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Abstract

We address the problem of portfolio management in the international
bond markets. Interest rate risk in the local market, exchange rate volatil-
ity across markets, and decisions for hedging currency risk are integral
parts of this problem. The paper develops a stochastic programming op-
timization model for integrating these decisions in a common framework.
Monte Carlo simulation procedures, calibrated using historical observa-
tions of volatility and correlation data, generate jointly scenarios of inter-
est and exchange rates. The decision maker’s risk tolerance is incorporated
through a utility function, and additional views on market outlook can
also be incorporated in the form of user specified scenarios. The model
prescribes optimal asset allocation among the different markets and deter-
mines bond-picking decisions and appropriate hedging ratios. Therefore
several interrelated decisions are cast in a common framework, while in
the past these issues were addressed separately. Empirical results illus-
trate the efficacy of the simulation models in capturing the uncertainties
of the Salomon Brothers international bond market index.
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1 Introduction

Does international diversification pay? This question has been answered affir-
matively since the 1960’s when it was first addressed in an article by Grubel
(1968). Several authors have shown that international markets are sufficiently
uncorrelated so that portfolio risks can be reduced by a well-diversified interna-
tional portfolio, even when accounting for the currency exchange risk exposure.
This observation is true for both the equities and fixed income markets, and the
literature on this topic is extensive, see Michaud et al. (1996), Jorion (1989),
and the book by Solnik (1996). Today, however, a simplistic affirmative answer
to this question is no more acceptable since many interrelated factors need to be
considered. For instance, the volatilities of the fixed income markets—specially
bond markets —are typically lower than the volatilities of exchange rates, and
hence the currency risk of an international portfolio might offset any benefits
from diversification, see Kaplanis and Schaefer (1991). Even in the equities mar-
kets it has been argued recently that multiple acquisitions in a foreign country
will not improve significantly the efficiency of a portfolio when accounting for
the added currency risk, see Ziobrowski and Ziobrowski (1995).

The globalization of the financial markets only exacerbates the difficulties
facing international bond portfolio managers. On the one hand, reductions in
capital controls, technological advances in dissemination of information, and in-
creased computing power for tracking portfolios and forecasting market trends
led to an explosive growth of international bond trading over the last decade. On
the other hand, the very same developments have led to increased synchroniza-
tion of market returns. Table 1 summarizes the correlation coefficients between
U.S. and foreign bond market (domestic) returns for two different time periods.
In all cases, except Canada, the degree of correlation increased with time or
remained constant, thus eroding any benefits from international diversification.
However, when we account for currency volatilities, and calculate correlation
cocfficients with market returns converted to USD we observe that the degree
of correlation remained constant or even declined. (Data are obtained from
Fabozzi (1997, ch. 54).) Hence, benefits can still be reaped from diversifica-
tion, but those are due primarily to the volatility of exchange rates. Another
important question is now raised: Should currency risk be hedged? The answer
is intuitively deceptively simple. If currency risk is hedged then international
market returns are highly correlated and diversification may not pay. If currency
risk is not hedged then the lowered correlation of market returns may lead to
improved portfolio efficiency. To hedge or not to hedge, becomes now the ques-
tion, and the answer is “it depends”. Kaplanis and Schaefer (1991) show that
under some circumstances it is clearly better to be completely hedged, under
other circumstances it is clearly better not to hedge, and in yet other cases
partial hedging is the optimal strategy. As readers may suspect the most inter-
esting cases, in the sense of being those circumstances that arise in the financial
markets, are those that require partial hedging. The benefits of optimal hedg-



Market Domestic returns USD returns
19781995 19901995 19901995

Australia .32 .68 42
Canada .71 b1 .49
France .34 .49 .38
Germany .50 b1 .33
Japan .38 43 .26
Netherlands .52 .53 .35
Switzerland .36 .46 .26
U.K. .39 .49 .39
Intnl. index .99 .64 .44

Table 1: Correlation coefficients between US and other international bond mar-
kets computed using both domestic returns and returns converted to US dollars.

ing ratios however are “far from clear” (Kaplanis and Schaefer). Indeed both
practitioners (Fabozzi, 1997, chs. 54-55) and academics (Jorion, 1989) agree
that hedging should be done on a selective basis when conditions warrant it and
the hedging policy may be dependent on the asset mix.

In the setting of the complex interactions between market returns and ex-
change rate volatilities it becomes essential for a portfolio manager to have at
his disposal a systematic methodology for analyzing the interrelated decisions of
(i) asset allocation among the international markets, (i) bond-picking in each
market, and (i7) optimal level of hedging. Recently, Mulvey and Zenios (1994)
argued that portfolios of bonds should be managed based on the ideas of diver-
sification, looking at the co-movements of the securities under various plausible
economic scenarios, instead of using portfolio immunization with simple risk
measures such as duration or convexity matching. The ideas of diversification
were applied successfully to the management of mortgage-securities portfolios
(Golub et al., 1995), callable bond portfolios (Vassiadou-Zeniou and Zenios,
1996) and high-yield bonds (Mulvey and Zenios, 1994). This framework is par-
ticularly suitable for the management of international bond portfolios when the
three interrelated decisions outlined above depend on scenarios of local market
returns and exchange rates.

Stochastic programming models provide the appropriate mathematical frame-
work for optimizing the portfolio decisions under the generated scenarios. These
models are multiperiod optimization models for planning under uncertainty
based on plausible scenarios for the realization of the uncertain data. Their
origins go back to the 1950’s with the work of Dantzig (1955) and Wets (1966)
and have recently been gaining widespread acceptance for modeling financial
decision making problems. See, e.g., Mulvey and Vladimirou (1992), Dembo
(1993), Carino et al. (1994), Carino, Myers and Ziemba (1998), Carino and



Ziemba (1998), Golub et al. (1995), Koskosides and Duarte (1997), the recent
textbooks by Kall and Wallace (1994) and Censor and Zenios (1997), or the
volume by Ziemba and Mulvey (1998).

The adoption of scenario based methodology is particularly suitable in view
of anticipated changes in the global financial markets. For instance, the intro-
duction of the EURO in a unified European financial market raises the issue of
credit risk for the member countries. As currently no market data are available
to calibrate credit risk volatilities the use of scenarios provides the only viable
approach for hedging this type of risk based on plausible scenarios of credit risk
premia that can be inferred from economic theory (e.g., based on interest rate
differentials).

In this paper we develop integrated simulation and optimization models for
the management of international bond portfolios. The portfolio management
philosophy we adopt is that of indezation, i.e., developing a basket of assets
that tracks the returns of a broadly defined market index; the Salomon Brothers
international index is our target. The problem setting and the general modeling
approach we take are described in section 2. The stochastic programming model
that jointly determines asset allocation, bond-picking, and hedging decisions
is developed in section 2.1. Scenario generation models (section 3) generate
joint scenarios of market returns and exchange rates. Some preliminary results
(section 4) with the backtesting of the scenario generation models illustrate their
efficacy in generating scenarios that encompass the true market changes. The
performance of the portfolio optimization models on these scenarios is the topic
of ongoing investigations jointly with a Swiss bank.

2 Integrated simulation and optimization mod-
els for tracking an international bond index

We consider the problem of a portfolio manager whose mandate is to manage
a bond portfolio in a way that it tracks a broadly defined international market
index. Indexed fixed-income funds have gained in popularity over the last decade
for reasons that are well documented in the literature, see, e.g., Fabozzi (1997,
ch. 47), and we adopt this particular management philosophy for developing
the models.

A bond index in each market ¢ = 1,2,...,m, is constructed by creating a
representative sample ®; of size N; from the universe of eligible bonds €2;. For
each security j = 1,2,..., N;, in the representative set, the index specifies its
relative weight (b; which reflects the capitalization structure of the universe set
); with bonds that have characteristics identical or similar to the jth bond. The
global bond index is represented by a set I' of country indices and the relative
weights ~y; assigned to the bond index of each country based on the market value
of the different indices. These weights are a measure of the share of the bond



market of the ith country in the world bond market.

In practice the sets €; may consist of thousands or even hundreds of thou-
sands of bonds (differing by issuer, issue data, maturity date, coupon payments
etc), while the representative sets ®; consist of hundred or so representative
securities. Global bond indices, such as the Salomon Brothers Global index,
consist of holdings in the bond markets of the major industrialized nations (i.e.,
m =7 for the G7 index).

The manager of an international bond portfolio must determine the fraction
of the portfolio value invested in each of the m markets, and to pick specific
bonds from each market 2; to add to the portfolio. These decisions are usually
made in two steps. An asset allocation committee determines first the exposure
of the portfolio to each market, and then traders identify mispriced bonds in
cach market and construct the country-specific portfolio. This portfolio has to
track the country specific index as well, so constraints on duration, maturity
etc may be imposed on the trader. Finally, once the country-specific funds are
constructed the currency exposure may be hedged.

We denote the weights allocated to the index of each country i = 1,2, ..., m,
by Za,, and the vector of weights of the bonds in each country by Z% =
(Zj"’:)j)é\f:il; the subscripts A and D denote that decisions are aggregated and
disaggregated by market, respectively. The model we develop in the next sec-
tion is a multiperiod model, and therefore the variables are time-dependent.
Furthermore, decisions made after the first time period are conditioned on the
realized returns of the market indices and exchange rates, hence the variables
are also scenario dependent. The dependencies of the variables on time and
scenarios are made precise later. For now we use the simplified notation to
introduce the problem and illustrate the modeling process in Figure 1.

One of the key contributions of this paper is in developing models for inte-
grating the three financial decisions —asset allocation, bond-picking, and cur-
rency hedging —in a common framework. To what extend this integration pays
is the topic of our empirical investigations, that have not yet been completed.
However, the significance of integrating several interrelated financial decisions
in a common framework finds widespread acceptance in the finance literature,
see, e.g., Merton (1990), and Holmer and Zenios (1995).

Having set the stage of the portfolio manager’s problem in the previous
section we now define the stochastic programming models. First, we give a
generic description of a two-stage stochastic programming model for construct-
ing a portfolio of m assets to track an index. We then specialize this model
to solve independently the asset allocation and the bond-picking problems for
international bond portfolio management. The third model integrates the asset
allocation and bond-picking decisions. Finally, we incorporate hedging decisions
in the models.
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2.1 Canonical stochastic programming model for tracking
an index

2.1.1 Notation

The model is developed using cashflow accounting equations and inventory bal-
ance equations for each asset category. It is customary in asset allocation models
to make decisions in terms of percentage of wealth invested in each asset class.
However, since our models deal with fixed-income securities and allow for port-
folio rebalancing, we measure investment decisions in dollars of face value so
that we can account for price changes, transaction costs and exchange rate fluc-
tuations. In the canonical model below there is only a single currency, but in the
integrative model we need to make the distinction between the base currency
and the domestic currency; the former is the currency in which our investor
measures her return, and the latter is the currency of the country in which
some investments are made. Conversion between domestic and base currency
are made using the appropriate exchange rate.
Define first parameters of the model at periods t =1,2,...,T":

Si: sets of scenarios anticipated at time t. We use s; to index scenarios from the
set S. Let I, denote paths of scenarios that are resolved (i.e., all informa-
tion becomes known) until period ¢ = 1,2,...,T. Paths are denoted by
Iy = (s0,...,51—1), and with each path we associate a probability m;,. We
also let P; denote the set of all paths that can be constructed by combining
scenarios from the scenario sets Sp, S1,...,S5: 1. Note that [, denotes all
information that becomes known by instance ¢, while s; denotes scenarios
anticipated at t. Paths are not defined for t = 0 since all information is
assumed known at this time instance.

M: set of available asset classes, with cardinality m.

cg: 1nitial endowment in the riskless asset.

bo: vector denoting the composition of the initial portfolio.

Co: vector of bid prices at t = 0. These prices are known with certainty.

Ct(ly): vector of bid prices realized at t. These prices depend on the path of
scenarios followed from 0 to ¢.

ki(le, s¢) ¢+ vector of cash accrual factors during the interval [t,¢ + 1]. These
factors indicate cash generated per unit holdings in the asset class due to
coupon payments. We define k(I s:) = ko(so) for t = 0, where ko(sp) is
given conditioned on the scenarios anticipated at ¢ = 0, but not on any
path since all information prior to ¢t = 0 is assumed known.



pi(ly): short term riskless reinvestment rate at period t. These rates depend
on the path followed up to t (typically interest rates depend only on s;_q
only and not on the whole path ;).

ei(l): vector of exchange rates between the domestic and the base currency.
Exchange rates are scenario dependent.

Ip(I7): return of the index to be tracked; this value depends on the path and is
computed based on price appreciation (or depreciation) of the securities
in the index plus any accrued cashflow from reinvested coupon payments.
The return of the index of the ith market, in the domestic currency, is
given by

Zf;l (65¢ry + pra¢kr1,) — Vo, )
Vi )

i

Ir(lr) = It (Ir) =

where Vp_1, is the value of the ith country index at the previous time
period and is given recursively by Vi, = V;_1,I,(I;) where Vj,, the initial
value of the index, is assumed given.

6: transaction costs. We assume, for simplicity and without loss of generality,
that transactions costs are incurred only when buying assets and that they
are identical for all types of securities.

Now define decision variables. We have four distinct decisions at each point
in time: how much of each asset class to buy, sell, or hold in the portfolio, and
how much to invest in the riskless asset. All variables are constrained to be
nonnegative, therefore no short sales or borrowing are allowed.

First stage variables at ¢t = 0. These are decisions made at the beginning of
the planning horizon, when market information is completely specified

Xo: vector denoting the face value bought of each asset class.
Yp: vector denoting the face value sold of each asset class.
Zo: vector denoting the holdings in the portfolio.

vo: amount invested in the riskless asset.

Time-staged variables at some future point in time t = 1,2, ..., T, conditioned
on the path followed up to that time instance.

X;(l): vector denoting the face values bought of each asset.
Y:(l;): vector denoting the face values sold of each asset.

Zy(Iy): vector denoting the holdings in the portfolio.



v¢(ly): amount invested in the riskless asset.

A word on our use of subscripts and superscripts. Superscripts are used to
denote vectors, and subscripts denote clements of a vector. For instance, ¢
denotes a vector of prices for instruments in the ith asset class, (; denotes the
price of the ith asset, and C; denotes the price of the jth instrument from the
ith asset category.

2.1.2 Model formulation: First-stage constraints

At the first stage (i.e., at time ¢ = 0) all prices are known with certainty.
The cashflow accounting equation specifies that the original endowment in the
riskless asset, plus any proceeds from liquidating part of the existing portfo-
lio, equals the amount invested in increasing the holdings in some of the asset
categories plus the amount invested in the riskless asset:

co+ Y Co.Yo, =Y _(Co, + 8)Xo, + vo. (2)
i—1 i—1

For each asset in the portfolio we have an inventory balance constraint:

bo, + Xo, = Yo, + Zo, for all i € M. (3)

2.1.3 Model formulation: Time-staged constraints

Decisions made at any time period t = 1,2,..., T, after t = 0 depend on the
path l;. Hence, we have one constraint for each path. These decisions also
depend on the investment decisions made at the previous time period. Note
that for ¢t = 0 these variables are independent of any path, and the argument I,
is superfluous. To simplify the notation we drop the arguments [; and s; from
all variables and parameters below. It is understood that each time-indexed
variable or parameter depends on these arguments as specified in section 2.1.1.

Cashflow accounting limits the increase in holdings of the asset classes and
the riskless asset to be equal to the income generated from the existing portfolio
during the holding period, plus any cash generated from sales. There is one
constraint for each path I; € P;:

m m
Pt—1Vt—1 + ZktintAiJrZCtthi
i=1 i=1

m

= Z(C"i +6) Xy, + vy (4)

i=1

Inventory balance equations constrain the amount of each asset sold or re-
maining in the portfolio to be equal to the outstanding amount at the end of the



holding period, plus any additional amount purchased. There is one constraint
for each asset ¢ € M and for each path I; € P;:

Zf—li + Xfi - K‘l + Zfi‘ (5)

2.1.4 Calculation of return of the portfolio

At the end of the planning horizon T and for each realized path lp we calcu-
late the return of the portfolio. This value depends on the composition of the
portfolio and the value of the assets at T', and on any cash carried over from
previous periods. (The value of an asset category is the return of the asset, i.e.,
the market value per unit asset.) The return of the portfolio is given by:

vr + 2311 CT-L ZTi B VTIO
Voo

Ry(lr) = Rp(Zr(l)) = ; (6)

where Vjo is the initial value of the portfolio.

2.1.5 Objective function

The objective function maximizes the expected utility of excess return of the
portfolio over the index,

Maximize Z .U <RP(ZT)> ) (7

Ir€Pr Iz(I7)

where U(-) denotes the utility function. Note that one could adopt a func-
tion maximizing the expected utility of total return, thus solving a global asset
allocation model.

We choose to maximize a utility function of excess return to allow for trade-
offs of growth versus security in the context of the dynamic financial decision-
making problem faced by our investors, see, e.g., MacLean, Ziemba and Blazenko
(1992). Choosing for instance a logarithmic utility function we can implement in
our model the investors’ wish to follow a growth optimal strategy over the long
run. For now we do not specify any particular form for the utility function; see
Ingersoll (1987) for a discussion of utility optimization models and Hakansson
and Ziemba (1995) for capital growth theory.

2.2 Aggregated models for tracking an international fixed
income index

We apply now the canonical model developed above to the problem of tracking
an international fixed income index. We first develop a model for determining
the allocation of the investor assets among the m market indices (global asset
allocation model). Then we formulate the model for determining the bond-
picking decisions in each market (bond-picking model).

10



2.2.1 Global asset allocation model

The decision variables of the canonical model X, Y and Z are now aggregate
variables, that is, X = X4 = (X4,)7,, Y =Y4 = (Ya,)"; and Z = Z4 =
(Za,)™,. Time-staged variables also carry the appropriate time and scenario
arguments as defined in section 2.1.1. The set of assets M is the set of country
indices I', and the index to be tracked is the global market index. The return
of the global index is given by

Ir(lr) = I = ZVﬁGTiITi(lT)v (8)

i=1

where I7,(I7) is the return of the ith country index expressed in the domestic
currency (cf. equ. (1).

The stochastic programming model for the global asset allocation problem
is simply a re-statement of the equations in section 2.1 using the aggregated
variables and tracking the global index given by equation (8). The optimal
value 77, at the first-stage, for i = 1,2,...,m, denotes the allocation of assets
to the ith market.

2.2.2 Bond-picking model

Once the asset allocations have been determined for each market we can solve
the bond-picking model. The model can be written by modifying the model in
section 2.1 as follows: The decision variables, for each market i = 1,2,...,m,
are the disaggregated variables as defined in section 2. That is, X = X} =
(ijj )év:il, Y =Y} = (ng);vzil, and Z = Zi, = (Zj"’:)j);vzil. Time-staged vari-
ables also carry the appropriate time and scenario indices. The initial endow-
ment (cash co) in the ith market is Z7 , i.e., the optimal solution of the global
asset allocation model of section 2.2.1. The index to be tracked is the index of
the ith market with return given in the domestic currency by (1).

The stochastic programming program for the bond-picking problem is simply
a re-statement of the equations in section 2.1 using the disaggregated variables,
and tracking the country index as given by equation (1). The optimal solution
(zgoj) évzil, at the first-stage denotes the holdings in each of the j bonds of the
ith market.

2.3 Integrative model for tracking an international fixed
income index

The problems described by the asset allocation and bond-picking models (sec-
tions 2.2.1 and 2.2.2) novel can be solved with methods which differ from those
we have described. The interesting contribution of our modeling approach is
that these two models can be combined to solve the asset allocation and bond-
picking problems in an integrated fashion.

11



We formulate the model in detail next, but first we give a brief sketch. The
model uses the disaggregated variables adopted in the bond-picking model (sec-
tion 2.2.2), but it tracks the global index Ig which is an aggregate of the m
market indices as given in equation (8). The model specifies optimal bond-
picking decisions in each one of the m markets to track the global index. The
asset allocation decisions are then computed as the aggregate of the total expo-
sure to each market (i.e., Zy, = Ei\f;l Zj’j*oj, where Zj’:)*oj is the optimal holding
in the jth bond of the ith market at the first time period t = 0). In this model we
incorporate exchange rates since assets may be invested in different currencies.

We can now write down the multi-stage stochastic programming model with
model parameters as defined in section 2.1.1 and using the disaggregated vari-
ables.

2.3.1 Integrative model: First-stage constraints

The first stage (i.e., at time tg) cashflow accounting equation of the disaggre-
gated model is:

m N; m N;
Co + Z eOi Z Céj YBOJ = Z eoi Z(Céj + 6)X7[)0_7 + vo- (9)
i=1 j=1 i=1 j=1

The inventory balance constraint is:
bZ’)j + Xj’mj = YE’)OJ_ + Zj’joj foralli el and j € ®,. (10)

Note that there is a single cashflow accounting equation for the base currency.
The model could be easily extended to incorporate cashflow accounting equa-
tions for each domestic currency, and model exchange rates in transferring funds
from one currency to another. For the sake of simplicity we assume here that
all sales and purchases are made into and from the base currency, thus avoiding
the need to keep separate cashflow variables.

2.3.2 Integrative model: Time-staged constraints

Cashflow accounting constraints of the disaggregated model at any time period
t after t = 0 depend on the path l;. These constraints limit the increase in
holdings for each bond in each market and in the riskless asset to be equal to
the income generated from the existing portfolio during the holding period, plus
any cash generated from sales. Note that for ¢ = 0 the decision variables are
independent of any path, and the argument I; is superfluous.

There is one constraint for each path I, € P; (the arguments [; are dropped
from all variables and parameters below for simplicity of notation):

Pr—1Vi—1  + § et; § ki1, Zpia; + § €, E G, Ypi,
=1 =1 =1 j=1
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m Ni
= Z €, Z(CZJ + 6)X1DTJ + V- (11)
i=1 j=1

Inventory balance equations constrain the amount of each bond sold or re-
maining in the portfolio to be equal to the outstanding amount at the end of the
holding period, plus any additional amount purchased. There is one constraint
for each bond and for each path I; € P;:

Zpi1, + Xbu, = Vi, + Zpy, foralli €T, j € @, (12)

2.3.3 Integrative model: objective function

At the end of the planning horizon T" and for each path Ir € Pr we calculate the
return of the portfolio. This value depends on the composition of the portfolio
and the value of the bonds at T" and on any accrued cashflow from previous
periods. The return of the portfolio is given by

, Ni ri i
vr + 300 e Dt Cr, Zpr, — Vpo

Ry(lr) = Rp(Zpr(lr)) = Vo )

(13)

where Vg is the initial value of the portfolio. The objective function maximizes
the expected utility (cf. eqn. (7)) of excess return of the portfolio (cf. eqn.
(13)) over the global index (cf. eqn. (8)).

2.3.4 Optimal currency hedging ratios

We incorporate now hedging decisions in the optimization model. We define a
new variable (Hp, )™, to denote the amount of each currency hedged at agreed
upon 1-period forward rates (fo,)7, at period ¢ = 0. Let also (Hy,(I;))7,
denote the amount hedged at forward rates (fe, (1)), at period ¢ under path
lt.

The cashflow accounting constraints must be modified to account for the fact
that at each period ¢ an amount Hy,(l;) of the ¢ currency will be exchanged at
rate fy;(I;) and any remaining amount will be exchanged at the current exchange
rate ey, (I¢). Recall that there is one constraint for each path I; € Py, and that the
arguments [; are dropped from all variables and parameters below for simplicity
of notation.

The total cashflow in the ith currency—inflows from coupon payments and
security sales and outflows from security purchases—at period ¢ under scenario
l; is given by

N; N; N;
we, =Y ki, Zpea, Y G Yhe, — Y (G +8) XDy, (14)
=1 j=1 =1

13



The cashflow accounting quation (11) is rewritten to incorporate hedging as:

prorvim1 + Y (fim1, Hioy, + e, (we, — Hioy,)) = vy (15)
=1

At the end of the planing horizon the return of the portfolio—in the base
currency—will be a function of the amount hedged and the forward and current
exchange rates. The return calculation takes the form:

Rp(lr) = Rp(Zpr(lr)) = (16)
m N;
v+ Z fT—liHT—li +er, ZC;ZbTJ - HT—l-; - VPO
i=1 j=1
Vpo

The integrative model that jointly determines asset allocation, bond-picking,
and hedging decisions is the model of section 2.3 with the modified return cal-
culation and cashflow equations given in this section.

3 Monte Carlo scenario generation

In order to implement the portfolio optimization programs we need a simulation
procedure to generate interest rate and exchange rate scenarios. Once such sce-
narios are generated the calculation of bond prices—in both domestic and base
currency—conditioned on the observed interest rates is straightforward; see,
e.g., Mulvey and Zenios (1994). The model provides a structural interpretation
of bond returns: returns are not simply forecasted on the basis of information
variables; instead they are deduced from the scenarios of interest rates.

Models for jointly estimating interest and exchange rates are prevalent in the
finance literature. However, the problem of jointly modeling these processes in a
way that is consistent with market observations is a difficult one and the success
of various models in accurately predicting interest and exchange rate changes
has been limited. Meese and Rogoff (1983) compared the predictive abilities
of a variety of exchange rate models. Their key result was that no existing
structural exchange rate model could reliably out-predict the naive alternative
of a random walk at short- and medium-run horizons, even when aided by actual
future values of the regressors. This extremely negative finding has never been
entirely convincingly over-turned despite many attempts, see Frankel and Rose
(1995). The simple random walk model of the exchange rate has become the
standard benchmark for empirical exchange rate performance, no matter how
uninteresting it is per se.

We adopt in this paper a Monte Carlo simulation procedure that encom-
passes two methodologies based on recent finance literature that are widely

14



accepted by practitioners. Interest rates are generated using binomial lattice
models of the term structure, see, e.g., Black, Derman and Toy (1990). Joint
scenarios of interest and exchange rates are generated using the Value-at-Risk
methodology, see RiskMetrics (1996, ch. 7). The scenario generation proce-
dure uses real probabilities based on RiskMetrics data to generate the scenarios
that are input to the optimization model and risk-neutral probabilities from the
binomial lattice to generate further scenarios that are used for bond pricing.

3.1 Interest rate scenario generation

Interest rates are generated from a binomial lattice. The short-term rates for
time period ¢ are assumed to be lognormally distributed, and the t-period spot
rate implied from the short-term rates is assumed to have a mean value equal
to the t-period spot rate given by the current term structure of interest rates,
and volatility equal to the t-period volatility of interest rates. Assuming further
a discretized binomial approximation one obtains a model such as the one given
by Black, Derman and Toy (1990) whereby the short-term rate at period t and
at the sth state of the binomial lattice is given by:

v = 10(ky)", (17)

where {r®}L , and {k;}1 , are parameters of the binomial lattice estimated
using the procedures described by Black, Derman and Toy (1990), and all states
of the lattice are equiprobable; the lattice describes a risk-neutral world. A
Black-Derman-Toy lattice is calibrated for each currency separately using the
term structure of interest rates and the term structure of volatility for each
country.

3.2 Exchange rate scenario generation

Interest rates in the two countries are key determinants of the exchange rate
between the currencies. Hence, we adopt an approach whereby exchange rate
scenarios are conditional on the interest rates of the two currencies, the base
currency and the foreign currency. We assume that the logarithms of the ratios
of exchange rates at period t to period t — 1, and the logarithms of the ratios
of spot interest rates at period t to period t — 1 follow a multivariate normal
distribution. This is a standing assumption in RiskMetrics and the Value-at-
Risk methodology, and it is also well justified in the context of our models!.
We denote the logarithms of the ratios of all random variables by the p-
dimensional random vector w, where p = mT + (m — 1). The dimension of
w is equal to the number of currencies times the number of time periods—for
the spot rate random variables—plus number of currencies minus 1—for the

1Daily and weekly rates do not follow normal distributions; however, there is lack of em-
pirical evidence against normality for monthly data such as those used in our model.



exchange rates of each currency against the base currency. The real probability
density function of w is given by

f@) = @S [ op s S w |, (8)

where g is the expected value of w and ¥ is the covariance matrix.

The covariance matrix ¥ and the expected values p of all random variables
involved in the model are available on a daily basis by RiskMetrics and can
be used to build the multinormal distribution. Once the multivariate normal
distribution is built we can use it in Monte Carlo simulations, using either the
standard Cholesky factorization approach (see, e.g., RiskMetrics, 1996, ch. 7)
or the scenario generation procedures based on principal component analysis
discussed in Jamshidian and Zhu (1997). We do not use any one of these ap-
proaches in our simulations, since we have additional information on the interest
rate random variables from the binomial lattice which we would like to incor-
porated in our sampling of the multinormal distribution.

We partition the multivariate normal variable w into two subvectors w; and
wo, where wy is the vector of dimension p; = mT of random variables corre-
sponding to interest rates, and ws is the vector of dimension ps = m — 1 of
exchange rates. The expected value vector and covariance matrix are parti-
tioned similarly as

_ | M | B Y2
M[Hz } andZ{221 . } (19)

It is known (see, e.g., Jobson, 1992, ch. 7) that the marginal probability density
function of wo given w; = wy is

1 _
flwa | wp =wi) = (2m) P2/ | Sgp1 |72 exp [E(wz — pi21) S0 1 (w2 — pi21) |

(20)
where the conditional expected value and covariance matrix are given by
poa(wy) = (p2 — L1377 1) + Lo X1 i, (21)
and
Y21 = Yoz — Va1 U7 B, (22)

respectively. Exchange rate scenarios for period t conditioned on value of the
interest rates vector given by wj can be generated from today’s exchange rates
and the multivariate normal variables from (20) through the expression

e, = eoie‘”ﬁwi,
where e, is today’s exchange rate for the i currency, o; is the 1-period volatility
of the ith exchange rate, and wo, is the conditional multivariate random variable
corresponding to the ith exchange rate.
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3.3 Sampling scenarios

The procedures described above allow us to generate a large number of scenar-
ios of both interest rates and exchange rates. We describe here our scenario
sampling procedure. First, we note that the time horizon for the indexation
model is of the order of a few months. During this time interval we generate
exhaustively all interest rate scenarios from the binomial lattice. For instance,
for a 3-month horizon we have 8 interest rate paths for each currency. The
probability mass functions for all possible combinations of these paths (e.g.,
8 x 8 x 8 for a three currency model) are calculated by integrating the multi-
variate normal probability density function (18) using the covariance matrix of
interest rates as obtained, for example, by RiskMetrics. Which scenarios from
the large number generated (8 x 8 x 8 in this example) do we include in the
scenario optimization model? We select a small fraction (around 1/10th of the
total number of scenarios) of the extreme scenarios, that is scenarios whereby
the interest rates in one or more currency take an extreme path of the binomial
lattice such as “all-up” or “all-down”. We also select an additional 1/2 of the
total number of scenarios from those scenarios that are the most likely.

Having thus generated interest rate scenarios we can condition on these
values, and sample equation (20) to obtain exchange rate scenarios. We sample
ten exchange rate scenarios for each tuple of interest rate scenarios.

4 Some empirical results

The simulation models described in the previous section were tested on a set of
data obtained from the Salomon Brothers bond index for the United States, Ger-
many and Switzerland. Our data base has 100 term structures starting in Jan-
uary 1990, in monthly steps, for the three countries. Correlation matrices were
calculated using the RiskMetrics methodology for estimating volatilities using
these historical data. We applied the RiskMetrics methodology with exponen-
tial smoothing to the data set in order to estimate volatilities and correlations
matrices. We estimate volatilities of the spot interest rates for different matu-
rities, thus we obtain an estimate of the term structure of historical volatilities.
(The coefficients of the exponential smoothing model were around 0.5, showing
the low persistence of volatility shocks as a result of using monthly data; this
is consistent with the properties of GARCH models whereby the magnitude of
the correlation coefficients declines exponentially with the time horizon.) We
assume that the calculated volatility would remain constant over time and we
use this value as the term structure of volatilities in calibrating the binomial
lattice. Term structures of interest rates—that are also needed to calibrate the
binomial lattices—are available from historical data. All models are built using
time steps of one month and the binomial lattice models extend 30-years into
the future.
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In Figures 2 we show the results of the simulation model for generating
scenarios of the 3-month and 6-month forward interest rates for the USD over the
period December 1993 to March 1997. As expected the scenarios for the 6-month
forecast are more dispersed and in most of the tested periods these scenarios
cover the observed interest rates. For the 3-month forecast we have only four
possible scenarios and quite often these are not sufficient to cover the observed
rate. However, the errors tend to be smaller for the 3-month forecast than for
the 6-month forecast. As we will see later these interest rate scenarios seem to
be adequate to capture the volatility of the bond indices, especially for the most
recent periods. However, the modeling of interest rate scenarios is an area where
further improvements of the model are required. For instance we could consider
the use of smaller time steps—weekly or daily instead of monthly—and more
accurate volatility estimates so that more dispersed scenarios can be generated
for the short term rates.

Figures 3 and 4 show the simulated returns of three country indices and of
the global index (returns in the base USD currency) over a seven month period
from March 1997. (Salomon Brothers index data for October 1997 is missing
from our database and this month is not included in the figure.) The 3-month
scenario forecasts are shown together with the values realized by the indices.
With the exception of the USD index we observe that in all other cases the
scenarios are adequate in capturing the true changes of the index. Particularly
encouraging is the figure on the global index, where we observe that the scenarios
in all cases cover the market values, and the mean value of the scenarios is close
to the market value.
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Figure 2: Scenario generation for the forward interest rates in USD. Vertical lines
illustrate the range of interest rate scenarios for the date shown and the bullet
shows the interest rate that was observed on the particular date. Scenarios were
forecast based on information available 3 and 6 months, respectively, before the
shown dates.



Figure 3: Scenario generation for the Swiss Franc, US Dollar and Deutchmark
indices in domestic currency. Scenarios are forecast using information available
3 before the shown dates.



Figure 4: Scenario generation for the Salomon Brothers Global index in the base
currency (USD). Scenarios are forecast using information available 3 months
before the shown dates.
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5 Conclusions

We conclude from the empirical data that further improvements are required in
the simulation of interest rates and perhaps better estimates of the volatilities,
especially for the USD data. However, the joint generation of returns of the three
market indices in the base currency appears to be sufficiently accurate to give
some assurance that the stochastic programming models developed in this paper
will be effective in tracking the market indices. Obviously the model will fail
to track the indices if they are built on scenarios that do not capture potential
realizations of the markets. The implementation and testing of the stochastic
programming indexation models is the topic of current investigations.

While in the paper we talk only about interest rate and exchange rate risk,
there are other sources of risk that are of concern to an international bond port-
folio manager. For example, the introduction of EURO in a common European
financial market will create the need to model credit spreads between bonds of
different maturities of the member countries. These spreads can be calculated
as pairwise differentials between the term structures of spot interest rates of
the different currencies, much in the same way that Litterman and Iben (1991)
model the credit spread of corporate bonds over Treasury bonds. However,
modeling the volatility of credit spreads when no historical data is yet available
is impossible and we may need to resort to subjective estimates.

Furthermore, it is quite often the case that an enhanced indexation strategy
is followed whereby the index can be matched or outperformed by investments
in convertible bonds or corporate bonds. Such strategies can readily be modeled
in the stochastic programming framework discussed here but we would need to
generate scenarios of corporate returns or the returns of convertible bonds. The
work of Vassiadou-Zeniou and Zenios (1996) for instance can be used to incorpo-
rate corporate bonds in our multicurency bond portfolio model. Nevertheless,
the issues discussed here are currently outside the scope of our paper.
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