N}(p)} K(r_q, \theta_q + g_p) f_q$
- Equality for any angle  $g_p$  implies  $K(r_q, \theta_q + g_p) = K(r_q, \theta_q)$
- Kernel isotropic

Gauge equivariant convolutions on scalar fields

Scalar convolutions are isotropic



### Vector features

- Vector space  $V_p = \mathbb{R}^d$  that transforms under gauge transformation  $g \in SO(2)$
- Transformation rule  $\rho(g) \in \mathbb{R}^{d \times d}$
- Respects group structure:  $\rho(g)\rho(g') = \rho(gg')$
- Group representation  $\rho: G \to \operatorname{Aut}(\mathbb{R}^d)$
- Examples:
  - Scalar feature  $\rho(g) = 1$
  - Tangent vector feature  $\rho(g) = \begin{pmatrix} \cos(g) & -\sin(g) \\ \sin(g) & \cos(g) \end{pmatrix}$
- In general, concatenation of irreducible representations

$$\rho_0(g) = 1, \quad \rho_n(g) = \begin{pmatrix} \cos ng & -\sin ng \\ \sin ng & \cos ng \end{pmatrix}$$

### Parallel Transport

- Tangent planes not parallel
- Parallel transport of geodesic
- Transport gauge-defining X-axis
- Angle  $g_{q \rightarrow p}$
- Any parallel transport by linearity



### **General Gauge Equivariant Convolution**

- Input/output features  $(\mathbb{R}^d, \rho), (\mathbb{R}^{d'}, \rho')$
- Kernel  $K(r, \theta) \in \mathbb{R}^{d' \times d}$
- Convolution:  $(K \star f)_p = \sum_{q \in \mathcal{N}(p)} K(r_q, \theta_q) \rho(g_{q \to p}) f_q$
- Equivariance if:  $\rho'(g)K(r,\theta) = K(r,\theta+g)\rho(g)$

Gauge equivariant convolutions on vector fields

Vector convolutions are anisotropic



### Solutions to kernel constraint

Example for  $\rho_1 \rightarrow \rho_1$ 

- $\rho'(g)K(r,\theta) = K(r,\theta+g)\rho(g)$
- $K(r, \theta) = K(r)K(\theta)$
- K(r) unconstrainted
- Example: between tangent vectors
- Angular component  $K(\theta) \in \mathbb{R}^{2 \times 2}$
- Four solutions
- Precomputed
- Linearly combined with learnable parameters







### Solving the kernel constraint

• All representations can be characterised as copies of  $(n \in \mathbb{N})$ 

• Solutions for constraint:

• Learned parameters linearly combine basis kernels:

$$\rho_0(g) = 1, \quad \rho_n(g) = \begin{pmatrix} \cos ng & -\sin ng \\ \sin ng & \cos ng \end{pmatrix}$$

| $ ho_{\rm in}  ightarrow  ho_{\rm out}$    | linearly independent solutions for $K_{\text{neigh}}(\theta)$                                                                                                                                                                                                             |  |  |  |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| $ ho_0  ightarrow  ho_0$                   | (1)                                                                                                                                                                                                                                                                       |  |  |  |
| $\rho_n \to \rho_0$                        | $\left(\cos n	heta\sin n	heta ight),\left(\sin n	heta-\cos n	heta ight)$                                                                                                                                                                                                  |  |  |  |
| $ ho_0  ightarrow  ho_m$                   | $ig( {\cos m 	heta \over \sin m 	heta } ig), ig( {\sin m 	heta \over - \cos m 	heta } ig)$                                                                                                                                                                                |  |  |  |
| $\rho_n \to \rho_m$                        | $\left \begin{pmatrix} c_{-} & -s_{-} \\ s_{-} & c_{-} \end{pmatrix}, \begin{pmatrix} s_{-} & c_{-} \\ -c_{-} & s_{-} \end{pmatrix}, \begin{pmatrix} c_{+} & s_{+} \\ s_{+} & -c_{+} \end{pmatrix}, \begin{pmatrix} -s_{+} & c_{+} \\ c_{+} & s_{+} \end{pmatrix}\right $ |  |  |  |
| $\rho_{\rm in} \rightarrow \rho_{\rm out}$ | linearly independent solutions for $K_{\text{self}}$                                                                                                                                                                                                                      |  |  |  |
| $\rho_0 \rightarrow \rho_0$                | (1)                                                                                                                                                                                                                                                                       |  |  |  |
| $\rho_n \to \rho_n$                        | $\left  \begin{array}{c} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \right $                                                                                                                                             |  |  |  |
| $c_{\pm} = \cos(m \pm n)\theta$            |                                                                                                                                                                                                                                                                           |  |  |  |



### Implementation

- For each layer, pick an input and output representation
- Precomputation:
  - For each vertex, we define tangent plane
  - On each tangent plane, we pick gauge
  - Between neighbouring vertices, we compute parallel transport matrices  $ho(g_{p 
    ightarrow q})$
  - For each pair of neighbours, construct basis kernels  $K_i(r_q, \theta_q)$
- During forward pass, combine basis kernels:

$$(K \star f)_p = \sum_i \sum_{q \in \mathcal{N}(p)} \alpha_i K_i(r_q, \theta_q) \rho(g_{q \to p}) f_q$$

### Symmetry properties



### Reduction to Equivariant CNNs on images



CNN

**Equivariant CNN** 

If mesh is planar grid, method reduces to equivariant planar CNN

### Computing geometry geometry

- Geometric quantities
  - Logarithmic map
  - Parallel transport
- Edge walking
- Diffusion
- Spherical approximation



### Edge walking



#### • Instable & expensive

### **Vector Heat Method**

Sharp, Soliman, Krane (2019)

Diffusion of vector fields

#### Parallel transport

- Vector field: x-axis at p, 0 elsewhere
- Diffuse with infinitesimal time
- Resulting vector at q is parallel transport  $p \rightarrow q$
- Logarithmic map  $(r, \theta)$ 
  - r: length of transported R
  - $\theta$ : angle between H, R
- Discrete implementation
  - Complexity approaching O(n) per node





### **Spherical Approximation**

• Only depends on normals  $n_p$ ,  $n_q$  (oriented point cloud)

- $R \in SO(3)$  rotate around  $A = n_p \times n_q$  by  $\theta = \arccos n_p^T n_q$
- Logarithmic map v s.t.  $q = \exp_p v$ :
  - $q p \in \mathbb{R}^3$
  - Project to tangent plane  $T_pM$
  - Rescale to length ||q p||
- Parallel transport:
  - $v \in T_p M$
  - Embed in  $\mathbb{R}^3$
  - Rotate by  $R \in SO(3)$
  - Normal to  $n_q$
  - Reinterpret in  $T_q M$



### Gauge Equivariant Spherical CNN

Kicanaoglu, de Haan, Cohen [2019]



### Non-linearity design

- Scalar multiplication  $\phi: v \mapsto \alpha v$
- Nonlinearity  $f: \mathbb{R} \to \mathbb{R}$
- Norm  $\phi: v \mapsto \frac{f(|v|)}{|v|} v$
- Squash  $\phi: v \mapsto \frac{|v|}{|v|+1}v$
- Gated nonlinearity  $\phi: r, v \mapsto f(r)v$
- If  $\rho(g)$  a permutation:  $v \mapsto (gv)_i = v_{\sigma i}$ 
  - Pointwise equivariant  $\phi(v)_i = f(v_i)$
- Infinite groups?



### Sampling non-linearity

- Continous signals on circle  $C(S^1) = \{v: S^1 \to \mathbb{R}\}$
- Regular representation of SO(2):  $v \mapsto gv(x) = v(g^{-1}x)$
- Pointwise equivariant:  $v \mapsto \phi(v)(x) = f(v(x))$
- Infinite memory
- Band-limited fourier transform  $\rho_0 + \rho_1 + \dots + \rho_B \rightarrow C(S^1)$
- Finite sample:  $\rho_0 + \rho_1 + \dots + \rho_B \to \mathcal{C}(S^1) \to \mathbb{R}^n$
- Point-wise on samples
- Equivariance error  $\mathcal{O}(B^2/N)$

### Input features

- XYZ coordinates are gauge-invariant, but not coordinate-free
- Ambient feature as surface feature
  - Vector:  $T_p \mathbb{R}^3 \xrightarrow{\sim} T_p M + \mathbb{R}$
  - Matrix  $T_p^2 \mathbb{R}^3 \xrightarrow{\sim} T_p^2 M + 2T_p M + \mathbb{R}$
- Ambient matrices
  - $M_p^1 = \frac{1}{\mathcal{N}(p)} \sum_{q \in \mathcal{N}(p)} n_p n_q^T$ •  $M_p^2 = \frac{1}{\mathcal{N}(p)} \sum_{q \in \mathcal{N}(p)} (q - p)(q - p)^T$ •  $M_p^3 = \frac{1}{\mathcal{N}(p)} \sum_{q \in \mathcal{N}(p)} (q - p) n_p^T$
- Initial features  $3(3 \rho_0 + 2\rho_1 + \rho_2)$



### Pooling



Gauge Equivariant Mesh CNN - Pim de Haan

### Application to blood flow

[Suk, de Haan, Lippe, Brune, Wolterink, 2021]



Julian Suk University of Twente



### **Problem formulation**

- Shape of arteries in human body related to e.g. aneurysm
- Quantitative analysis of blood flow useful indicator wall shear stress
- Non-invasively: model artery with MRI scanner
- Simulate blood flow with computational fluid dynamics (> 20h)
- Learn neural network surrogate to predict WSS on CFD ground truth
- Dataset of realistic random meshes
- Neural network inference in milliseconds



### Equivariance

- Arteries not in canonical orientation
- Equivariance to global transformations
- Gauge Equivariant Mesh CNN



### **Network Architecture**



### Predicting WSS across the Cardiac Cycle



#### Gauge Equivariant Mesh CNN - Pim de Haan

### **Qualitative Results on Steady Flow**



### Quantitative Results on Steady Flow

|                          |                         | NMAE [%] |        |      |
|--------------------------|-------------------------|----------|--------|------|
|                          |                         | mean     | median | 75th |
|                          | SAGE-CNN                | 0.9      | 0.9    | 1.2  |
| Single arteries          | FeaSt-CNN               | 0.6      | 0.6    | 0.8  |
| (steady flow)            | PointNet++              | 0.5      | 0.4    | 0.7  |
|                          | GEM-CNN                 | 0.5      | 0.4    | 0.6  |
|                          | PointNet++ <sup>†</sup> | 10.1     | 10.0   | 11.9 |
| (randomly rotated in 3D) | PointNet++ <sup>‡</sup> | 0.7      | 0.6    | 1.0  |
| m 60)                    | GEM-CNN <sup>†</sup>    | 0.5      | 0.4    | 0.6  |
|                          | SAGE-CNN                | 1.0      | 0.9    | 1.0  |
| Bifurcating arteries     | FeaSt-CNN               | 0.7      | 0.6    | 0.7  |
| (steady flow)            | PointNet++              | 0.6      | 0.5    | 0.6  |
|                          | GEM-CNN                 | 0.6      | 0.6    | 0.7  |
| (non dominanto) - d      | PointNet++ <sup>†</sup> | 7.8      | 7.6    | 11.0 |
| (randomly rotated in 3D) | PointNet++ <sup>‡</sup> | 0.6      | 0.6    | 0.7  |
|                          | GEM-CNN <sup>†</sup>    | 0.6      | 0.6    | 0.7  |

<sup>†</sup> trained on canonically oriented samples

<sup>‡</sup> trained under data augmentation (random rotation in 3D)

### **Qualitative Results on Pulsatile Flow**



Ground truth

Prediction



### Takeaway

Gauge Equivariant Mesh CNN is:

- Simple
- Scalable
- Anisotropic  $\Rightarrow$  expressive
- Symmetry properties
- Try it out:

github.com/Qualcomm-Al-research/gauge-equivariant-mesh-cnn



Qualcom

# Thank you

#### Follow us on: **f y in O**

For more information, visit us at: www.qualcomm.com & www.qualcomm.com/blog

Nothing in these materials is an offer to sell any of the components or devices referenced herein.

©2018-2020 Qualcomm Technologies, Inc. and/or its affiliated companies. All Rights Reserved.

Qualcomm is a trademark or registered trademark of Qualcomm Incorporated. Other products and brand names may be trademarks or registered trademarks of their respective owners. References in this presentation to "Qualcomm" may mean Qualcomm Incorporated, Qualcomm Technologies, Inc., and/or other subsidiaries or business units within the Qualcomm corporate structure, as applicable. Qualcomm Incorporated includes Qualcomm's licensing business, QTL, and the vast majority of its patent portfolio. Qualcomm Technologies, Inc., a wholly-owned subsidiary of Qualcomm Incorporated, operates, along with its subsidiaries, substantially all of Qualcomm's engineering, research and development functions, and substantially all of its product and services businesses, including its semiconductor business. QCT.