
PrettyCLP:
a Light Java Implementation

for Teaching CLP

Alessio Stalla1 Davide Zanucco2

Agostino Dovier2 Viviana Mascardi1

DISI - Univ. of Genova,
alessiostalla@gmail.com,mascardi@disi.unige.it

DIMI - Univ. of Udine,
zanucco.davide@spes.uniud.it,agostino.dovier@uniud.it

Pescara, September 2nd, 2011

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 1 / 20

Summary

1 Introduction

2 Pretty Prolog

3 CLP(FD) basics

4 Demo

5 Conclusions

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 2 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Introduction

Introduction

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 3 / 20

Pretty Prolog

Pretty Prolog

PrettyProlog was developed by a team of the University of
Genova, for providing concrete answers to demands raised by
Prolog novices [Stalla, Mascardi, Martelli: CILC09].
Main goal: help to understand the construction and the visit
strategy of the SLD tree.
It was developed from scratch, without reusing existing Prolog
implementations, and designed to be simple, modular, and easily
expandable.

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 4 / 20

Pretty Prolog

Pretty Prolog

PrettyProlog was developed by a team of the University of
Genova, for providing concrete answers to demands raised by
Prolog novices [Stalla, Mascardi, Martelli: CILC09].
Main goal: help to understand the construction and the visit
strategy of the SLD tree.
It was developed from scratch, without reusing existing Prolog
implementations, and designed to be simple, modular, and easily
expandable.

In this work we have in fact expanded Pretty Prolog to deal with
Constraint Logic Programming on finite domains
Propagation algorithms have been implemented. Differences
between arc/bounds consistency are made (as much as possible)
explicit

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 5 / 20

CLP(FD) basics

CLP basics
Syntax

A first-order language 〈Π,F ,V〉 is partitioned in the two sets ΠC
and ΠP (Π = ΠC ∪ ΠP and ΠC ∩ ΠP = ∅)
ΠP is the set of program defined predicate symbols
ΠC is the set of constraints predicate symbols (assumed to
contain “=”).
Similarly, F is partitioned into FC and FP .

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 6 / 20

CLP(FD) basics

CLP(FD) basics
Syntax

We focus on CLP on finite domains CLP(FD):
FC contains the binary arithmetic function symbols +,−, ∗, /,mod
etc. as well as a constant symbol for any integer number
ΠC contains ≤, <, etc.
false is assumed to be a special predicate in ΠP which has no
rules defining it.
domain and labeling are assumed to be in ΠC

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 7 / 20

CLP(FD) basics

CLP(FD) basics
Syntax

Usual notions for program/constraint atom/literals.
A primitive constraint is a constraint atom or its negation and a
constraint is a conjunction of primitive constraints (true denotes
the empty conjunction)
A goal CLP is of the form← B̄, where B̄ is a conjunction of
program atoms and primitive constraints.
A CLP rule is of the form A← B̄ where A is a program atom and
← B̄ is a CLP goal.
A CLP program is a set of CLP rules.

Operationally, conjunctions and sets are just lists

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 8 / 20

CLP(FD) basics

CLP(FD) basics
Syntax

Usual notions for program/constraint atom/literals.
A primitive constraint is a constraint atom or its negation and a
constraint is a conjunction of primitive constraints (true denotes
the empty conjunction)
A goal CLP is of the form← B̄, where B̄ is a conjunction of
program atoms and primitive constraints.
A CLP rule is of the form A← B̄ where A is a program atom and
← B̄ is a CLP goal.
A CLP program is a set of CLP rules.
Operationally, conjunctions and sets are just lists

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 8 / 20

CLP(FD) basics

CLP(FD) basics
Semantics of a constraint

Semantically, a constraint C on n variables X1, . . . ,Xn with
domains D1, . . . ,Dn, respectively, is a relation on D1 × · · · × Dn.
In CLP(FD) Di ’s are finite subsets of Z
A solution for C is a mapping [X1/d1, . . . ,Xn/dn] such that
〈d1, . . . ,dn〉 ∈ C.
If there are no solutions, then C is inconsistent.

The intended semantics of FC symbols (in this case, the
arithmetical functions on integer numbers) is fulfilled. This allows
to evaluate, e.g., X + 1 ≤ Y ∗ Y − 5 ∗ Z

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 9 / 20

CLP(FD) basics

CLP(FD) basics
Semantics of a constraint

Semantically, a constraint C on n variables X1, . . . ,Xn with
domains D1, . . . ,Dn, respectively, is a relation on D1 × · · · × Dn.
In CLP(FD) Di ’s are finite subsets of Z
A solution for C is a mapping [X1/d1, . . . ,Xn/dn] such that
〈d1, . . . ,dn〉 ∈ C.
If there are no solutions, then C is inconsistent.
The intended semantics of FC symbols (in this case, the
arithmetical functions on integer numbers) is fulfilled. This allows
to evaluate, e.g., X + 1 ≤ Y ∗ Y − 5 ∗ Z

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 9 / 20

CLP(FD) basics

CLP(FD) basics
Operational semantics

It is parametric on the function solve that given a constraint C
should detect whether C is satisfiable (consistent) in the constraint
domain.
During its computation, solve(C) might rewrite C to an
equivalent simplified constraint.
In practice, for complexity reasons, solve is an incomplete
procedure, in the sense that instead of verifying consistency of the
(entire) constraints, acts locally in each primitive constraint,
removing some values in domains that cannot belong to any
solution until a local property is satisfied.
This phase is also called Constraint propagation

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 10 / 20

CLP(FD) basics

CLP(FD) basics
Why solve is incomplete?

Let us consider the constraint
X 6= Y ,X 6= W ,X 6= Z ,Y 6= W ,Y 6= Z ,W 6= Z , where
DX = DY = DZ = DW = {0,1,2}.
Although it is inconsistent, default options in Prolog
implementations are such that it is left unaltered by solve and,
therefore, inconsistency is not detected.

It is the encoding of the 3-coloring problem
of a graph
Checking consistency of this class of con-
straints is therefore NP-hard and a fast
propagation algorithm can not check it (un-
less P=NP).

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 11 / 20

CLP(FD) basics

CLP(FD) basics
Why solve is incomplete?

Let us consider the constraint
X 6= Y ,X 6= W ,X 6= Z ,Y 6= W ,Y 6= Z ,W 6= Z , where
DX = DY = DZ = DW = {0,1,2}.
Although it is inconsistent, default options in Prolog
implementations are such that it is left unaltered by solve and,
therefore, inconsistency is not detected.

It is the encoding of the 3-coloring problem
of a graph
Checking consistency of this class of con-
straints is therefore NP-hard and a fast
propagation algorithm can not check it (un-
less P=NP).

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 11 / 20

CLP(FD) basics

CLP(FD) basics
State

A state is a pair 〈G |C〉 where G is a CLP goal and C is a
constraint (also known as the constraint store).
A state 〈G |C〉 is said to be:

successful if G = true and solve(C) 6= false.
failing if either solve(C) = false or there are no clauses in P with
the same predicate of the head of the selected atom in G.
unsolved if G 6= true and it is not failing.

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 12 / 20

CLP(FD) basics

CLP(FD) basics
Derivation Step

Let 〈G1 |C1〉 be an unsolved state, where G1 =← L1, . . . ,Lm, and P a
program. A CLP-derivation step 〈G1 |C1〉 ⇒ 〈G2 |C2〉 is defined as
follows:

Let Li be the selected literal in G1 (let us assume it is L1—as it
happens in the implementation).
Then 〈G2 |C2〉 is obtained from S and P in one of the following
ways:

L1 is a primitive constraint, C2 = L1 ∧ C1. If solve(C2) = false,
then G2 =← false, otherwise G2 =← L2, . . . ,Ln.
If L1 = p(t1, . . . , tn) is a program atom, and p(s1, . . . , sn)← B̄ is a
renaming of a clause of P then
G2 =← t1 = s1, . . . , tn = sn, B̄,L2, . . . ,Ln and C2 = C1.

This is not what it is implemented by the various Prolog systems!!!

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 13 / 20

CLP(FD) basics

CLP(FD) basics
Derivation Step

Let 〈G1 |C1〉 be an unsolved state, where G1 =← L1, . . . ,Lm, and P a
program. A CLP-derivation step 〈G1 |C1〉 ⇒ 〈G2 |C2〉 is defined as
follows:

Let Li be the selected literal in G1 (let us assume it is L1—as it
happens in the implementation).
Then 〈G2 |C2〉 is obtained from S and P in one of the following
ways:

L1 is a primitive constraint, C2 = L1 ∧ C1. If solve(C2) = false,
then G2 =← false, otherwise G2 =← L2, . . . ,Ln.
If L1 = p(t1, . . . , tn) is a program atom, and p(s1, . . . , sn)← B̄ is a
renaming of a clause of P then
G2 =← t1 = s1, . . . , tn = sn, B̄,L2, . . . ,Ln and C2 = C1.

This is not what it is implemented by the various Prolog systems!!!

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 13 / 20

CLP(FD) basics

CLP(FD) basics
State

A derivation for a state S0 in P is a maximal sequence of
derivations such that S0 ⇒ S1 ⇒ · · · . A derivation for a goal G is a
derivation for the state 〈G |true〉.
A finite derivation S0 ⇒ · · · ⇒ Sn is said successful (resp. failing)
if Sn is a successful (resp., failing) state.
In the case of a successful derivation the computed answer is the
projection of the constraint store of Sn on the variables in S0.
A simplification, based on solve, is usually employed to make the
output readable.

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 14 / 20

CLP(FD) basics

CLP(FD) basics
Domain

The semantics of domain([V1, . . . ,Vn],a,b) is that of assigning
the domain DVi = {a,a + 1, . . . ,b} to Vi ’s or to update DVi with
DVi ∩ {a,a + 1, . . . ,b}
If DVi = ∅ then false

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 15 / 20

CLP(FD) basics

CLP(FD) basics
Labeling

The semantics of labeling([V1, . . . ,Vn]) is to look for an
instantiation for V1, . . . ,Vn that “satisfy” the current state.
If there are none of them then false

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 16 / 20

CLP(FD) basics

CLP(FD) basics
Arc Consistency

A primitive constraint c on the variables X1, . . . ,Xn is arc consistent
(hyper arc consistent if n > 2) if:

for all i ∈ {1, . . . ,n}
for all di ∈ Di

exist d1 ∈ D1
. . .

exist di−1 ∈ Di−1
exist di+1 ∈ Di+1

. . .
exist dn ∈ Dn s.t.

[X1/d1, . . . ,Xn/dn] is a solution of c.

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 17 / 20

CLP(FD) basics

CLP(FD) basics
Bounds Consistency

We use the same notion used by major Prolog implementations, a.k.a.
interval consistency.
A primitive constraint c on the variables X1, . . . ,Xn is bounds
consistent (hyper bounds consistent if n > 2) if:

for all i ∈ {1, . . . ,n}
for all di ∈ {min Di ,max Di} (the two interval bounds)

exist d1 ∈ min D1..max D1 (not necessarily in D1 !!!)
. . .

exist di−1 ∈ min Di−1..max Di−1
exist di+1 ∈ min Di+1..max Di+1

. . .
exist dn ∈ min Dn..max Dn s.t.

[X1/d1, . . . ,Xn/dn] is a solution of c.

The constraint 2X = Y where: DX = {0,1},DY = {0,1,2} is bounds
consistent but not arc consistent.

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 18 / 20

CLP(FD) basics

CLP(FD) basics
Bounds Consistency

We use the same notion used by major Prolog implementations, a.k.a.
interval consistency.
A primitive constraint c on the variables X1, . . . ,Xn is bounds
consistent (hyper bounds consistent if n > 2) if:

for all i ∈ {1, . . . ,n}
for all di ∈ {min Di ,max Di} (the two interval bounds)

exist d1 ∈ min D1..max D1 (not necessarily in D1 !!!)
. . .

exist di−1 ∈ min Di−1..max Di−1
exist di+1 ∈ min Di+1..max Di+1

. . .
exist dn ∈ min Dn..max Dn s.t.

[X1/d1, . . . ,Xn/dn] is a solution of c.
The constraint 2X = Y where: DX = {0,1},DY = {0,1,2} is bounds
consistent but not arc consistent.
Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 18 / 20

Demo

System Demo

. . . Speriamo funzioni . . .

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 19 / 20

Conclusions

Conclusions

We have proved that it is possible to produce Tesi di laurea
triennali with some usefulness (Alessio Stalla, 2009; Davide
Zanucco, 2010)

We have extended Pretty Prolog so as to deal with constraints on
finite domains
It is a wip. Anyway, the .jar is available on the web. Java sources
are available on demand
We hope someone of you will find it interesting and use it in your
courses (we’ll be glad to add features on demand—e.g. the choice
of the granularity of viewpoints)

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 20 / 20

Conclusions

Conclusions

We have proved that it is possible to produce Tesi di laurea
triennali with some usefulness (Alessio Stalla, 2009; Davide
Zanucco, 2010)
We have extended Pretty Prolog so as to deal with constraints on
finite domains
It is a wip. Anyway, the .jar is available on the web. Java sources
are available on demand
We hope someone of you will find it interesting and use it in your
courses (we’ll be glad to add features on demand—e.g. the choice
of the granularity of viewpoints)

Stalla, Zanucco, Dovier, Mascardi () PrettyCLP 20 / 20

	Introduction
	Pretty Prolog
	CLP(FD) basics
	Demo
	Conclusions

