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States in Quantum Statistical Mechanics

and Quantum Information Theory

Represented by a Density Matrix P

Pos semi-def P > 0 and TrP = 1.

Induces map on alg of observables

A �→ TrPA = f(A)

Restrict to invertible and fnite-dim

not serious, e.g. (1− ε)P + ε1dI

BUT excludes pure states, i.e., P2 = P .

Want to know how “close” two

(mixed) states P and Q are

See, e.g., Nielsen/Chuang Quantum

Computation ... Chapter

Expect noise makes states harder

to distinguish, i.e., “distance decreases”

Noise rep by stochastic map Φ

completely positive and trace-preserving
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Examples

Relative Entropy

H(P,Q) = Tr (P [logP − logQ])

H(P,Q) ≥ 0 with = 0 iff P = Q

BUT not true metric since

not sym, H(P,Q) �= H(Q,P ) (not serious)

triangle ineq. not true (even if sym)

Still very useful as a pseudo-distance

Trace norm Tr |P −Q| ≡ ‖P −Q‖1
true metric and gen rel entropy

BUT not smooth; diff contraction props.

Bures metric 2
[
1−Tr (

√
PQ
√
P )1/2

]
related to “fidelity” mixed states

Pure P = |ψ〉〈ψ|, Q = |Φ〉〈Φ|, F = |〈ψ,Φ〉|
true metric – emerges as geodesic dist. of a

mono. Riem. metric assoc with a rel entropy
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Properties of Relative Entropy

P, Q > 0 TrP = TrQ

a) Hg(P,Q) ≥ Tr (P −Q) = 0
with H(P,Q) = 0⇔ P = Q.

b) Hg(λP, λQ) = λH(P,Q)
c) Hg(P,Q) is jointly convex in P and Q
d) monotone: Hg[Φ(P ),Φ(Q)] ≤ Hg(P,Q)

In addition we may require
e) symmetric: Hg(P,Q) = Hg(Q,P ).
f) differentiable: f(x, y) = Hg(P+xA,Q+yB)

Properties (a) – (d) hold for

Hlog(P,Q) = Tr (P [logP − logQ])
corresponds to g(w) = − logw

Hg(P,Q) = Tr |P −Q|, g(w) = |w − 1|

convex operator function g such that
g : (0,∞) �→ R, and g(1) = 0.

Hg(P,Q) = Tr (P1/2g(∆Q,P )P1/2)

mult ops LP (A) = PA, RQ(A) = AQ

Rel mod op ∆Q,P = LQR−1
P
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Start with usual Rel Ent

Hlog(P,Q) = Tr (P [logP − logQ])

Diff to get Riemannian metric on tang space

Mp(A,B) = − ∂2

∂α∂β
H(P + αA,P + βB)

∣∣∣∣∣
α=β=0

= Tr
∫ ∞
0

A
1

sI + P
B

1

sI + P
ds

where TrA = TrB = 0, A = A∗, B = B∗

Extends to bilinear form on full alg s.t

Mp(A,B) = 〈A,Ωg
P (B)〉 = TrA∗Ωg

P (B)

Defines pos semi-def op (wrt Hilb-Schmidt)

Ωg
P (B) =

∫ ∞
0

1

sI + P
B

1

sI + P
ds

Note on tang space Mp(A,B) = Mp(B,A)
above same as diff H(P + αB,P + βA),

H(P,Q) and H(Q,P ) give same Riem metric.

leads to geodesic distance, but no simple
closed form expresssion known
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g : (0,∞) �→ R conv. op., g(1) = 0.

a) Have pos measure νg (or Ng) and a, b, c

g(w) = a(w − 1) + b(w − 1)2 + c
(w − 1)2

w

+
∫ ∞
0

(w − 1)2

w + s
dνg(s)

= a(w − 1) +
∫ ∞
0

(w − 1)2

w + s
dNg(s)

b) A generalized relative entropy Hg(P,Q)

=
∫ ∞
0

Tr

(
(Q− P )

1

LQ + sRP
(Q− P )

)
dNg(s)

Note: g(w)→ wg(w−1) takes

Hg(P,Q)→ Hg(Q,P ) = Hwg(w−1)(P,Q)

c) A symmetric generalized relative entropy

Hsym
g (P,Q) = Hg(P,Q) + Hg(Q,P )

= Hg(w)+wg(w−1)(P,Q)
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d) fctn k(w) s.t. wk(w) = k(w−1), k(1) = 1,

and −k(w) (or 1/k(w)) is operator monotone

k(w) =
g(w) + wg(w−1)

(w − 1)2

=
∫ ∞
0

Ng(s) + s−1Ng(s−1)

s + w
ds

=
∫ 1

0

(
1

s + w
+

1

sw + 1

)
σg(s)ds

where σg(s) = Ng(s) + s−1Ng(s−1).

e) family of lin ops Ωg
P pos semi-def wrt H-S

Ωg
P =

∫ ∞
0

(
1

sRP + LP
+

1

sLP + RP

)
Ng(s) ds

=
∫ ∞
0

1

sRP + LP
σg(s) ds

f) family of Riemannian metrics dep. on P

M
g
P (A,B) = − ∂2

∂α∂β
Hg(P + αA,P + βB)

∣∣∣∣∣
α=β=0

= 〈A,Ωg
P (B)〉 = TrA†Ωg

P (B)
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g) A geodesic distance

Dg(P,Q) ≡ inf
∫ 1

0

√
〈Ṡ(t),Ωg

S(t)Ṡ(t)〉dt (1)

where the infimum is taken over all smooth

paths S(t) with S(0) = P and S(1) = Q.

Thm: Relative entropy, Riemannian metrics,

and geodesic distances defined above all

contract under stochastic maps, i.e,

Hg[Φ(P ),Φ(Q)] ≤ Hg(P,Q)

M
g
Φ(P )[Φ(A),Φ(A)] ≤ M

g
P (A,A)

Dg[Φ(P ),Φ(Q)] ≤ Dg(P,Q)

Thm: Under contract. assump, get 1-1 corr

(c) ⇔ (d) ⇔ (e) ⇔ (f) ⇔ (g)

Hsym
g k(w) Ωg

P MP (A,B) Dg(P,Q)

(d) - (g) due to Petz; (c) to Lesniewski/Ruskai
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Defs: For each fixed g and Φ let

ηRelEnt
g (Φ) = sup

P �=Q

Hg[Φ(P ),Φ(Q)]

Hg[P,Q]

ηRiem
g (Φ) = sup

P
sup

A:A=A∗
Tr (A)=0

〈Φ(A),Ωg
Φ(P )[Φ(A)]〉

〈A,Ωg
P [A]〉

ηgeod
g (Φ) = sup

P �=Q

[Dg(Φ(P ),Φ(Q))]2

[Dg(P,Q)]2

Thm: ηRelEnt
g (Φ) ≥ ηRiem

g (Φ) ≥ ηgeod
g (Φ)

Conjecture:

ηRelEnt
g (Φ) = ηRiem

g (Φ) = ηgeod
g (Φ)

Commutative systems, 〈A,Ωg
P [A]〉 Fisher info

⇒ 〈A,Ωg
P [A]〉 indep of g

⇒ ηRiem
g (Φ) indep of g

Thm (Choi, Ruskai, Seneta) ηRelEnt
g (Φ) = ηRiem

g (Φ)

⇒ ηRelEnt
g (Φ) indep of g.
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Φ : A1 �→ A2 Dual (adjoint) Φ̂ : A2 �→ A1

defined by TrA∗2Φ(B1) = Tr Φ̂(A2)
∗B1

Eigenvalue Equation:

[Φ̂ ◦Ωg
Φ(P ) ◦Φ](A) = λΩg

P (A)

Easy to check that A = P yields λ = 1.

Apply max-min

λ2(Φ, P ) = sup
A:A=A∗

Tr (A)=0

〈Φ(A),Ωg
Φ(P )[Φ(A)]〉

〈A,Ωg
P [A]〉

.

Thm: ηRiem
g (Φ) = supP λ2(Φ, P ) ∀ g

Cor: ηRiem
log (Φ) ≤ sup

A:Tr (A)=0

Tr |Φ(A)|
Tr |A|

= ηRelEnt
|w−1| (Φ)

= 1
2 sup {Tr |Φ(E − F )| : 1-dim projs, EF = 0}

The map A→ (Ωlog
P )−1 ◦ Φ̂ ◦Ωlog

Φ(P ) ◦Φ(A)

is positivity preserving only for g(w) = − logw

Cor. does NOT extend to other g

11



Rep. of Φ in Pauli basis {I, σx, σy, σz}

Density matrix ρ = 1
2[I + w · σ]

ρ a one-dim proj (pure state) ⇔ |w| = 1.

Gives 1-1 correspondence between states
in C2 and points on unit sphere in R3

After rotation and diag can assume wlog

T =


1 0 0 0

t1 λ1 0 0

t2 0 λ2 0

t3 0 0 λ3

 =

(
1 0
t Λ

)

0 and t are row and column vectors resp.

1
2 [I + w·σ]

Φ−→ 1
2

I +
∑
k

(tk + λkwk)σk


Φ maps pure states to ellipsoid in Bloch sphere(
x1 − t1

λ1

)2

+

(
x2 − t2

λ2

)2

+

(
x3 − t3

λ3

)2

= 1

BUT not every ellipsoid from Comp. Pos. Φ
actual conditions complicated
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Example 1: Unital qubit channel

B real 3× 3 matrix with ‖B‖ ≤ 1

Φ : 1
2[I + w · σ] �→ 1

2[I + (Bw) · σ]

(comp. pos. not needed) Φ(I) = I

ηRelEnt
g (ΦB) = ηRiem

g (ΦB) = ηgeod
g (ΦB) = ‖B‖2

ηRiem
g (ΦB) = ‖B‖2 = largest e-val B∗B ∀g

= 2nd largest e-val

(
1 0

0 B∗

) (
1 0

0 B

)

ηRiem
g (Φ) ≤ ηDob(Φ) = ‖B‖

≡ sup
A:Tr (A)=0

Tr |Φ(A)|
Tr |A|

Consistent with ‖B‖ ≤ 1 ⇒ ‖B‖2 ≤ ‖B‖
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Example 2: Commutative 2-dim : or

QC: Φ : 1
2[I + w·σ] �→ 1

2[I + (t3 + λ3w3)σ3]

QC means Quantum → Classical
CC means Classical → Classical

ηg(ΦQC) = ηg(ΦCC) since e.g.,

Hg(Pw, Px) ≥ Hg(
1
2[I + w3σ3],

1
2[I + x3σ3])

1
2[I + wσ3] = 1

2

(
1 + w 0

0 1− w

)
↔ 1

2

(
1 + w

1− w

)

map above corresponds to column stochastic

1
2

(
1 + λ + t 1− λ + t

1− λ− t 1 + λ− t

)
1
2

(
1 + w

1− w

)
= 1

2

(
1 + t + λw

1− t− λw

)

ηRelEnt
g (ΦA) = ηRiem

g (ΦA)

=
2λ2[√

(1 + λ)2 − t2 +
√

(1− λ)2 − t2
]2

reduces to λ2 when t = 0 (recover unital).
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Example 3: Non-unital qubit CQ

CQ means Classical → Quantum

Φ : 1
2[I + w·σ] �→ 1

2[I + t1σ1 + λ3w3 σ3]

= 1
2

(
1 + λ3w3 t1

t1 1− λ3w3

)
Comp. Pos. iff λ2

3 + t21 ≤ 1 for CQ

compare |λ3|+ |t3| ≤ 1 for QC.

ηRiem
(w−1)2(φ) =

λ2

1− t2
= 1 if λ2

3 + t21 = 1

Can find g such that ηRiem
(w−1)2

(φ) > ηRiem
g (φ)

i.e. • ηRiem
g (φ) depends non-triv on g.

ηDob(φ) = λ but not general upper bound

ηDob(φ) < ηRiem
(w−1)2

(φ) when λ2 ≤ 1− t2 < λ
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