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States in Quantum Statistical Mechanics
and Quantum Information Theory

Represented by a Density Matrix P
Pos semi-def P>0 and TrP =1.
Induces map on alg of observables
Ar— TrPA = f(A)
Restrict to invertible and fnite-dim
not serious, e.g. (1 —€)P + ex]
BUT excludes pure states, i.e., P2 = P.

Want to know how ‘close” two
(mixed) states P and Q@ are

See, e.g., Nielsen/Chuang Quantum
Computation ... Chapter

Expect noise makes states harder
to distinguish, i.e., “distance decreases”

Noise rep by stochastic map &
completely positive and trace-preserving
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Examples

Relative Entropy

H(P,Q) = Tr(P[log P —log Q])

H(P,Q) >0 with =0 iff P=Q

BUT not true metric since
not sym, H(P,Q) = H(Q, P) (not serious)
triangle ineq. not true (even if sym)

Still very useful as a pseudo-distance

Trace norm Tr|P - Q| = ||P — Q|1
true metric and gen rel entropy
BUT not smooth; diff contraction props.

Bures metric 2 [1 — Tr (\/?Q\/F)l/z}
related to ‘fidelity’ mixed states

Pure P = [9)(¥|,Q = |®)(P]|, F = [, P)]

true metric — emerges as geodesic dist. of a
mono. Riem. metric assoc with a rel entropy



Properties of Relative Entropy

P, Q>0 TrP=TrQ

a) Hy(P,Q) > Tr(P—-Q) =0

with H(P,Q) =0« P = Q.
c) Hy(P,Q) is jointly convex in P and Q
d) monotone: Hy[P(P),P(Q)] < Hy(P, Q)

In addition we may require
e) symmetric: Hq(P,Q) = Hq4(Q, P).
f) differentiable: f(z,y) = Hy(P+zA,Q+yB)

Properties (a) — (d) hold for

Hiog(P, Q) = Tr (P[log P —log Q])
corresponds to g(w) = — logw

Hy(P,Q) =Tr[P-Q|, g(w)=|w—1]

convex operator function g such that
g:(0,0)— R, and ¢g(1) = 0.

Hy(P,Q) = Tr (PY2g(ag p)PY/?)

mult ops Lp(A) = PA, Rg(A) = AQ

Rel mod op Ag p = LoRp'



Start with usual Rel Ent

Hioq(P,Q) = Tr (P[log P — log Q])

Diff to get Riemannian metric on tang space

82
— H(P + aA, P+ 3B)
o 1 1
= Tr / A B ds
0 sl +P sI+ P
where TrA=TrB=0,A= A* B= B*
Extends to bilinear form on full alg s.t

Mp(A, B)

Mp(A, B) = (A, Q%(B)) = Tr A*Q%(B)
Defines pos semi-def op (wrt Hilb-Schmidt)
o0 1 1

g —_
2p(B) = /o s+ Posl+pPY

Note on tang space My(A,B) = My(B,A)
above same as diff H(P + aB, P + 3A),
H(P,Q) and H(Q, P) give same Riem metric.

leads to geodesic distance, but no simple
closed form expresssion known



g:(0,00) — R conv. op., g(1) =0.

a) Have pos measure vy (or Ngy) and a,b,c

132
g(w) = a(w—l)—l—b(w_1)2_|_c(w wl)
oo (w — 2
w— 1)2
= a(w—1)+/ ( 1) dNy(s)

b) A generalized relative entropy Hy(P, Q)

00 1
_ /O Tr ((Q P @ P)) dNg(s)

Note: g(w) — wg(w—1) takes
Hy(P,Q) — Hy(Q,P) = H,, ,-1)(P, Q)

c) A symmetric generalized relative entropy
Hgym(PaQ) — HQ(P7Q) _I_ HQ(Q7P)
= Hyw)twg(w1) (P Q)
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d) fctn k(w) s.t. wk(w) = k(w™1), k(1) =1,
and —k(w) (or 1/k(w)) is operator monotone

g(w) + wg(w™1)

k(w) = (w—1)2
_ /OO Ng(s) + 8_1Ng(s_1)d8
0 s+ w

1 1 1
o /0 (8—I—w+sw—|—1> 79(5)ds
where o4(s) = Ny(s) + s 1Ng(s™1).

e) family of lin ops Q% pos semi-def wrt H-S

oo 1 1
g __
2P = /o <st+Lp+st+Rp> Ng(s) ds

o0 1
= / og(s)ds
0 SRP—|—LP

f) family of Riemannian metrics dep. on P

82
M%(A,B) = —8aaﬁHg(P + aA, P+ 3B)

= (A,Q%(B)) = Tr ATQ%(B)

a=03=0
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g) A geodesic distance

Dy(P,Q) = inf/ol \/(S(t), QY S(D)dt (1)

where the infimum is taken over all smooth
paths S(¢) with S(0) = P and S(1) = Q.

Thm: Relative entropy, Riemannian metrics,
and geodesic distances defined above all
contract under stochastic maps, i.e,

Hy[®(P),®(Q)] < Hy(P,Q)
MY 1y [D(A), D(A)] < MB(A, A)
Dy[d(P), ®(Q)] < Dy(P,Q)

Thm: Under contract. assump, get 1-1 corr
() & (d) <« (e« (f) < (9

(d) - (g9) due to Petz; (¢) to Lesniewski/Ruskai
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Defs: For each fixed g and & let

RelEnt _ Hy[®(P), P (Q)]
S O = S7Xe)

(D(A), 2 1y [S(A)])

Riem _

g (P) = sup sup (A, Q%[A])
Tr (A)=0

82090y = sup [Pa(O(P) SN

P£Q  [Dg(P,Q)]?

Thm: 779 eIEnt((D) > ngRlem((b) > 77geod(q))

Conjecture:

77£I}?elEn’t(cb) — ngRiem(cD) — ngeod(cb)

Commutative systems, (A, Q%[A]) Fisher info
= (A? Q%[A]) indep of g
= 1, Riem () indep of g

Thm (Choi, Ruskai, Seneta) ngRelEnt(CD) = nR'em(CD)
= nirelENt(d) indep of g.
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®: A — A> Dual (adjoint) @ : Ao — Aq
defined by Tr AECD(Bl) = TIr CD(AQ)*Bl

Eigenvalue Equation:

[® 0 Q% py 0 PI(A) = AQH(A)

Easy to check that A = P vields A = 1.
Apply max-min

(P(A), Qg py [P (D])

_ > (P)
AP Py = sup (A, QL[A])
Tr(A)=0

Thm: M (D) =suppAo(P,P) Vg

i Tr|P(A)
Cor: 7j5g™ () < _sup SaCO N3] (P)

ATr(A)=0 Tr|A|
— %sup{Tr|<D(E—F)| . 1-dim projs, EF = 0}

The map A — (289 lodo Q'CE?P) o d(A)
is positivity preserving only for g(w) = — logw

Cor. does NOT extend to other g
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Rep. of ® in Pauli basis {I,0x,0y,0:}

Density matrix p = %[I + w - o]
p a one-dim proj (pure state) & |w| = 1.

Gives 1-1 correspondence between states
in C2 and points on unit sphere in R3

After rotation and diag can assume wlog

(1 0 0 0

t1 A1 O 0 1 0
T: —

to 0O Xo 0 t A

\t3 0 O >\3)

0 and t are row and column vectors resp.

D
% [ +wo] — % |:] —+ Z(tk -+ )\kwk)ak]
k
d maps pure states to ellipsoid in Bloch sphere
2 2 2
r1 —1 ro —1 r3 —1

1 1 + 2 2 + 3 3 — 1

A1 A2 A3
BUT not every ellipsoid from Comp. Pos. &
actual conditions complicated
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Example 1: Unital qubit channel

B real 3 x 3 matrix with ||B|| <1

®: LI +w- o] [+ (Bw) o]
(comp. pos. not needed) (1) =1

nEM (@) = nNeM(dp) = nd%°%(®p) = ||B|?

n?"'em(%) |B||” = largest e-val B¥*B Vg

1 1
= 2nd largest e-val 0 0
O B* O B

M (P) < nDob(®) = ||B|
Tr|Pd(A
“UD r|d(A)|

A:Tr(A)=0 Tr|A|

Consistent with  ||B|<1 = |[B|?<|B]
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Example 2: Commutative 2-dim : or
QC: ®: I+ w-o] — 3[I+ (t3+ Azw3)o3]

QC means Quantum — Classical
CC means Classical — Classical

ng(Poc) = ng(Pce) since e.g.,

Hy(Pw, Px) > Hyg(5[I + wso3], 5[I + 2303])

1+ w 0 14+ w
emnd (7] (37

map above corresponds to column stochastic

1<L+A+t 1—A44>1(L+w>_1<1+t+xw>

2

201 -x—t 14 2—t)2\1—-w 2\ 1 —t— 2w

n?elEnt(¢A) Ui'em(ch)

D)\2
Va+N2-2+/a-)) —t2]2

reduces to A2 when ¢t = 0 (recover unital).
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Example 3: Non-unital qubit CQ

CQ means Classical — Quantum

%[I-'-vv-o'] — %[I—I—t101+>\3’w303]

_ 1 1 + Azws t1
2 t1 1 — A3ws3

Comp. Pos. iff A3 +t2 < 1 for CQ

compare |Az| + [t3] < 1 for QC.

R @) = =1 if A3+ =

Can find g such that nR'e”’l‘)Q(qﬁ) A Y

i.e. e nX®M($) depends non-triv on g.
nPoP(4) = X but not general upper bound
nPOP(g) < pRIEM  (¢) when A2 <1-—t2 <

(w—1)2
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