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Motivation

Knowledge is inherently

1. structured
I description in terms of objects and relations between objects

2. incomplete
I partial description

3. vague
I imprecise description

in many real-world domains.

2 - An ILP Approach to Learning Inclusion Axioms in Fuzzy Description Logics F.A. Lisi and U. Straccia



Examples

1. Multimedia information retrieval
I E.g., �Find top-k image regions about Gabriele D'Annunzio"

2. Database query
I E.g., �Find top-k cheapest hotels close to Pescara campus"

3. Decision support
I E.g., the notions of temperature, pulse and respiratory rate in

medicine
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Objective

We want to learn the conceptual descriptions of a target concept, given

1. the data stored into a relational database as fuzzy sets

2. the background knowledge about the application domain described
via a standard ontology language
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Fuzzy Description Logics

I Description Logics (DLs)
I Family of KR formalisms for incomplete structured knowledge
I Decidable fragments of FOL
I Expressive power depending on the set of constructors
I Very expressive DLs at the basis of the W3C OWL 2 standard

language for ontologies

I Mathematical Fuzzy Logic
I Theoretical foundation of KR formalisms for vague knowledge
I Truth of statements is a matter of degree (score) measured on an

ordered scale ([0, 1])
I A fuzzy interpretation I maps each basic statement pi into [0, 1] and

is then extended inductively to all statements
I A fuzzy set R over a countable crisp set X is a function

R : X → [0, 1]
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Uncertainty vs. Vagueness

I Uncertainty: �Emanuela Orlando is in Turkey to degree 0.83"

I Vagueness: �Pescara Dannunziana B&B is close to Pescara campus
to degree 0.83"

I Uncertainty + vagueness: �It is possible/probable to degree 0.83
that it will be hot tomorrow"

6 - An ILP Approach to Learning Inclusion Axioms in Fuzzy Description Logics F.A. Lisi and U. Straccia



Fuzzy DL-Lite2

I DL-Lite1

I DL behind the OWL 2 QL pro�le
I Especially aimed at data intensive applications
I Tractable query answering

I Fuzziness with Gödel logic
I a⊗ b = min(a, b)
I a⊕ b = max(a, b)

I 	 a =

{
1 if a 6 b

b otherwise

I a⇒ b =

{
1 if a = 0

0 otherwise

I Ontology-based access to a relational database

I Implemented in the SoftFacts system
(http://www.straccia.info/software/SoftFacts/SoftFacts.html)

1(Calvanese et al., 2006)
2(Straccia, 2010)
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SoftFacts: Knowledge base

I F is a �nite set of expressions of the form

R(c1, . . . , cn)[s] , (1)

where:
I R is an n-ary relation
I every ci is a constant
I s is the score

I O is a �nite set of inclusion axioms having the form

Rl1 u . . . u Rlm v Rr , (2)

where
I m > 1
I all Rli (left-hand relation) and Rr (right-hand relation) have the

same arity

I A is a �nite set of statements of the form

R 7→ (c1, . . . , cn)[cscore ].sql , (3)

where sql is a SQL statement returning n-ary tuples 〈c1, . . . , cn〉
(n 6 2) with score determined by cscore .
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SoftFacts: Query answering

I A ranking query is a conjunctive query of the form

q(x)[s] ← ∃y R1(z1)[s1], . . . ,Rl(zl)[sl ],
OrderBy(s = f (s1, . . . , sl , p1(z

′
1), . . . , ph(z

′
h
))

(4)

where
I q is an n-ary relation and every Ri is an ni -ary relation (1 6 ni 6 2).
I x and y are the distinguished and the non-distinguished variables
I zi, z

′
j are tuples of constants or variables in x or y;

I s, s1, . . . , sl are distinct variables and di�erent from those in x and y;
I pj is an nj -ary fuzzy predicate assigning to each nj -ary tuple cj a

score pj (cj ) ∈ [0, 1].
I f is a scoring function f : ([0, 1])l+h → [0, 1], which combines the

scores of the l relations Ri (c
′
i ) and the n fuzzy predicates pj (c

′′
j ) into

an overall score s to be assigned to the query head q(c).
I The answer set ansK(q) over K of a query q is the set of tuples
〈t, s〉 such that K |= q(t)[s] with s > 0

I Informally, t satis�es the query to non-zero degree s) and the score s
is as high as possible, i.e. if 〈t, s〉 ∈ ansK(q) then (i) K 6|= q(t)[s ′] for
any s ′ > s; and (ii) there cannot be another 〈t, s ′〉 ∈ ansK(q) with
s > s ′.
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Learning Fuzzy DL-Lite Inclusion Axioms

I the target concept H is a DL-Lite atomic concept;

I the background theory K is a fuzzy DL-Lite knowledge base
〈F ,O,A〉

I the training set E is a collection of fuzzy DL-Lite like facts of the
form (1) and labeled as either positive or negative examples for H.
We assume that F ∩ E = ∅;

I the target theory H is a set of inclusion axioms of the form

B v H (5)

where H is an atomic concept, B = C1 u . . .u Cm, and each concept
Ci has syntax

C −→ A | ∃R.A | ∃R.> . (6)
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A FOIL-like algorithm

I The coverage relation for a concept C 6= H

IILP |= C (t) i� K ∪ E |= C (t)[s] and s > 0 . (7)

I The con�dence degree of an inclusion axiom is:

cf (B v H) =

∑
t∈P B(t)⇒ H(t)

|D|
(8)

where
I P = {t | IILP |= Ci (t) and H(t)[s] ∈ E+};
I D = {t | IILP |= Ci (t) and H(t)[s] ∈ E};
I B(t)⇒ H(t) denotes the degree to which the implication holds for

the instance t;
I B(t) = min(s1, . . . , sn), with K ∪ E |= Ci (t)[si ];
I H(t) = s with H(t)[s] ∈ E .

I The information gain function uses the above formulas

Gain(cf (r ′), cf (r)) = p ∗ (log2 cf (r ′)− log2 cf (r)) ,

where p is the number of distinct positive examples covered by the
inclusion axiom r that are still covered by r ′.
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Learning Set of Inclusion Axioms

function FOIL-Learn-Set-of-Axioms(H, E+, E−, K): H
begin

1. H ← ∅;
2. while E+ 6= ∅ do
3. r ← FOIL-Learn-One-Axiom(H, E+, E−, K);
4. H ← H∪ {r};
5. E+r ← {e ∈ E+|K ∪ r |= e};
6. E+ ← E+ \ E+r ;
7. endwhile

8. return H
end
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Learning One Inclusion Axiom

function FOIL-Learn-One-Axiom(H, E+, E−, K): r
begin

1. B(x)← >;
2. r ← {B(x)→ H(x)};
3. E−r ← E−;
4. while cf (r) < θ and E−r 6= ∅ do

5. Bbest(x)← B(x);
6. maxgain← 0;
7. foreach l ∈ K do

8. gain← Gain(cf (B(x) ∧ l(x)→ H(x)), cf (B(x)→ H(x)));
9. if gain > maxgain then

10. maxgain← gain;
11. Bbest(x)← B(x) ∧ l(x);
12. endif

13. endforeach

14. r ← {Bbest(x)→ H(x)};
15. E−r ← E−r \ {e ∈ E−|K ∪ r |= e};
16. endwhile

17. return r

end
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A Re�nement Operator

1. Add atomic concept (A)

2. Add complex concept by existential role restriction (∃R.>)
3. Add complex concept by quali�ed existential role restriction (∃R.A)
4. Replace atomic concept (A replaced by A′ if A′ v A)

5. Replace complex concept (∃R.A replaced by ∃R.A′ if A′ v A)
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Example of Hotel Classi�cation: The database

HotelTable
id rank noRooms

h1 3 21

h2 5 123

h3 4 95

RoomTable
id price roomType hotel

r1 60 single h1

r2 90 double h1

r3 80 single h2

r4 120 double h2

r5 70 single h3

r6 90 double h3

Tower
id

t1

Park
id

p1

p2

DistanceTable
id from to time

d1 h1 t1 10

d2 h2 p1 15

d3 h3 p2 5
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Example of Hotel Classi�cation: The ontology

Park v Attraction

Tower v Attraction

Attraction v Site

Hotel v Site
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Example of Hotel Classi�cation: The abstraction statements

Hotel 7→ (h.id). SELECT h.id
FROM HotelTable h

hasRank 7→ (h.id , h.rank). SELECT h.id, h.rank
FROM HotelTable h

cheapPrice 7→ (h.id , r .price)[score]. SELECT h.id, r.price, cheap(r.price) AS score
FROM HotelTable h, RoomTable r
WHERE h.id = r.hotel
ORDER BY score

closeTo 7→ (from, to)[score]. SELECT d.from, d.to closedistance(d.time) AS score
FROM DistanceTable d
ORDER BY score

cheap(p) = leftshoulder(p; 50, 100)

closedistance(d) = leftshoulder(d ; 5, 25)
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Example of Hotel Classi�cation: The learning problem

I H = GoodHotel
I E+ = {GoodHotel(h1)[0.6],GoodHotel(h2)[0.8]}
I E− = {GoodHotel(h3)[0.4]}.
I r0 : > v GoodHotel

r1 : Hotel v GoodHotel

r2 : Hotel u ∃cheapPrice.> v GoodHotel

r3 : Hotel u ∃cheapPrice.> u ∃closeTo.Attraction v GoodHotel

r4 : Hotel u ∃cheapPrice.> u ∃closeTo.Park v GoodHotel

r5 : Hotel u ∃cheapPrice.> u ∃closeTo.Tower v GoodHotel
I Consequence:

I cf (r3) =
0.75⇒0.6+0.4⇒0.8

3
= 0.6+1.0

3
= 0.5333 .

I cf (r4) =
0.4⇒0.8

2
= 0.4

2
= 0.2 .

I cf (r5) =
0.8⇒0.6

2
= 0.6

2
= 0.3 .

I Gain(r4, r3) = 1 ∗ (log2(0.2)− log2(0.5333)) = (−2.3219+ 0.907) =
−1.4149

I Gain(r5, r3) = 1 ∗ (log2(0.3)− log2(0.5333)) = (−1.7369+ 0.907) =
−0.8299

I r5 preferred to r4 as re�nement of r3
I r5 turns out to be consistent w.r.t. E
I r5 becomes part of H
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Related work

I (Shibata et al., 1999; Drobics et al., 2003; Serrurier and Prade,
2007) propose FOIL-like algorithms to learn fuzzy rules.

I (Horváth and Vojtás, 2006) provides a formal study of fuzzy ILP
I Less promising than our proposal from the practical side.

I (Hellmann et al., 2009) faces the problem of inducing equivalence
axioms in a fragment of OWL corresponding to the ALC DL.

I (Konstantopoulos and Charalambidis, 2010) is based on an ad-hoc
translation of fuzzy �ukasiewicz ALC DL constructs into LP and
then uses a conventional ILP method to lean rules.

I The method is not sound as it has been recently shown that the
traduction from fuzzy DLs to LP is incomplete (Motik and Rosati,
2007) and entailment in �ukasiewicz ALC is undecidable (Cerami
and Straccia, 2011).
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Conclusions

I Method for inducing fuzzy DL-Lite inclusion axioms

I Extension of FOIL in a twofold direction
I from crisp to fuzzy
I from rules to inclusion axioms

Ongoing work

I To investigate the formal properties of the re�nement operator

I To investigate the impact of OWA on the proposed ILP approach

Future work

I To implement and experiment our method

I To analyse the e�ect of the di�erent implication functions and other
parameters in the learning process
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