}
<
®

ey o0
®®ac,

Static Analysis of Java:
Can we be Logical?

Fausto Spoto, Pescara, September 2011 - 1/48

More Bugs than Program Lines?

software has growing importance in our daily life

it becomes more and more complex!

developers want to eliminate bugs

e buggy software induces economical losses
e bugs affect the fame of the developers
e bugs kill an application on software repositories

@ hunting bugs is hard, time-consuming, and expensive

Fausto Spoto, Pescara, September 2011 - 2/48

We Want Fewer Bugs:

@ programming discipline: visibility modifiers, types, generics, design
patterns ...
partial solution
@ testing: definitely necessary but ...
can often prove only the presence of a bug, not its absence
@ code reviewing: certainly useful but ...
costly and error prone
@ syntactical automatic code checkers ...
if there is a bug, they might (and typically do) miss it

@ static analyses based on formal methods:
they usually come with a correctness guarantee!

Fausto Spoto, Pescara, September 2011 - 3/48

A Crowded World?

¢ coverity” 4\ MathWorks:
FORTIFY'

An HP Company

Microsoft

Klocworic
SA\\. v RSI 7-)’0'v
18

7\
TRy AR -
P

FindBugs

because it's easy’

The use of formal methods is still the exception J

Fausto Spoto, Pescara, September 2011 - 4/48

Static Analysis

Static analysis proves properties of programs before actually running them.
When such properties are undecidable (always. ..), we must admit a don't
know answer

Different approaches:

simple syntactical tests, type-checking

more semantical data-flow analyses [Aho, Sethi, Ullman 1986]

abstract interpretation, formal and general [Cousot & Cousot 1977]

o
o
@ highly detailed proofs through theorem provers
o
@ model-checking, also formal and general

Fausto Spoto, Pescara, September 2011 - 5/48

An Example about Nullness

public class List {
private List next;

public List(List next) {
this.next = next; // safe dereference!

}

public void extend(List other) {
List cursor = this;
while (cursor != null) {
other.next = new List(null);
other = other.next; // safe dereference!
cursor = cursor.next; // safe dereference!

}
3
b

Fausto Spoto, Pescara, September 2011 - 6/48

Abstract Interpretation

Abstract interpretation

A general framework for the design of formally correct static analyses and
for their formal comparison:

@ you define the semantics of a computational process
@ you state the property of the computations

© vyou build the analysis through abstract interpretation
@ you prove correctness in a standard way

© and you can also build an optimal analysis

Fausto Spoto, Pescara, September 2011 - 7/48

Bibliography on Static Analysis

o P. Cousot & R. Cousot, Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints, Fourth ACM Symp.
Principles of Programming Languages, 1977, pages 238-252

@ A.V. Aho, R. Sethi & J.D. Ullman, Compilers, Principles, Techniques and Tools, Addison
Wesley Publishing Company, 1986

© F. Nielson, H.R. Nielson & C. Hankin, Principles of Program Analysis, Springer, 2004

Fausto Spoto, Pescara, September 2011 - 8/48

Bibliograph Nullness Analysis

@ Flanagan, Leino, Houdini, an Annotation Assistant for ESC/Java, Proc. of the 2001 Int.
Symposium of Formal Methods Europe (FME'01)

@ Fihndrich, Leino, Declaring and Checking non-null Types in an Object-Oriented
Language, Proc. of the 2003 ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages and Applications (OOPSLA’03)

9 Cielecki, Fulara, Jakubczyk, Jancewicz, Propagation of JML non-null Annotations in Java

Programs, Proc. of the 4th Int. Symposium on Principles and Practice of Programming in
Java (PPPJ'06)

@ Hovemeyer, Pugh, Finding More null Pointer Bugs, but not Too Many, Proc. of the 7th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and
Engineering (PASTE'07)

e Male, Pearce, Potanin, Dymnikov, Java Bytecode Verification for @NonNull Types, Proc.
of the 17th Int. Conference on Compiler Construction (CC'2008)

Q Hubert, Jensen, Pichardie, Semantic Foundations and Inference of non-null Annotations,
Proc. of the 10th Int. Conference on Formal Methods for Open Object-based Distributed
Systems (FMOODS'08)

Almost all require manual @onNull annotations
Some are not even correct

Fausto Spoto, Pescara, September 2011 - 9/48

o we define a simple Java-like language and its semantics

@ we define an abstraction (nullness analysis) over propositional
formulas

@ we improve the analysis wrt the fields

Fausto Spoto, Pescara, September 2011 - 10/ 48

An Imperative Language with Objects: Commands

A simple imperative language

Ci=vi=i|vi=w|v:i=wf|vf:=w|v:i=newC|incvi

| v :=vom(vy,..., V)
| skip
| if cond then C else C
| while cond do C
| throw | try C catch C
| C; C
with i € Z and v, w, vp, vi, ..., v, variables from a finite set V

v

A real programming language will include more expressions and commandsJ

Fausto Spoto, Pescara, September 2011 - 11 /48

The Semantics of the Language: Values and Environments

A value is an element of Z or null or a memory location in L. I

Fausto Spoto, Pescara, September 2011 - 12 /48

The Semantics of the Language: Values and Environments

A value is an element of Z or null or a memory location in L.

Environments
An environment specifies the value of each variable in scope:

E={n:V— Values}

For instance
If V = {v,x, z} then an environment is [v — 11, x — null, z —] where

£ is the memory location of an object

|

- 12/48

‘ ,

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Values and Environments

A value is an element of Z or null or a memory location in L.

Environments

An environment specifies the value of each variable in scope:

E={n:V— Values}

v

For instance

If V = {v,x, z} then an environment is [v — 11, x — null, z —] where
£ is the memory location of an object

V.

Why not storing the object, directly?

Fausto Spoto, Pescara, September 2011 - 12 /48

The Semantics of the Language: Objects and Memories

An object o € O has class o.class and yields a value o.f for every field f
defined in o.class or in a superclass of o.class.

Fausto Spoto, Pescara, September 2011 - 13 /48

The Semantics of the Language: Objects and Memories

An object o € O has class o.class and yields a value o.f for every field f
defined in o.class or in a superclass of o.class.

4
Memories

A memory is a map from memory locations to objects.

M= {p:L— O}

4
For instance

If ¢1, 02,03 € L then a memory is [¢1 — o1, 2 — 02,¢3 — 01] where 07 and
02 are some objects.

Fausto Spoto, Pescara, September 2011 - 13 /48

The Semantics of the Language: States

Normal and Exceptional States

States S exist in two versions:

o Normal states S, are pairs (n| u) € E x M
o they are the result of a computation that ends normally
o Exceptional states S, are underlined pairs (1| p) € E x M
o they are the result of a computation that ends with an exception

Fausto Spoto, Pescara, September 2011 - 14 /48

The Semantics of the Language: Denotations

Denotation

A denotation is the functional meaning of a command. Namely, it is a
(possibly partial) map from the state before the command is executed to
the state after the command is executed. The functional composition of
denotations is written as o.

|

Interpretation
An interpretation ¢ for a program is possible choice of the functional meaning
of all its commands, that is, a map from each (instance of a) command C
to a set of denotations ¢(C).

Sets of denotations allow non-determinism and simplify the notation for the
subsequent abstract interpretation.

Fausto Spoto, Pescara, September 2011 - 15/48

The Semantics of the Language: Base Cases

[v:=ile = {nlw) = lv = 11w}

[v:=wle = {nlw = 0lv—=n0@)] |}

[[V = W.f]]L = {(17 |) = {<77[V = u(n(w))£] |) if n(w) # n‘-111}

(|) otherwise

[0 ma]i— {m”w {< ” g()Hu(n(V))[an(W)]D f 1(v) #£nu1l

(otherwise

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Base Cases

(n[v — €] | u[¢ — default_object])

if £ is a fresh new location

(n])

otherwise (if there is no free memory)

[v:=newCle = (n|u =

[inc v il = {{n|w) = (lv = n(v) +] m)}

[skip]e = {(n | w) = (0w}

Fausto Spoto, Pescara, September 2011 - 17 /48

The Semantics of the Language: Conditionals

if cond then (;
else (&

ﬂ t = ([eond] o [C1]¢) U ([(cond)] o [C2]e)

|[V<i]]:{<77ﬂu>=>{<n”“> ifn(v)<i}

undefined otherwise

[-(v < i)] = {<?7Hu> N {(nH py ifn(v) > ,-}

undefined otherwise

Fausto Spoto, Pescara, September 2011 - 18 /48

The Semantics of the Language: Conditionals

undefined otherwise

[-(v!=null)] = {(77 | p) = {(77 | 1) if n(v) = null}

undefined otherwise

[v!=null] = {(77 |) = {<n v o null}

[true] = {(nlw = (nlw}

[-(true)] = {{(n] 1) = undefined}

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Loops

[while cond do CJt = ([cond] o [C]e o ¢(C")) U [~(cond)]
he

Fausto Spoto, Pescara, September 2011 - 20/ 48

The Semantics of the Language: Exception Handling

[throw]e = {(n|w) = (| w)}

[try G catch Gfe = ([Gi]e o [normal]) U ([Ci]e o [catch] o [C2]e)

[normal] = {(n] p) = (nlw}

[catch] = {(nlw) = (nlm}

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Exception Handling

[throw]e = {(n|w) = (| w)}

[try G catch Gfe = ([Gi]e o [normal]) U ([Ci]e o [catch] o [C2]e)

[Ci; G]e = ([Gi]e o [exceptional]) U ([Ci]e o [normal] o [C]e)

[normal] = {(n] p) = (nlw}

[exceptional] = {(n| 1) = (n]w)}

[catch] = {(nlw) = (nlm}

Fausto Spoto, Pescara, September 2011

An Algebraic Definition of the Semantics of Java

We have presented an algebraic definition of the semantics of the kernel of
Java. lIts building blocks are

@ constant sets of denotations: [v < i]|, [normal], [v := w], ...

@ operators over sets of denotations: o, U, plug (for method calls)

We are ready to use it for abstract interpretation

Fausto Spoto, Pescara, September 2011 - 22/48

Properties of Computations

What is a property of a computation?
It is the set of denotations that satisfy that property!

Fausto Spoto, Pescara, September 2011 - 23/48

Properties of Computations

What is a property of a computation?
It is the set of denotations that satisfy that property!

Example: the property “at the end x is 5"
{0 | for all (n|) if 6({n]wp)) =) then n'(x) =5}

Fausto Spoto, Pescara, September 2011 - 23/48

Properties of Computations

What is a property of a computation?
It is the set of denotations that satisfy that property!

Example: the property “at the end x is 5"
{0 | for all (n|) if 6({n]wp)) =) then n'(x) =5}

Fausto Spoto, Pescara, September 2011 - 23/48

Properties of Computations

What is a property of a computation?

It is the set of denotations that satisfy that property!

Example: the property “at the end x is 5"

{o [forall (| w) if 6((n|) = (n"|) then 7'(x) = 5}

Example: the property “x is modified into 5"
{0 | for all (]) if 6((nllm)) = (n"| 1) then n(x) # 5 and 7'(x) = 5}

Fausto Spoto, Pescara, September 2011 - 23/48

Properties of Computations

What is a property of a computation?
It is the set of denotations that satisfy that property!

Example: the property “at the end x is 5"
{0 | for all (n|) if 6({n]wp)) =) then n'(x) =5}

Example: the property “x is modified into 5"
{0 | for all (]) if 6((nllm)) = (n"| 1) then n(x) # 5 and 7'(x) = 5}

if (x!=5) then x:=5 else while true skip
if (x!=5) then x:=5 else throw

Fausto Spoto, Pescara, September 2011 - 23/48

Properties of Computations

Example: the property “x increases”
{0 | for all (n|) if 6({n|p)) = W'l 1) then n(x) <n'(x)}

Fausto Spoto, Pescara, September 2011 - 24 /48

Properties of Computations

Example: the property “x increases”
{0 | for all (n|) if 6({n|p)) = W'l 1) then n(x) <n'(x)}

if (x<6) then inc x 2 else inc x 1

Fausto Spoto, Pescara, September 2011 - 24 /48

Properties of Computations

Example: the property “x increases”
{0 | for all (n|) if 6({n|p)) = W'l 1) then n(x) <n'(x)}

if (x<6) then inc x 2 else inc x 1

Example: the property “at the end x is null”
{6 | for all (n) if 6((n11 1)) = (of | ') then n(x) = null}

Fausto Spoto, Pescara, September 2011 - 24 /48

Properties of Computations

Example: the property “x increases”
{0 | for all (n|) if 6({n|p)) = W'l 1) then n(x) <n'(x)}

if (x<6) then inc x 2 else inc x 1

Example: the property “at the end x is null”
{6 | for all (n) if 6((n11 1)) = (of | ') then n(x) = null}

if (x!=null) then while true skip else skip

Fausto Spoto, Pescara, September 2011 - 24 /48

Logic as a Language for Computational Properties

We want to use propositional formulas over the variables of the program as
a language to specify properties of nullness in denotations:

@ X means that at the beginning x holds null

X means that at the end x holds null

=X means that at the end x does not hold null

XV § means that at the end x holds null or y holds null (or both)

X — ¥ means that if at the beginning x holds null then at the end y
holds y

Fausto Spoto, Pescara, September 2011 - 25/48

The Meaning of a Logical Formula

Nullness extractor

nuliness({n | 1)) = {v | n(v) = nu11}
nulness({n | 1)) = {v | n(v) = null} U{e}

Fausto Spoto, Pescara, September 2011 - 26/48

The Meaning of a Logical Formula

Nullness extractor

nuliness({n | 1)) = {v | n(v) = nu11}
nulness({n | 1)) = {v | n(v) = null} U{e}

v

The property expressed by a formula ¢

(¢) = for all o such that §(o) is defined,
Y= we have nullness(c) U nuliness(6(c)) k= ¢

Fausto Spoto, Pescara, September 2011 - 26/48

A non-Standard Semantics over Logical Formulas

[v:=1i]% = —& A =& A =V A unchanged
[v:=w]% =—-&A—-&A (W<« ¥) A unchanged
[v:=wf]%=—-&A(-&+ —-W)A(é— (V+ ¥))Aunchanged

[v.f :=w]% = —& A (—& <> =V) A unchanged

unchanged is a formula that states a frame condition: all variables x never
touched by the command keep their nullness: X <> X

Fausto Spoto, Pescara, September 2011 - 27/48

A non-Standard Semantics over Logical Formulas

[v :=new C]|* = =& A (=& — —%) A (é — (V <> V)) A unchanged
[v < i]® = —& A =& A unchanged
[-(v < i)]* = —& A =& A unchanged
[v!=null]* = —& A =& A =% A unchanged

[-(v!=null)]® = =& A =& A ¥ A unchanged

[normal]® = =& A =& A unchanged
[catch]* = & A =& A unchanged

[exceptional]* = & A & A unchanged

Fausto Spoto, Pescara, September 2011 - 28/48

A non-Standard Semantics over Logical Formulas

U%is Vv
¢10% o =3_1[" = =] A g —]
plug®(¢) = (3~ but 9®)[this = Vo, Wy > V1, ..., Wy > Vp, W = 0]Aunchanged

Fausto Spoto, Pescara, September 2011 - 29/48

A non-Standard Semantics over Logical Formulas

U%is Vv
¢10% o =3_1[" = =] A g —]
plug®(¢) = (3 but 9®)[this = Vo, Wa = Vi, ..., Wy = Vi, W 0]Aunchanged

This non-standard semantics can be proved to be correct:
[v:= ilv() € A([v := i]*)

(1) 0 v(¢2) € (o1 0 ¢2)

Fausto Spoto, Pescara, September 2011 - 29/48

Example 1

We assume that only variables v and w are in scope.

w:=new C

—& A (—é — W) A (& = (W <+ W)) A unchanged J
wf:i=v

Fausto Spoto, Pescara, September 2011 - 30/48

Example 1

We assume that only variables v and w are in scope.

wi=newC || &A(-&—= W)A(e— (W W))A(V+ D)

wf . =v

Fausto Spoto, Pescara, September 2011 - 30/48

Example 1

We assume that only variables v and w are in scope.

wi=newC || &A(-&—= W)A(e— (W W))A(V+ D)

wf . =v

Hence the dereference in w.f :=v never throws a null-pointer exception

—ENA(-é = WA= (W W)A (V< V) E (-8 — W)

Fausto Spoto, Pescara, September 2011 - 30/48

Example 2

We assume that only variables v and w are in scope.

w:=new C || "&A (—& — —W) A (& — (W <> W)) A unchanged
Vi=w
wf:=v

Fausto Spoto, Pescara, September 2011 - 31/48

Example 2

We assume that only variables v and w are in scope.

w:=newC || &N (&= W)A(é— (W W))A(V+ D)
vVi=w
wf:i=v

Fausto Spoto, Pescara, September 2011 - 31/48

Example 2

We assume that only variables v and w are in scope.

w:=newC || &N (&= W)A(é— (W W))A(V+ D)
vVi=w —& A —é A (W < V) A unchanged
wf:i=v

Fausto Spoto, Pescara, September 2011 - 31/48

Example 2

We assume that only variables v and w are in scope.

w:=newC || &N (&= W)A(é— (W W))A(V+ D)
vVi=w —ENN (W V)N (W W)
wf:=v

Fausto Spoto, Pescara, September 2011 - 31/48

Example 2

We assume that only variables v and w are in scope.

w:.:=new C . ~ ~ A
—éN\N—eN-VA-Ww

V=W

wf . =v

Fausto Spoto, Pescara, September 2011 - 31/48

Example 2

We assume that only variables v and w are in scope. J
w:=new C o A N A
—éA—eAvA-w
V=W
wif:i=v

Hence the dereference in w.f :=v never throws a null-pointer exception

BN B AU AW = (28 — W)

Fausto Spoto, Pescara, September 2011 - 31/48

Example 3

We assume that only variables v and w are in scope.

vi=w || -&A-&A (W<« V)Aunchanged
wf:i=v
V.gi=Ww

Fausto Spoto, Pescara, September 2011 - 32/48

Example 3

We assume that only variables v and w are in scope.

vi=w || DEAEA(W < V)A (W < W)
wtf . =v
V.g =W

Fausto Spoto, Pescara, September 2011 - 32/48

Example 3

We assume that only variables v and w are in scope.

vi=w || DEAEA(W < V)A (W < W)
w.f:=v || 2&A (-8« —W) A unchanged
Vg =W

Fausto Spoto, Pescara, September 2011 - 32/48

Example 3

We assume that only variables v and w are in scope.

Fausto Spoto, Pescara, September 2011 - 32/48

Example 3

We assume that only variables v and w are in scope.

vVi=w A . A N A
w.f::v} &N (Ve W)A (W W) A (W < @)
v.g =W

Fausto Spoto, Pescara, September 2011 - 32/48

Example 3

We assume that only variables v and w are in scope.

vVi=w A . A N A
w.f::v} &N (Ve W)A (W W) A (W < @)
v.g =W

Hence the dereference in v.g:=w never throws a null-pointer exception

“EAN(V e W)A (W W)A (W <+ &) | (-8 — D)

Fausto Spoto, Pescara, September 2011 - 32/48

Example 4

We assume that only variables v and w are in scope. J

if v =null —& A =& A ¥ A unchanged
then
while true do
skip
else
skip
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J

if v =null —ENBANVA(V < V)A (W < W)
then
while true do
skip
else
skip
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null —ENBANVA(V < V)A (W < W)
then
while true do || & A =& A unchanged
skip
else
skip
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null —ENBANVA(V < V)A (W < W)
then
while true do || "€ A @A (V ¢ V) A (W < W)
skip
else
skip
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null —ENBANVA(V < V)A (W < W)
then
while true do || "€ A @A (V ¢ V) A (W < W)
skip —é A —é A unchanged
else
skip —é A =& A unchanged
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null “ENENVNA(V & V)N (W W)
then
while true do | "€ A—€A (V& V)A (W W) =0
skip ANV VAW W) =09
else
skip —EN-eNA (Ve V)N (W W)
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null ANV A (V4 V)A (W < W)
then
hile t d
W;{i‘; rue do } Ifp = ((¢ o ¢ o® Ifp) V false)
else
skip —EA-ENA (Ve U)A (W < W)
vii=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J
if v =null ANV A (V4 V)A (W < W)
then
while true do }
) false
skip
else
skip —EA-ENA (Ve U)A (W < W)
v =w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J

if v = null)

then
while true do
skip
else
skip
vfi=w

Fausto Spoto, Pescara, September 2011 - 33/48

Example 4

We assume that only variables v and w are in scope. J

if v = null)

then
while true do
skip
else
skip
vfi=w

Hence the dereference in v.f:=w never throws a null-pointer exception

ﬁé/\ﬁé/\ﬁV/\ﬂ\?/\(W(—)ﬁl)):(—!é—>—|9)

Fausto Spoto, Pescara, September 2011 - 33/48

Example 5

We assume that only variables v and w are in scope.

try

w:=new C || 7& A (& - -W) A (& — (W <> W)) A unchanged
catch

skip
wf:i=v

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

try

w:=newC || &A (&= W)A(&—= (W< W)A (VD)
catch

skip —& A —é A unchanged
wtfi=v

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

try

w:=newC || &A (&= W)A(&—= (W< W)A (VD)
catch

skip NN (V4 V)A (W W)
wtf =v

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

try

w:=newC || &A (&= W)A(&—= (W< W)A (VD)
catch

skip NN (V4 V)A (W W)
wtf =v

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

try
w:=new C . n . ~ ~ o ~
i —EAN-eNA (Ve V)A (=W V(W W))
skip
wf =v

Fausto Spoto, Pescara, September 2011 - 34/48

Example 5

We assume that only variables v and w are in scope.

try
w:=new C
catch
skip
wf =v

Hence we cannot prove that the dereference in w. f:=v never throws a null-

pointer exception
—EAN-EN (Ve V)N (W V(

<
0
>
S
g
(0}
1
i
>

Fausto Spoto, Pescara, September 2011 - 34/48

Example 6

We assume that only variables v and w are in scope.

wi=newC || &N (&= WA (= (W< W))A(V+ D)

wtf =w
w.=w.tf
wf . =w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

wi=newC || &N (&= WA (= (W< W))A(V+ D)
wifi=w &N (8 W) A (V< V)A (W< W)
w.=w.f

wf=w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

wi=newC || &N (&= WA (= (W< W))A(V+ D)
wf:i=w &N (8 W) A (V< V)A (W< W)
wi=w.f &N (78 W) A (6= (W W) A (V< D)
wf=w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

wi=mnew C EN-EN (Ve V)N W

wf=w

wi=w.f &N (8 W) A (6= (W W) A (V< D)
wfi=w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

w:=new C

wf=w —eN-eA (V< 7)
w: =w.f

wf: =w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

w:=new C

wf=w —eN-eA (V< 7)
w: =w.f

wf: =w

Fausto Spoto, Pescara, September 2011 - 35/48

Example 6

We assume that only variables v and w are in scope.

w:=new C

wfi=w —EN-EN (VD)
wi=w.f

wf: =w

Hence we cannot prove that the dereference in w. f :=w never throws a null-

pointer exception. Imprecise!
NN (Ve V) (-8 — W)

Fausto Spoto, Pescara, September 2011 - 35/48

Boolean Formulas for Nullness Analysis: Pros and Cons

simple, theoretically clean

efficient (binary decision diagrams)

completely flow and context sensitive

precise wrt local variables and exceptions

Fausto Spoto, Pescara, September 2011 - 36/48

Boolean Formulas for Nullness Analysis: Pros and Cons

simple, theoretically clean

efficient (binary decision diagrams)

completely flow and context sensitive

precise wrt local variables and exceptions

@ no approximation for fields

@ no approximation for arrays

Fausto Spoto, Pescara, September 2011 - 36/48

The Meaning of Implication

This is the set of denotations such that, if x is null in the input, then y is
null in the output.

In terms of functional composition

y(x = §) = {0 | forall & € X we have 6’ 0§ € §}

Only in terms of ~

V(X = §) = (%) = ()

where
X —Y={d|forall & € X we have § 0§ € Y}

— is the linear refinement of Giacobazzi & Scozzari '98)

Fausto Spoto, Pescara, September 2011 - 37/48

Oracle Semantics for the Fields

Our previous definition
[v:i=wf]*%=—-&A(-&+ W) A (& — (V+ ¥))Aunchanged

This corresponds to a pessimistic oracle O = (: no field is definitely non-
null = imprecise but definitely correct

Fausto Spoto, Pescara, September 2011 - 38/48

Oracle Semantics for the Fields

Our previous definition

[v:i=wf]*%=—-&A(-&+ W) A (& — (V+ ¥))Aunchanged

This corresponds to a pessimistic oracle O = (: no field is definitely non-
null = imprecise but definitely correct

Another definition

[v:i=wf]% = —&N(-& < -W)A(é — (V «> V))A(—& — =) Aunchanged

This corresponds to an optimistic oracle O = {all fields}: all fields are
definitely non-null = precise but in general incorrect

Fausto Spoto, Pescara, September 2011 - 38/48

Oracle Semantics for the Fields

More generally. . .

Given an oracle O (i.e., a set of fields assumed to hold always a non-null
value when they are read), we define

—& A (—é > W) A (& — (V< ¥)) A unchanged

[vi=wtf]%% = & & @

—&NA(-é<+< W)A(é— (V< ¥))A (=& — —V) Auncha

if f e O

v

We get an abstract semantics (a nullness analysis) parameterised wrt O.
That semantics might be incorrect if O is not correct

y——

Fausto Spoto, Pescara, September 2011 - 39/48

Looking for a Correct Oracle

@ If O is correct (that is, if it only contains fields that actually hold a
non-null value when they are read) then the induced nullness

analysis is correct
@ The larger O, the more precise is the induced nullness analysis

Fine, but how do we find a correct and possibly large oracle?

Fausto Spoto, Pescara, September 2011 - 40/ 48

Looking for a Correct Oracle

Let P be a program and O an oracle:

© apply the nullness analysis induced by O

@ collect the set O’ of those fields f € O, defined in some class k, such
that:

o are always initialised in all constructors of k (syntactical property)
e and are always assigned in P to a non-null value (semantical
property) according to the analysis above

© call Fp that transformation. Hence O' = Fp(O)
We have:

Q@ 02 Fp(0)

@ if O = Fp(O) then O is correct

Fausto Spoto, Pescara, September 2011 - 41 /48

Looking for a Correct Oracle

Corollary: Finding a correct oracle
Let O = {all fields}. Then

O D Fp(0) 2 Fp(Fp(0)) 2 Fp(Fp(Fp(0))) 2...

is a decreasing chain and converges to a correct oracle in a finite number
of steps

Every application of Fp is a nullness analysis:

@ the number of applications is bounded by the cardinality of the
reference fields in the program. In practice, never more than 4
applications are needed to reach the fixpoint

@ only the first application is (relatively) expensive. The others are fast
thanks to caching

.

Fausto Spoto, Pescara, September 2011 - 42 /48

The Quest for Precision

The analysis described so far is relatively fast and proves around 85% of all
dereferences safe in typical Java programs

v

Better precision is achieved with extra analyses that spot:
o fields/expressions that are locally non-null
@ arrays that only contain non-null elements
@ collections or maps that only contain/map non-null elements

We typically prove 98% of all dereferences safe then

None of these analyses uses logic, but they are based on formal methods J

Fausto Spoto, Pescara, September 2011 - 43 /48

Bibliography

@ A. Tarski, A Lattice-theoretical Fixpoint Theorem and its Applications, Pacific J. Math.
volume 5, pages 285-309, 1955

9 R. Giacobazzi & F. Scozzari, A Logical Model for Relational Abstract Domains, ACM
TOPLAS 20(5), pages 1067-1109, 1998

© F. Spoto, Nullness Analysis in Boolean Form, Software Engineering and Formal Methods
(SEFM), pages 21-30, 2008

@ F. Spoto, Precise null-Pointer Analysis, Software and System Modeling, 10(2): pages
219-252, 2011

Q D. Nikoli¢ & F. Spoto, Inference of Class Invariants for Arrays, submitted, 2011

Try it yourself online

http://www.juliasoft.com
http://julia.scienze.univr.it/runs/android/results.html
http://julia.scienze.univr.it/runs/android2/results.html
http://julia.scienze.univr.it/runs/gwt/results.html

Fausto Spoto, Pescara, September 2011 - 44 /48

Thank you!

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Programs

A program defines classes and methods inside those classes. Each method
has the form

m(wy,...,Wp)

execute C then return w

Fausto Spoto, Pescara, September 2011 - 46 /48

The Semantics of the Language: Method Calls

[v :i=vom(vy,...,vn)]e = plug(:(C))

where

m(W17 0oo 7Wn)

execute C then return w

) = (lv = '] 1)
e lfa([o nlvo) a2 O]) = a1
) =

, Wy — N(vy)
(nn
(¢ i 5005200 1) = 1)

-y W > 1(Vn)

v

Fausto Spoto, Pescara, September 2011

The Semantics of the Language: Fixpoint Interpretation

Denotational Semantics

The denotational semantics of a program is the minimal fixpoint of the
transformer of interpretation:

T(t)=C=[C]t

(Tarksi'55)

We can compute it as the limit of the sequence
to=C= 0
L1 = T([,o)
Ly = T(Ll)

Fausto Spoto, Pescara, September 2011 - 48 /48

