MCINTYRE: A Monte Carlo Algorithm for
Probabilistic Logic Programming

Fabrizio Riguzzi

ENDIF — University of Ferrara, Italy
fabrizio.riguzzi@unife.it

LY YJ

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 1/32

Probabilistic Logic Languages

@ Combine logic and probability

@ Logic Programming: Distribution Semantics [Sato, 1995]

@ A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)

@ The distribution is extended to a joint distribution over worlds and
a query

@ The probability of a query is obtained from this distribution

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 2/32

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

@ Probabilistic Logic Programs [Dantsin, 1991]

@ Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]

@ PRISM [Sato, 1995]

@ Logic Programs with Annotated Disjunctions (LPADs)
[Vennekens et al., 2004]

@ ProblLog [De Raedt et al., 2007]

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 3/32

Logic Programs with Annotated Disjunctions Example

Ci = epidemic : 0.6; pandemic : 0.3 : —flu(X), cold.
cold : 0.7.
flu(david).
Cs = flu(robert).

$
[

@ Distributions over the head of rules

@ The clause contains implicitly an extra head null with probability
0.1 that does not appear in the body of any rule

@ Worlds obtained by selecting one atom from the head of every
grounding of each clause

@ 18 worlds in this example

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 4/32

LPAD World Example

epidemic : —flu(david), cold.
epidemic : —flu(robert), cold.
cold.

flu(david).

flu(robert).

@ The query epidemic is true in this world, while pandemic is false

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 5/32

ProbLog Example

The ProblLog program equivalent to the example LPAD is

Ci1 = epidemic : —flu(X), cold, f1(X).
Ci2 = pandemic : —flu(X), cold, problog_not(f1(X)), f2(X).

Ciz = 0.6: f1(X).
Cis = 0.75: f2(X).
021 = cold: —f3.
C» = 0.7:13.

Cs = flu(david).
Cy = flu(robert).

@ Distributions over facts

@ Worlds obtained by selecting or not every grounding of each
probabilistic fact

@ 32 worlds in this example @

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 6/32

Distribution Semantics

@ Case of no function symbols: finite Herbrand universe, finite set of
groundings of each clause

@ Atomic choice: selection of the i-th atom for grounding C# of
clause C

o represented with the triple (C, 0, i)
@ Composite choice x: consistent set of atomic choices
o k= {(Cy,{X/david},1),(Cy,{X/david},2)} not consistent
@ The probability of composite choice « is

P(r)y= [Po(C)

(C,0,her

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 7/32

Distribution Semantics

@ Selection o: a total composite choice (one atomic choice for every
grounding of each clause)

@ 0 = {(Cy,{X/david},1),(Cy,{robert},1),(Cs,{},1)}

@ A selection ¢ identifies a logic program w,, called world

@ The probability of w,, is P(W,) = P(c) =[] (¢ ,i)es Po(C, 1)
@ Finite set of worlds: W7 = {wy,..., wn}

© P(w) distribution over worlds: >_ . P(w) =1

@ Query Q: P(Q|w) = 1if Qis true in w and 0 otherwise

° P(Q) =2, P(Qw) =32, P(QwW)P(W) =3, q P(W)

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 8/32

Inference

@ Exactinference
e Finding explanations for the query and then making them mutually
exclusive by means of BDDs
[De Raedt et al., 2007, Riguzzi, 2009, Riguzzi and Swift, 2010].
o #P-complete [Valiant, 1979]

@ Approximate inference:

o k-best [Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]: compute
a lower bound by finding only the k most probable explanations for
a query and then builds a BDD from them

e Bounded approximation
[Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]: compute a
lower bound and an upper bound of the probability of the query by
using iterative deepening

o Monte Carlo [Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]:
sample the worlds and tests the query in the samples.

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 9/32

Monte Carlo

@ Idea: sample a world, test the query and update counters

@ The fraction of worlds where the query is true is the probability of
the query

@ Problem: worlds are obtained from a grounding of the program
which has an exponential size

@ Solution: on demand sampling, sample only the clauses that are
involved in a branch of the SLDNF tree for the goal

@ Samples must be consistent, i.e., the same alternative must be
sampled from a grounding of a clause

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 10/32

Monte Carlo

@ ProbLog algorithm [Kimmig et al., 2011]

@ Source to source transformation, the probabilistic facts are turned
into normal clauses that update global structures

o Ground probabilistic facts: an array with an element for each fact
that stores sampled true, sampled false or not yet sampled

o When a probabilistic fact is called, if it has not been sampled then it
is sampled and stored in the array.

@ Non-ground probabilistic facts: samples for groundings are stored
in the internal database of Yap

@ cplint algorithm [Bragaglia and Riguzzi, 2011]:
o Meta-interpretation: two arguments of the meta-interpreter

predicate are used, one for keeping the input set of choices and
one for the output set of choices

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 11/32

MCINTYRE

@ MCINTYRE: “Monte Carlo INference wiTh Yap REcord”
@ Source to source transformation
@ The disjunctive clause

Ci = hjy - Ny \/...\/h,'n:|_|,'nl,:—b,'1,...,b,'ml..

where the parameters sum to 1, is transformed into the set of
clauses MC(C;):
MC(Ci,1) = hiy : —bi, ..., bim,,
sample_head(ParList,i, VC, NH), NH = 1.
MC(ChnI) = hil’l,‘ . _bi1’---7bim/7
sample_head(ParList, i, VC,NH), NH = n;.
where VC is a list containing each variable appearing in C; and
ParList is [Mjq, ..., Mj]. &

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 12/32

MCINTYRE

@ If the parameters do not sum up to 1 the last clause (the one for
null) is omitted.

@ Basically, we create a clause for each head and we sample a
head index at the end of the body with sample_head/4.

@ If this index coincides with the head index, the derivation
succeeds, otherwise it fails.
@ For example, clause C; of epidemic example becomes
MC(Cy,1) = epidemic : —flu(X), cold,
sample_head([0.6,0.3,0.1], 1, [X], NH), NH = 1.
MC(Cy,2) = pandemic : —flu(X), cold,
sample_head([0.6,0.3,0.1], 1, [X], NH), NH = 2.

@

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 13/32

MCINTYRE Library Predicates

@ sample_head/4 samples an index from the head of a clause and
uses the builtin Yap predicates recorded/3 and recorda/ 3 for
retrieving or adding an entry to the internal database.

@ sample_head/4 is at the end of the body

@ Range restricted programs: all the variables appearing in the head
also appear in positive literals in the body

@ When calling sample_head/4 all the variables of the clause have
been grounded.

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 14/32

Probabilistic Logic Languages

MCINTYRE Library Predicates

sample_head(_ParList,R,VC,NH) : -
recorded (exp, (R,VC,NH),_),!'.

sample_head (ParList,R,VC,NH) : —
sample (ParList,NH),
recorda (exp, (R, VC,NH),_).

sample (ParList, HeadId) :-—
random (Prob),

sample (ParList, 0, 0, Prob, HeadId).

sample ([HeadProb|Tail], Index, Prev, Prob, HeadId)
Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->
HeadId = Index

sample (Tail, Succ, Next, Prob, HeadId)

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 15/32

MCINTYRE Querying

@ Tabling can be effectively used to avoid re-sampling the same
atom.

@ To take a sample from the program we use the following predicate

sample (Goal) : —
abolish_all_tables,
eraseall (exp),
call (Goal) .

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 16/32

MCINTYRE Querying

@ A fixed number of samples n is taken and the fraction p of
samples in which the query succeeds is computed.

@ Confidence interval of p: given by the central limit theorem to
approximate the binomial distribution with a normal distribution.

@ The 95% binomial proportion confidence interval is

p+z_ a/m/ PU=P) where Zi_o/2 is the 1 — /2 percentile of a
standard normal distribution (« = 0.05).

o If the width of the interval is below ¢, MCINTYRE stops and
returns p

@ This estimate of the interval is good for a sample size larger than
30 and if p is not too close to 0 or 1.

@ Empirically, the normal approximation works well as long as
np >5and n(1 —p) > 5.

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 17 /32

Biomine Network

@ Biomine network: network of biological concepts

@ Each edge has a probability

Dataset from [De Raedt et al., 2007]: 50 sampled subnetworks of
size 200, 400, ..., 10000 edges

Sampling repeated 10 times

Linux PCs with Intel Core 2 Duo E6550 (2,333 MHz) and 4 GB of
RAM

@ Execution stopped after 24 hours

® 0

path (X, X) .

path (X, Y) :=X\==Y, path(X,Z),arc(z,Y).

arc(X,Y) :—edge (Y, X) .

arc(X,Y) :—edge (X,Y) .

edge (' EntrezProtein_ 33339674, HGNC_620") :0.515062.

@ path/2 tabled @

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 18/32

Biomine Network

Solved graphs Average execution times

10 10° : ; ‘
——MCINTYRE —MCINTYRE
-©-ProbLog -©-ProbLog
8 ~-cplint B ~0-cplint
-8-PITA 10 -8-PITA

Answers
Time (s)

00 2000 4000 ~ 6000 8000 10000
Size

brizio Riguzzi i i MCINTYRE 19/32

Growng Head

@ From [Meert et al., 2010]: propositional programs in which the
head of clauses are of increasing size

@ The program for size 4 is

a0 :— al.

al:0.5.

a0:0.5; al:0.5 :- a2.

az2:0.5.

a0:0.33333; al:0.33333; a2:0.33333 :— a3.
a3:0.5.

@ No predicate is tabled

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 20/32

Growng Head

Sampling last Sampling first

10° 10°

10 10"k 4
@10 w10’
g g
+10° 107" 4
= [l ” L

B —MCINTYRE 72 —MCINTYRE
10 -©-ProbLog 10 -©-ProbLog
~-cplint ~-cplint
1o))) —S-PITA] _3))) —=-PITA
0 20 40 60 80 100 0 20 10 60 80 100
N N

MCINTYRE 21/32

Bloodtype

@ From [Meert et al., 2010]: determining the blood type of a person
on the basis of her chromosomes that in turn depend on those of
her parents.

bloodtype (Person,a) :0.90 ; bloodtype (Person,b):0.03 ;
bloodtype (Person,ab) :0.03 ; bloodtype (Person,null):0.04 :-
pchrom (Person, a) ,mchrom (Person, a) .

mchrom (Person,a) :0.90 ; mchrom(Person,b) :0.05
mchrom (Person,null) :0.05 :-
mother (Mother, Person), pchrom(Mother,a), mchrom(Mother,a).

’

mchrom (p, a) :

0.3 ; mchrom(p,b):0.3 ; mchrom(p,null):0.4.
pchrom(p a):0.3 0.3

; pchrom(p,b): ; pchrom(p,null):0.4

@ All the predicates are tabled.

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 22/32

Bloodtype

1072 —MCINTYRE |
O —©-ProbLog
~~-cplint
Lo 1 1 —5-PITA
0 50 11(310 150 200 &

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 23/32

Growing body

@ From [Meert et al., 2010]: the clauses have bodies of increasing
size. The program for size 4 is

a0:0.5 := al.

a0:0.5 := \+ al, a2.

a0:0.5 :— \+ al, \+ a2, a3.
al:0.5 :—= az.

al:0.5 := \+ a2, a3.

az2:0.5 :—= a3.

a3:0.5.

@ No predicate is tabled

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 24/32

Probabilistic Logic Languages

Growing body

All algorithms Only Monte Carlo algorithms

10 10°
10°
w
v 10°
£
-
o
—-MCINTYRE 10° |]
iProbLog —#MCINTYRE
~cplint - -©-ProbLog
107 . . . BITA 102 —~cplint
20 40 N 60 80 100 > 2 A 8 10 12 12
N
Fabrizio Riguzzi (University of Ferrara) MCINTYRE

25/32

UWCSE

@ From [Meert et al., 2010]:
university domain with

predicates such as 10 : : —
taught_by/2, el = DEHTi

advised_by/2,
course_level/2, phase/2,
position/2, student/1

10°

Time (s)

and others H
@ Programs of increasing size by .ol - 5 -)
considering an increasing N

number of students

@ For both MCINTYRE and
ProbLog all the predicates are
tabled. L

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 26/32

Hidden Markov Model

10
—MCINTYRE
=
hmm (0) : ~hmm1 (_, 0) . 10 b fE;E?EEg
hmml (S, 0) : ~hmm (g1, [1,S,0) . —EPITA

hmm (end, s, S, [1) .

hmm (Q, S0, S, [LI0]) :— Q\= end, @10°
next_state(Q,Q1,s80), letter(Q,L,s0), ° |,
hmm (Q1, [Q]S0],s,0) . Eqo

next_state(ql,ql,_S):1/3; 3

next_state(ql,q2,_S):1/3;
next_state(gl,end,_S):1/3. 107
next_state(q2,q9l,_S):1/3;
next_state(qg2,q92,_S):1/3; -
next_state(gq2,end,_S) :1/3. 10 100
letter(gl,a,_S):0.25;letter(ql,c,_S):0.25; N
letter(qgl,g,_S):0.25;letter(ql,t,_S):0.25.
letter(g2,a,_S):0.25;letter(g2,c,_S) :0.25;
letter(g2,q9,_S):0.25;letter(g2,t,_S) :0.25.

MCINTYRE 27/32

Conclusions

Probabilistic Logic Programming

Distribution semantics

Logic Programs with Annotated Disjunctions, ProbLog
Approximate inference

MCINTYRE: “Monte Carlo INference wiTh Yap REcord”
Fast alternative to ProbLog

Thank you!

Questions?

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 28/32

References |

[4 Bragaglia, S. and Riguzzi, F. (2011).
Approximate inference for logic programs with annotated
disjunctions.
In International Conference on Inductive Logic Programming,
volume 6489 of LNAI, pages 30-37. Springer.

[@ Dantsin, E. (1991).
Probabilistic logic programs and their semantics.
In Russian Conference on Logic Programming, volume 592 of
LNCS, pages 152—164. Springer.

@ De Raedt, L., Kimmig, A., and Toivonen, H. (2007).
ProbLog: A probabilistic prolog and its application in link discovery.

In International Joint Conference on Artificial Intelligence, pages
2462-2467. AAAI Press. @

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 29/32

References Il

[§ Kimmig, A., Demoen, B., De Raedt, L., Costa, V. S., and Rocha, R.
(2011).
On the implementation of the probabilistic logic programming
language ProbLog.
Theory and Practice of Logic Programming, 11(2-3):235-262.

[@ Meert, W., Struyf, J., and Blockeel, H. (2010).
CP-Logic theory inference with contextual variable elimination and
comparison to BDD based inference methods.
In International Conference on Inductive Logic Programming,
volume 5989 of LNCS, pages 96—109. Springer.

[Poole, D. (1993).
Logic programming, abduction and probability - a top-down
anytime algorithm for estimating prior and posterior probabilities.
New Generation Computing, 11(3-4):377-400. &

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 30/32

References Il

[@ Poole, D. (1997).
The Independent Choice Logic for modelling multiple agents under
uncertainty.
Artificial Intelligence, 94(1-2):7-56.

[@ Riguzzi, F. (2009).
Extended semantics and inference for the Independent Choice
Logic.
Logic Journal of the IGPL, 17(6):589—-629.

[@ Riguzzi, F. and Swift, T. (2010).
Tabling and Answer Subsumption for Reasoning on Logic
Programs with Annotated Disjunctions.
In International Conference on Logic Programming, volume 7 of
LIPIcs, pages 162—171. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik.)

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 31/32

References IV

[§ Sato, T. (1995).
A statistical learning method for logic programs with distribution
semantics.
In International Conference on Logic Programming, pages
715-729. MIT Press.

[Valiant, L. G. (1979).
The complexity of enumeration and reliability problems.
SIAM Journal on Computing, 8(3):410-421.

[@ Vennekens, J., Verbaeten, S., and Bruynooghe, M. (2004).
Logic programs with annotated disjunctions.
In International Conference on Logic Programming, volume 3131
of LNCS, pages 195-209. Springer.

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 32/32

	Probabilistic Logic Languages
	Conclusion

