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Probabilistic Logic Languages

Probabilistic Logic Languages

Combine logic and probability
Logic Programming: Distribution Semantics [Sato, 1995]
A probabilistic logic program defines a probability distribution over
normal logic programs (called instances or possible worlds or
simply worlds)
The distribution is extended to a joint distribution over worlds and
a query
The probability of a query is obtained from this distribution
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Probabilistic Logic Languages

Probabilistic Logic Programming (PLP) Languages
under the Distribution Semantics

Probabilistic Logic Programs [Dantsin, 1991]
Probabilistic Horn Abduction [Poole, 1993], Independent Choice
Logic (ICL) [Poole, 1997]
PRISM [Sato, 1995]
Logic Programs with Annotated Disjunctions (LPADs)
[Vennekens et al., 2004]
ProbLog [De Raedt et al., 2007]
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Probabilistic Logic Languages

Logic Programs with Annotated Disjunctions Example

C1 = epidemic : 0.6; pandemic : 0.3 : −flu(X ), cold .
C2 = cold : 0.7.
C3 = flu(david).
C4 = flu(robert).

Distributions over the head of rules
The clause contains implicitly an extra head null with probability
0.1 that does not appear in the body of any rule
Worlds obtained by selecting one atom from the head of every
grounding of each clause
18 worlds in this example
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Probabilistic Logic Languages

LPAD World Example

epidemic : −flu(david), cold .
epidemic : −flu(robert), cold .
cold .
flu(david).
flu(robert).

The query epidemic is true in this world, while pandemic is false
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Probabilistic Logic Languages

ProbLog Example

The ProbLog program equivalent to the example LPAD is

C11 = epidemic : −flu(X ), cold , f1(X ).
C12 = pandemic : −flu(X ), cold ,problog_not(f1(X )), f2(X ).
C13 = 0.6 :: f1(X ).
C14 = 0.75 :: f2(X ).
C21 = cold : −f3.
C22 = 0.7 :: f3.
C3 = flu(david).
C4 = flu(robert).

Distributions over facts
Worlds obtained by selecting or not every grounding of each
probabilistic fact
32 worlds in this example
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Probabilistic Logic Languages

Distribution Semantics

Case of no function symbols: finite Herbrand universe, finite set of
groundings of each clause
Atomic choice: selection of the i-th atom for grounding Cθ of
clause C

represented with the triple (C, θ, i)

Composite choice κ: consistent set of atomic choices
κ = {(C1, {X/david},1), (C1, {X/david},2)} not consistent
The probability of composite choice κ is

P(κ) =
∏

(C,θ,i)∈κ

P0(C, i)
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Probabilistic Logic Languages

Distribution Semantics

Selection σ: a total composite choice (one atomic choice for every
grounding of each clause)
σ = {(C1, {X/david},1), (C1, {robert},1), (C2, {},1)}
A selection σ identifies a logic program wσ called world
The probability of wσ is P(wσ) = P(σ) =

∏
(C,θ,i)∈σ P0(C, i)

Finite set of worlds: WT = {w1, . . . ,wm}
P(w) distribution over worlds:

∑
w∈WT

P(w) = 1
Query Q: P(Q|w) = 1 if Q is true in w and 0 otherwise
P(Q) =

∑
w P(Q,w) =

∑
w P(Q|w)P(w) =

∑
w |=Q P(w)
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Probabilistic Logic Languages

Inference

Exact inference
Finding explanations for the query and then making them mutually
exclusive by means of BDDs
[De Raedt et al., 2007, Riguzzi, 2009, Riguzzi and Swift, 2010].
#P-complete [Valiant, 1979]

Approximate inference:
k -best [Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]: compute
a lower bound by finding only the k most probable explanations for
a query and then builds a BDD from them
Bounded approximation
[Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]: compute a
lower bound and an upper bound of the probability of the query by
using iterative deepening
Monte Carlo [Kimmig et al., 2011, Bragaglia and Riguzzi, 2011]:
sample the worlds and tests the query in the samples.
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Probabilistic Logic Languages

Monte Carlo

Idea: sample a world, test the query and update counters
The fraction of worlds where the query is true is the probability of
the query
Problem: worlds are obtained from a grounding of the program
which has an exponential size
Solution: on demand sampling, sample only the clauses that are
involved in a branch of the SLDNF tree for the goal
Samples must be consistent, i.e., the same alternative must be
sampled from a grounding of a clause
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Probabilistic Logic Languages

Monte Carlo

ProbLog algorithm [Kimmig et al., 2011]
Source to source transformation, the probabilistic facts are turned
into normal clauses that update global structures
Ground probabilistic facts: an array with an element for each fact
that stores sampled true, sampled false or not yet sampled
When a probabilistic fact is called, if it has not been sampled then it
is sampled and stored in the array.
Non-ground probabilistic facts: samples for groundings are stored
in the internal database of Yap

cplint algorithm [Bragaglia and Riguzzi, 2011]:
Meta-interpretation: two arguments of the meta-interpreter
predicate are used, one for keeping the input set of choices and
one for the output set of choices
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Probabilistic Logic Languages

MCINTYRE

MCINTYRE: “Monte Carlo INference wiTh Yap REcord”
Source to source transformation
The disjunctive clause

Ci = hi1 : Πi1 ∨ . . . ∨ hin : Πini : −bi1, . . . ,bimi .

where the parameters sum to 1, is transformed into the set of
clauses MC(Ci):
MC(Ci ,1) = hi1 : −bi1, . . . ,bimi ,

sample_head(ParList , i ,VC,NH),NH = 1.
. . .
MC(Ci ,ni) = hini : −bi1, . . . ,bimi ,

sample_head(ParList , i ,VC,NH),NH = ni .
where VC is a list containing each variable appearing in Ci and
ParList is [Πi1, . . . ,Πini ].
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Probabilistic Logic Languages

MCINTYRE

If the parameters do not sum up to 1 the last clause (the one for
null) is omitted.
Basically, we create a clause for each head and we sample a
head index at the end of the body with sample_head/4.
If this index coincides with the head index, the derivation
succeeds, otherwise it fails.
For example, clause C1 of epidemic example becomes
MC(C1,1) = epidemic : −flu(X ), cold ,

sample_head([0.6,0.3,0.1],1, [X ],NH),NH = 1.
MC(C1,2) = pandemic : −flu(X ), cold ,

sample_head([0.6,0.3,0.1],1, [X ],NH),NH = 2.
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Probabilistic Logic Languages

MCINTYRE Library Predicates

sample_head/4 samples an index from the head of a clause and
uses the builtin Yap predicates recorded/3 and recorda/3 for
retrieving or adding an entry to the internal database.
sample_head/4 is at the end of the body
Range restricted programs: all the variables appearing in the head
also appear in positive literals in the body
When calling sample_head/4 all the variables of the clause have
been grounded.
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Probabilistic Logic Languages

MCINTYRE Library Predicates

sample_head(_ParList,R,VC,NH):-
recorded(exp,(R,VC,NH),_),!.

sample_head(ParList,R,VC,NH):-
sample(ParList,NH),
recorda(exp,(R,VC,NH),_).

sample(ParList, HeadId) :-
random(Prob),
sample(ParList, 0, 0, Prob, HeadId).

sample([HeadProb|Tail], Index, Prev, Prob, HeadId) :-
Succ is Index + 1,
Next is Prev + HeadProb,
(Prob =< Next ->

HeadId = Index
;
sample(Tail, Succ, Next, Prob, HeadId)

).
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Probabilistic Logic Languages

MCINTYRE Querying

Tabling can be effectively used to avoid re-sampling the same
atom.
To take a sample from the program we use the following predicate

sample(Goal):-
abolish_all_tables,
eraseall(exp),
call(Goal).
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Probabilistic Logic Languages

MCINTYRE Querying

A fixed number of samples n is taken and the fraction p̂ of
samples in which the query succeeds is computed.
Confidence interval of p̂: given by the central limit theorem to
approximate the binomial distribution with a normal distribution.
The 95% binomial proportion confidence interval is

p̂ ± z1−α/2

√
p̂(1−p̂)

n where z1−α/2 is the 1− α/2 percentile of a
standard normal distribution (α = 0.05).
If the width of the interval is below δ, MCINTYRE stops and
returns p̂
This estimate of the interval is good for a sample size larger than
30 and if p̂ is not too close to 0 or 1.
Empirically, the normal approximation works well as long as
np̂ > 5 and n(1− p̂) > 5.
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Probabilistic Logic Languages

Biomine Network

Biomine network: network of biological concepts
Each edge has a probability
Dataset from [De Raedt et al., 2007]: 50 sampled subnetworks of
size 200, 400, . . ., 10000 edges
Sampling repeated 10 times
Linux PCs with Intel Core 2 Duo E6550 (2,333 MHz) and 4 GB of
RAM
Execution stopped after 24 hours

path(X,X).
path(X,Y):-X\==Y, path(X,Z),arc(Z,Y).
arc(X,Y):-edge(Y,X).
arc(X,Y):-edge(X,Y).
edge(’EntrezProtein_33339674’,’HGNC_620’):0.515062.
...

path/2 tabled
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Probabilistic Logic Languages

Biomine Network

Solved graphs

2000 4000 6000 8000 10000
0

2

4

6

8

10

Edges

A
n
s
w
e
r
s

 

 

MCINTYRE
ProbLog
cplint
PITA

Average execution times

2000 4000 6000 8000 10000
10

−2

10
0

10
2

10
4

10
6

Size

T
i
m
e
 
(
s
)

 

 

MCINTYRE
ProbLog
cplint
PITA

Fabrizio Riguzzi (University of Ferrara) MCINTYRE 19 / 32



Probabilistic Logic Languages

Growng Head

From [Meert et al., 2010]: propositional programs in which the
head of clauses are of increasing size
The program for size 4 is

a0 :- a1.
a1:0.5.
a0:0.5; a1:0.5 :- a2.
a2:0.5.
a0:0.33333; a1:0.33333; a2:0.33333 :- a3.
a3:0.5.

No predicate is tabled
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Probabilistic Logic Languages

Growng Head

Sampling last
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Sampling first
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Probabilistic Logic Languages

Bloodtype

From [Meert et al., 2010]: determining the blood type of a person
on the basis of her chromosomes that in turn depend on those of
her parents.

bloodtype(Person,a):0.90 ; bloodtype(Person,b):0.03 ;
bloodtype(Person,ab):0.03 ; bloodtype(Person,null):0.04 :-
pchrom(Person,a),mchrom(Person,a).

...
mchrom(Person,a):0.90 ; mchrom(Person,b):0.05 ;
mchrom(Person,null):0.05 :-
mother(Mother,Person), pchrom(Mother,a), mchrom(Mother,a).

...
mchrom(p,a):0.3 ; mchrom(p,b):0.3 ; mchrom(p,null):0.4.
pchrom(p,a):0.3 ; pchrom(p,b):0.3 ; pchrom(p,null):0.4.

All the predicates are tabled.
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Probabilistic Logic Languages

Bloodtype
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Probabilistic Logic Languages

Growing body

From [Meert et al., 2010]: the clauses have bodies of increasing
size. The program for size 4 is

a0:0.5 :- a1.
a0:0.5 :- \+ a1, a2.
a0:0.5 :- \+ a1, \+ a2, a3.
a1:0.5 :- a2.
a1:0.5 :- \+ a2, a3.
a2:0.5 :- a3.
a3:0.5.

No predicate is tabled
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Probabilistic Logic Languages

Growing body

All algorithms
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Only Monte Carlo algorithms
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Probabilistic Logic Languages

UWCSE

From [Meert et al., 2010]:
university domain with
predicates such as
taught_by/2,
advised_by/2,
course_level/2, phase/2,
position/2, student/1
and others
Programs of increasing size by
considering an increasing
number of students
For both MCINTYRE and
ProbLog all the predicates are
tabled.
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Probabilistic Logic Languages

Hidden Markov Model

hmm(O):-hmm1(_,O).
hmm1(S,O):-hmm(q1,[],S,O).
hmm(end,S,S,[]).
hmm(Q,S0,S,[L|O]):- Q\= end,
next_state(Q,Q1,S0), letter(Q,L,S0),
hmm(Q1,[Q|S0],S,O).

next_state(q1,q1,_S):1/3;
next_state(q1,q2,_S):1/3;
next_state(q1,end,_S):1/3.

next_state(q2,q1,_S):1/3;
next_state(q2,q2,_S):1/3;
next_state(q2,end,_S):1/3.

letter(q1,a,_S):0.25;letter(q1,c,_S):0.25;
letter(q1,g,_S):0.25;letter(q1,t,_S):0.25.

letter(q2,a,_S):0.25;letter(q2,c,_S):0.25;
letter(q2,g,_S):0.25;letter(q2,t,_S):0.25.
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Conclusion

Conclusions

Probabilistic Logic Programming
Distribution semantics
Logic Programs with Annotated Disjunctions, ProbLog
Approximate inference
MCINTYRE: “Monte Carlo INference wiTh Yap REcord”
Fast alternative to ProbLog

Thank you!

Questions?
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