Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods

Laura Giordano¹, Valentina Gliozzi², Nicola Olivetti³, and Gian Luca Pozzato²

¹ Dipartimento di Informatica - Università del Piemonte Orientale "A. Avogadro"
² Dipartimento di Informatica - Università edgli Studi di Torino
³ LSIS-UMR CNRS 6168 Universitè "Paul Cézanne" - Aix-Marseille 3

Introduction

A non-monotonic extension of the low complexity (lightweight) Description Logics \mathcal{EL}^{\perp} and DL-lite_c for reasoning about prototypical properties and inheritance with exceptions

Introduction

- A non-monotonic extension of the low complexity (lightweight) Description Logics \mathcal{EL}^{\perp} and DL-lite_c for reasoning about prototypical properties and inheritance with exceptions
- Basic idea: to extend DLs with a typicality operator T

Introduction

- A non-monotonic extension of the low complexity (lightweight) Description Logics \mathcal{EL}^{\perp} and DL-lite_c for reasoning about prototypical properties and inheritance with exceptions
- Basic idea: to extend DLs with a typicality operator T
- **9** $\mathbf{T}(C)$ singles out the "most normal" instances of the concept C

• knowledge base KB \Rightarrow two components:

- **•** knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts

- knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts
 - ▲ ABox= instances of concepts and roles ⇒ properties and relations of individuals

- knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts
 - ▲ ABox= instances of concepts and roles ⇒ properties and relations of individuals
- **•** TBox \Rightarrow taxonomy of concepts

- knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts
 - ▲ ABox= instances of concepts and roles ⇒ properties and relations of individuals
- **•** TBox \Rightarrow taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance

- knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts
 - ▲ ABox= instances of concepts and roles ⇒ properties and relations of individuals
- **J** TBox \Rightarrow taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- to handle defeasible inheritance needs the integration of some kind of nonmonotonic reasoning mechanism [BH95, BLW06, DLN⁺98, DNR02, ELST, Str93]

- knowledge base KB \Rightarrow two components:
 - TBox=inclusions relations among concepts
 - ▲ ABox= instances of concepts and roles ⇒ properties and relations of individuals
- **•** TBox \Rightarrow taxonomy of concepts
- need of representing prototypical properties and of reasoning about defeasible inheritance
- to handle defeasible inheritance needs the integration of some kind of nonmonotonic reasoning mechanism
 [BH95, BLW06, DLN⁺98, DNR02, ELST, Str93]
- However, all these methods present some difficulties

We propose a logic for defeasible reasoning in DLs

- We propose a logic for defeasible reasoning in DLs
 - DL + a typicality operator **T**

We propose a logic for defeasible reasoning in DLs

- DL + a typicality operator **T**
- meaning of T: (for any concept C) T(C) singles out the "typical" instances of C

We propose a logic for defeasible reasoning in DLs

- DL + a typicality operator **T**
- meaning of T: (for any concept C) T(C) singles out the "typical" instances of C
- semantics of T defined by a set of postulates that are a restatement of Kraus-Lehmann-Magidor axioms of preferential logic P (Representation Theorem [GGOP09])

A KB comprises, in addition to the standard TBox and ABox, a set of assertions of the type $T(C) \sqsubseteq D$ where D is a concept not mentioning T

- A KB comprises, in addition to the standard TBox and ABox, a set of assertions of the type $T(C) \sqsubseteq D$ where D is a concept not mentioning T
- "normally students do not pay taxes" \Rightarrow $\mathbf{T}(Student) \sqsubseteq \neg TaxPayer$

- A KB comprises, in addition to the standard TBox and ABox, a set of assertions of the type $T(C) \sqsubseteq D$ where D is a concept not mentioning T
- "normally students do not pay taxes" \Rightarrow $\mathbf{T}(Student) \sqsubseteq \neg TaxPayer$
- Example: normally a student does not pay taxes, normally a working student pays taxes, but normally a working student having children does not pay taxes (because he is discharged by the government)

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

 $\begin{aligned} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{aligned}$

T is nonmonotonic = $C \sqsubseteq D$ does not imply $\mathbf{T}(C) \sqsubseteq \mathbf{T}(D)$

 $\begin{aligned} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{aligned}$

- **• T** is nonmonotonic = $C \sqsubseteq D$ does not imply $\mathbf{T}(C) \sqsubseteq \mathbf{T}(D)$
- Which inferences?

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

ABox:

1. *Student(john)*

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

- **1.** *Student*(*john*)
- **2.** *Student*(*john*), *Worker*(*john*)

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

- **1.** *Student(john)*
- **2.** *Student*(*john*), *Worker*(*john*)
- **3.** Student(john), Worker(john), $\exists HasChild. \top(john)$

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

- **1.** *Student(john)*
- **2.** *Student*(*john*), *Worker*(*john*)
- **3.** Student(john), Worker(john), $\exists HasChild. \top(john)$
- expected conclusions:

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

- **1.** *Student(john)*
- **2.** *Student*(*john*), *Worker*(*john*)
- **3.** Student(john), Worker(john), \exists HasChild. \top (john)
- expected conclusions:
 - **1.** $\neg TaxPayer(john)$

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

ABox:

- **1.** *Student(john)*
- **2.** *Student*(*john*), *Worker*(*john*)
- **3.** Student(john), Worker(john), $\exists HasChild. \top(john)$

expected conclusions:

- **1.** $\neg TaxPayer(john)$
- **2.** *TaxPayer(john)*

$$\begin{split} \mathbf{T}(Student) &\sqsubseteq \neg TaxPayer \\ \mathbf{T}(Student \sqcap Worker) &\sqsubseteq TaxPayer \\ \mathbf{T}(Student \sqcap Worker \sqcap \exists HasChild.\top) &\sqsubseteq \neg TaxPayer \end{split}$$

ABox:

- **1.** *Student(john)*
- **2.** *Student*(*john*), *Worker*(*john*)
- **3.** Student(john), Worker(john), $\exists HasChild. \top(john)$

expected conclusions:

- **1.** $\neg TaxPayer(john)$
- **2.** *TaxPayer(john)*
- **3.** $\neg TaxPayer(john)$

- We have defined a nonmonotonic inference based on a minimal model semantics
- For DL + T = ALC + T nonmonotonic inference has a high complexity, namely CO-NEXP^{NP}, comparable however with that one of other NMR DL (circumscription)
- We are interested in applying our approach to low-complexity DLs \mathcal{EL}^{\perp} and DL-Lite_{core}.

The logic $\mathcal{EL}^{+\perp}\mathbf{T}$

Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}

- Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}
- Logic \mathcal{EL}^{\perp} of the \mathcal{EL} family

- Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}
- Logic \mathcal{EL}^{\perp} of the \mathcal{EL} family
 - allows for conjunction (\Box) and existential restriction ($\exists R.C$)

- Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}
- Logic \mathcal{EL}^{\perp} of the \mathcal{EL} family
 - allows for conjunction (\Box) and existential restriction ($\exists R.C$)
 - \checkmark allows for \perp

- Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}
- Logic \mathcal{EL}^{\perp} of the \mathcal{EL} family
 - allows for conjunction (\Box) and existential restriction ($\exists R.C$)
 - \checkmark allows for \perp
 - relevant for several applications, in particular in the bio-medical domain (GALEN Medical Knowledge Base, Systemized Nomenclature of Medicine, Gene Ontology) formalized in small extensions of *EL*
The logic $\mathcal{EL}^{+\perp}\mathbf{T}$

- Extension of our approach to Low Complexity DL \mathcal{EL}^{\perp}
- Logic \mathcal{EL}^{\perp} of the \mathcal{EL} family
 - allows for conjunction (\Box) and existential restriction ($\exists R.C$)
 - \checkmark allows for \perp
 - relevant for several applications, in particular in the bio-medical domain (GALEN Medical Knowledge Base, Systemized Nomenclature of Medicine, Gene Ontology) formalized in small extensions of *EL*
 - reasoning in \mathcal{EL} is polynomial-time decidable

Language of $\mathcal{EL}^{\perp}T_{min}$

- Alphabet of
 - concept names \mathcal{C}
 - role names ${\cal R}$
 - individuals O
- **9** Given $A \in C$ and $r \in \mathcal{R}$, we define:

```
C := A \mid \top \mid \bot \mid C \sqcap CC_R := C \mid C_R \sqcap C_R \mid \exists r.CC_L := C_R \mid \mathbf{T}(C)
```

• TBox contains a finite set of concept inclusions $C_L \sqsubseteq C_R$

Example

The reformulation of the previous example in $\mathcal{EL}^{+\perp}\mathbf{T}$ gives the following KB:

 $TaxPayer \sqcap NotTaxPayer \sqsubseteq \bot$ $Parent \sqsubseteq \exists HasChild.\top$ $\exists HasChild.\top \sqsubseteq Parent$ $\mathbf{T}(Student) \sqsubseteq NotTaxPayer$ $\mathbf{T}(Student \sqcap Worker) \sqsubseteq TaxPayer$ $\mathbf{T}(Student \sqcap Worker \sqcap Parent) \sqsubseteq NotTaxPayer$

Language of $DL-Lite_c T_{min}$

- Alphabet of
 - concept names \mathcal{C}

 - individuals \mathcal{O}
- **9** Given $A \in C$ and $r \in \mathcal{R}$, we define:

$$C_L := A \mid \exists R. \top \mid \mathbf{T}(A)$$
$$R := r \mid r^{-}$$
$$C_R := A \mid \neg A \mid \exists R. \top \mid \neg \exists R. \top$$

• TBox contains a finite set of concept inclusions $C_L \sqsubseteq C_R$

Monotonic Semantics

A model \mathcal{M} is a structure $\langle \Delta, <, I \rangle$, where Δ is the domain and

- for each extended concept C, $C^I \subseteq \Delta$, and for each role R $R^I \subseteq \Delta \times \Delta$
- Is an irreflexive and transitive relation over Δ satisfying the Smoothness Condition (well-foundness)
- Is multilinear (or weakly connected): if u < z and v < z, then either u = v or u < v or v < u

Semantics of the T operator: $(\mathbf{T}(C))^I = Min_{\leq}(C^I)$. For the other operators C^I is defined in the usual way (in particular, $(r^-)^I = \{(a, b) \mid (b, a) \in r^I\}$)

A model satisfying a Knowledge Base (TBox,ABox) is defined as usual

 \checkmark We introduce a new modality \Box

- We introduce a new modality \Box
 - we interpret the relation < as an accessibility relation</p>

- We introduce a new modality \Box
 - we interpret the relation < as an accessibility relation
 - by the Smoothness Condition (well-foundness), it turns out that
 has the properties of Gödel-Löb modal logic G

- We introduce a new modality \Box
 - we interpret the relation < as an accessibility relation</p>
 - by the Smoothness Condition (well-foundness), it turns out that
 has the properties of Gödel-Löb modal logic G
 - $(\Box C)^I = \{ x \in \Delta \mid \text{for every } y \in \Delta, \text{ if } y < x \text{ then } y \in C^I \}$

- We introduce a new modality \Box
 - we interpret the relation < as an accessibility relation</p>
 - by the Smoothness Condition (well-foundness), it turns out that
 has the properties of Gödel-Löb modal logic G
 - $(\Box C)^I = \{x \in \Delta \mid \text{for every } y \in \Delta, \text{ if } y < x \text{ then } y \in C^I\}$
- Thus $\mathbf{T}(C)^I = (C \sqcap \Box \neg C)^I$

• $\mathcal{EL}^{+\perp}\mathbf{T}$ allows one to reason about typicality

- **9** $\mathcal{EL}^{+\perp}\mathbf{T}$ allows one to reason about typicality
- e.g. we can consistently express that student, working student and working student with children have a different status as taxpayers

- **9** $\mathcal{EL}^{+\perp}\mathbf{T}$ allows one to reason about typicality
- e.g. we can consistently express that student, working student and working student with children have a different status as taxpayers
- but we cannot derive anything about the prototypical properties of a given individual, unless the KB contains explicit tipicality assumptions concerning this individual

 $TaxPayer \sqcap NotTaxPayer \sqsubseteq \bot$ $\mathbf{T}(Student) \sqsubseteq NotTaxPayer$ $\mathbf{T}(Student \sqcap Worker) \sqsubseteq TaxPayer$ $\mathbf{T}(Student \sqcap Worker \sqcap Parent) \sqsubseteq NotTaxPayer$

 $TaxPayer \sqcap NotTaxPayer \sqsubseteq \bot$ $\mathbf{T}(Student) \sqsubseteq NotTaxPayer$ $\mathbf{T}(Student \sqcap Worker) \sqsubseteq TaxPayer$ $\mathbf{T}(Student \sqcap Worker \sqcap Parent) \sqsubseteq NotTaxPayer$

What can we conclude about *john*?

 $TaxPayer \sqcap NotTaxPayer \sqsubseteq \bot$ $\mathbf{T}(Student) \sqsubseteq NotTaxPayer$ $\mathbf{T}(Student \sqcap Worker) \sqsubseteq TaxPayer$ $\mathbf{T}(Student \sqcap Worker \sqcap Parent) \sqsubseteq NotTaxPayer$

- What can we conclude about *john*?
 - If $\mathbf{T}(Student \sqcap Worker \sqcap Parent)(john) \in ABox$, then in $\mathcal{EL}^{+\perp}\mathbf{T}$ we can conclude NotTaxPayer(john)

 $TaxPayer \sqcap NotTaxPayer \sqsubseteq \bot$ $\mathbf{T}(Student) \sqsubseteq NotTaxPayer$ $\mathbf{T}(Student \sqcap Worker) \sqsubseteq TaxPayer$ $\mathbf{T}(Student \sqcap Worker \sqcap Parent) \sqsubseteq NotTaxPayer$

What can we conclude about *john*?

- If $\mathbf{T}(Student \sqcap Worker \sqcap Parent)(john) \in ABox$, then in $\mathcal{EL}^{+\perp}\mathbf{T}$ we can conclude NotTaxPayer(john)
- If $(Student \sqcap Worker \sqcap Parent)(john) \in ABox, we cannot$ derive NotTaxPayer(john)

We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB

- We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB
- In order to maximize the typicality of instances:

- We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB
- In order to maximize the typicality of instances:
 - we define a preference relation on models

- We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB
- In order to maximize the typicality of instances:
 - we define a preference relation on models
 - we introduce a semantic entailment determined by minimal models

- We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB
- In order to maximize the typicality of instances:
 - we define a preference relation on models
 - we introduce a semantic entailment determined by minimal models
- Informally, we prefer a model \mathcal{M} to a model \mathcal{N} if \mathcal{M} contains more typical instances of concepts than \mathcal{N}

- We would like to infer that individuals are typical instances of the concepts they belong to, if consistent with the KB
- In order to maximize the typicality of instances:
 - we define a preference relation on models
 - we introduce a semantic entailment determined by minimal models
- Informally, we prefer a model \mathcal{M} to a model \mathcal{N} if \mathcal{M} contains more typical instances of concepts than \mathcal{N}
- Given a KB, we consider a finite set \mathcal{L}_T of concepts occurring in the KB, the typicality of whose instances we want to maximize

- $\mathcal{M}_{\mathcal{L}_T}^{\square^-} = \{ (a, \neg \square \neg C) \mid a \in (\neg \square \neg C)^I, \text{ with } a \in \Delta, C \in \mathcal{L}_T \}$
- Given two models $\mathcal{M} = \langle \Delta_{\mathcal{M}}, <_{\mathcal{M}}, I_{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \Delta_{\mathcal{N}}, <_{\mathcal{N}}, I_{\mathcal{N}} \rangle$ of KB, we say that \mathcal{M} is preferred to \mathcal{N} w.r.t. \mathcal{L}_T ($\mathcal{M} <_{\mathcal{L}_T} \mathcal{N}$), if:

$$\mathcal{M}_{\mathcal{L}_T}^{\square^-} = \{ (a, \neg \square \neg C) \mid a \in (\neg \square \neg C)^I, \text{ with } a \in \Delta, C \in \mathcal{L}_T \}$$

• Given two models $\mathcal{M} = \langle \Delta_{\mathcal{M}}, <_{\mathcal{M}}, I_{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \Delta_{\mathcal{N}}, <_{\mathcal{N}}, I_{\mathcal{N}} \rangle$ of KB, we say that \mathcal{M} is preferred to \mathcal{N} w.r.t. \mathcal{L}_T ($\mathcal{M} <_{\mathcal{L}_T} \mathcal{N}$), if:

•
$$\Delta_{\mathcal{M}} = \Delta_{\mathcal{N}}$$

$$\mathcal{M}_{\mathcal{L}_T}^{\Box^-} = \{ (a, \neg \Box \neg C) \mid a \in (\neg \Box \neg C)^I, \text{ with } a \in \Delta, C \in \mathcal{L}_T \}$$

• Given two models $\mathcal{M} = \langle \Delta_{\mathcal{M}}, <_{\mathcal{M}}, I_{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \Delta_{\mathcal{N}}, <_{\mathcal{N}}, I_{\mathcal{N}} \rangle$ of KB, we say that \mathcal{M} is preferred to \mathcal{N} w.r.t. \mathcal{L}_T ($\mathcal{M} <_{\mathcal{L}_T} \mathcal{N}$), if:

•
$$\Delta_{\mathcal{M}} = \Delta_{\mathcal{N}}$$

•
$$\mathcal{M}_{\mathcal{L}_T}^{\square^-} \subset \mathcal{N}_{\mathcal{L}_T}^{\square^-}$$

$$\mathcal{M}_{\mathcal{L}_T}^{\square^-} = \{ (a, \neg \square \neg C) \mid a \in (\neg \square \neg C)^I, \text{ with } a \in \Delta, C \in \mathcal{L}_T \}$$

• Given two models $\mathcal{M} = \langle \Delta_{\mathcal{M}}, <_{\mathcal{M}}, I_{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \Delta_{\mathcal{N}}, <_{\mathcal{N}}, I_{\mathcal{N}} \rangle$ of KB, we say that \mathcal{M} is preferred to \mathcal{N} w.r.t. \mathcal{L}_T ($\mathcal{M} <_{\mathcal{L}_T} \mathcal{N}$), if:

•
$$\Delta_{\mathcal{M}} = \Delta_{\mathcal{N}}$$

•
$$\mathcal{M}_{\mathcal{L}_T}^{\Box^-} \subset \mathcal{N}_{\mathcal{L}_T}^{\Box^-}$$

• $a^I = a^{I'}$ for all $a \in \mathcal{O}$

$$\mathcal{M}_{\mathcal{L}_T}^{\square^-} = \{ (a, \neg \square \neg C) \mid a \in (\neg \square \neg C)^I, \text{ with } a \in \Delta, C \in \mathcal{L}_T \}$$

• Given two models $\mathcal{M} = \langle \Delta_{\mathcal{M}}, <_{\mathcal{M}}, I_{\mathcal{M}} \rangle$ and $\mathcal{N} = \langle \Delta_{\mathcal{N}}, <_{\mathcal{N}}, I_{\mathcal{N}} \rangle$ of KB, we say that \mathcal{M} is preferred to \mathcal{N} w.r.t. \mathcal{L}_T ($\mathcal{M} <_{\mathcal{L}_T} \mathcal{N}$), if:

•
$$\Delta_{\mathcal{M}} = \Delta_{\mathcal{N}}$$

•
$$\mathcal{M}_{\mathcal{L}_T}^{\Box^-} \subset \mathcal{N}_{\mathcal{L}_T}^{\Box^-}$$

$$ullet \ a^I = a^{I'}$$
 for all $a \in \mathcal{O}$

• A model \mathcal{M} is a minimal model for KB (with respect to \mathcal{L}_T) if it is a model of KB and there is no a model \mathcal{M}' of KB such that $\mathcal{M}' <_{\mathcal{L}_T} \mathcal{M}$

Query F : either a formula C(a) or a subsumption $C \sqsubseteq D$

- **Query** F : either a formula C(a) or a subsumption $C \sqsubseteq D$
- Minimal Entailment in $\mathcal{EL}^{\perp}\mathbf{T}_{min}$

- **Query** F : either a formula C(a) or a subsumption $C \sqsubseteq D$
- Minimal Entailment in $\mathcal{EL}^{\perp}T_{min}$
- A query *F* is minimally entailed from KB w.r.t. \mathcal{L}_T : KB $\models_{\mathcal{EL}^{\perp}T_{min}} F$ if *F* holds in all models of KB minimal w.r.t. \mathcal{L}_T

Example

Let $\mathcal{L}_{\mathbf{T}} = \{ Student, Student \sqcap Worker, Student \sqcap Worker \sqcap Parent \}$

- $KB \cup \{Student(john)\} \models_{\mathcal{EL}^{\perp}\mathbf{T}min} NotTaxPayer(john)$
- $KB \cup \{Student(john), Worker(john)\} \models_{\mathcal{EL}^{\perp}\mathbf{T}} \min TaxPayer(john)$
- $KB \cup \{Student(john), Worker(john), Parent(john)\} \models_{\mathcal{EL}^{\perp}\mathbf{T}} \min NotTaxPayer(john)$

Complexity results for $\mathcal{EL}^{\perp}\mathbf{T}_{min}$

- Entailment for $\mathcal{EL}^{+\perp}T$ is CoNP , but
 - Theorem 3.1 in [GGOP]. Entailment in $\mathcal{EL}^{\perp}\mathbf{T}_{min}$ is EXPTIME-hard .
- We need further restrctions
- One possibility: Left Local *EL*[⊥]T_{min} (considered for circumscriptive extension [BLW06])

Language of Left Local $\mathcal{EL}^{\perp}T_{\text{min}}$

- Alphabet of
 - concept names \mathcal{C}

 - individuals O
- **9** Given $A \in C$ and $r \in \mathcal{R}$, we define:

```
C := A \mid \top \mid \bot \mid C \sqcap C

C_R := C \mid C_R \sqcap C_R \mid \exists r.C

C_L^{LL} := C \mid C_L^{LL} \sqcap C_L^{LL} \mid \exists r.\top \mid \mathbf{T}(C)
```

• TBox contains a finite set of concept inclusions $C_L^{LL} \sqsubseteq C_R$

Complexity results for Left Local $\mathcal{EL}^{\perp}T_{min}$

- Small model theorem (Theorem 3.11 in [GGOP]). KB $\models_{\mathcal{EL}^{\perp}T_{min}} F$ if and only if F holds in all models of KB whose size is polynomial in the size of KB.
- Theorem 3.12 in [GGOP]. If KB is Left Local, the problem of deciding whether KB $\models_{\mathcal{EL}^{\perp}\mathbf{T}_{min}} F$ is in Π_2^p .

A small model theorem and a similar complexity result can be proved for DL-Lite $_{c}T_{min}$ [GGOP]
Complexity results for Left Local $\mathcal{EL}^{\perp}\mathbf{T}_{min}$

- Small model theorem (Theorem 3.11 in [GGOP]). KB $\models_{\mathcal{EL}^{\perp}T_{min}} F$ if and only if F holds in all models of KB whose size is polynomial in the size of KB.
- Theorem 3.12 in [GGOP]. If KB is Left Local, the problem of deciding whether KB $\models_{\mathcal{EL}^{\perp}\mathbf{T}_{min}} F$ is in Π_2^p .

A small model theorem and a similar complexity result can be proved for DL-Lite $_{c}T_{min}$ [GGOP]

Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}\mathbf{T}}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)

- Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)
 - extension of the "standard" tableau calculus for \mathcal{ALC}

- Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)
 - extension of the "standard" tableau calculus for \mathcal{ALC}
 - $TAB_{min}^{\mathcal{EL}^{\perp}T}$ tries to build an open branch representing a minimal model satisfying KB $\cup \{\neg F\}$

- Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)
 - extension of the "standard" tableau calculus for \mathcal{ALC}
 - $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}\mathbf{T}}$ tries to build an open branch representing a minimal model satisfying KB $\cup \{\neg F\}$
 - two-phase computation:

- Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)
 - extension of the "standard" tableau calculus for \mathcal{ALC}
 - $TAB_{min}^{\mathcal{EL}^{\perp}T}$ tries to build an open branch representing a minimal model satisfying KB $\cup \{\neg F\}$
 - two-phase computation:
 - 1. Phase 1: $\mathcal{TAB}_{PH1}^{\mathcal{EL}^{\perp}\mathbf{T}}$ verifies whether KB $\cup \{\neg F\}$ is satisfiable in an $\mathcal{EL}^{+^{\perp}\mathbf{T}}$ model, building candidate models

- Tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for deciding whether a query F is minimally entailed from a KB (TBox,ABox)
 - extension of the "standard" tableau calculus for \mathcal{ALC}
 - $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}\mathbf{T}}$ tries to build an open branch representing a minimal model satisfying KB $\cup \{\neg F\}$
 - two-phase computation:
 - 1. Phase 1: $\mathcal{TAB}_{PH1}^{\mathcal{EL}^{\perp}\mathbf{T}}$ verifies whether KB $\cup \{\neg F\}$ is satisfiable in an $\mathcal{EL}^{+^{\perp}\mathbf{T}}$ model, building candidate models
 - 2. Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$ checks whether the candidate models found in Phase 1 are minimal models of KB

Given a knowledge base (TBox,ABox), tableaux nodes of $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}\mathbf{T}}$ are called constraint systems and have the form $\langle S \mid U \mid W \rangle$, where :

- Given a knowledge base (TBox,ABox), tableaux nodes of $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ are called constraint systems and have the form $\langle S \mid U \mid W \rangle$, where :
 - $S = \{a: C \mid C(a) \in ABox\} \cup \{a \xrightarrow{R} b \mid aRb \in ABox\}$

- Given a knowledge base (TBox,ABox), tableaux nodes of $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ are called constraint systems and have the form $\langle S \mid U \mid W \rangle$, where :
 - $S = \{a : C \mid C(a) \in ABox\} \cup \{a \xrightarrow{R} b \mid aRb \in ABox\}$
 - $U = \{ C \sqsubseteq D^{\emptyset} \mid C \sqsubseteq D \in TBox \}$

- Given a knowledge base (TBox,ABox), tableaux nodes of $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ are called constraint systems and have the form $\langle S \mid U \mid W \rangle$, where :
 - $S = \{a : C \mid C(a) \in ABox\} \cup \{a \xrightarrow{R} b \mid aRb \in ABox\}$
 - $U = \{ C \sqsubseteq D^{\emptyset} \mid C \sqsubseteq D \in TBox \}$
 - W is a set of labels x_C used by existential rules

Special Existential Rules

The rule (\exists^+) is split in the following two rules:

Special Rule for (\square^-)

$$\overline{S} = S, u : \neg \Box \neg C_1, \dots, u : \neg \Box \neg C_n.$$

$$S_{u \to y}^M = \{y : \neg D, y : \Box \neg D \mid u : \Box \neg D \in S\} \text{ and, for } k = 1, 2, \dots, n,$$

$$\overline{S}_{u \to y}^{\Box^{-k}} = \{y : \neg \Box \neg C_j \sqcup C_j \mid u : \neg \Box \neg C_j \in \overline{S} \land j \neq k\}.$$

$$\frac{\langle S, u : \neg \Box \neg C_1, \neg \Box \neg C_2, \dots, u : \neg \Box \neg C_n \mid U \mid W \rangle}{\langle S, x : C_k, x : \Box \neg C_k, S_{u \to x}^M, \overline{S}_{u \to x}^{\Box^{-k}} \mid U \mid W \rangle}$$

$$\langle S, y_1 : C_k, y_1 : \Box \neg C_k, S_{u \to y_1}^M, \overline{S}_{u \to y_1}^{\Box^{-k}} \mid U \mid W \rangle \cdots \langle S, y_m : C_k, y_m : \Box \neg C_k, S_{u \to y_m}^M, \overline{S}_{u \to y_m}^{\Box^{-k}} \mid U \mid W \rangle }$$

for all k = 1, 2, ..., n, where $y_1, ..., y_m$ are all the labels occurring in S and x is new. Rule (\Box^-) contains:

In branches, one for each
$$u : \neg \Box \neg C_k$$
 in \overline{S} ;

• other $n \times m$ branches, where m is the number of labels occurring in S, one for each label y_i and for each $u : \neg \Box \neg C_k$ in \overline{S}

Phase 1: $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

● for each open branch B built by $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$, verifies if it is a minimal model of the KB

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- for each open branch B built by $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$, verifies if it is a minimal model of the KB
- Siven an open branch **B** of a tableau built from $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$, we define:

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- for each open branch B built by $TAB_{PH1}^{\mathcal{EL}\perp T}$, verifies if it is a minimal model of the KB
- Siven an open branch **B** of a tableau built from $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$, we define:
 - $\mathcal{D}(\mathbf{B})$ as the set of labels occurring on \mathbf{B}

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- for each open branch B built by $TAB_{PH1}^{\mathcal{EL}\perp T}$, verifies if it is a minimal model of the KB
- Siven an open branch **B** of a tableau built from $TAB_{PH1}^{\mathcal{EL}^{\perp}T}$, we define:
 - $\mathcal{D}(\mathbf{B})$ as the set of labels occurring on \mathbf{B}

•
$$\mathbf{B}^{\square^-} = \{x : \neg \square \neg C \mid x : \neg \square \neg C \text{ occurs in } \mathbf{B}\}$$

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

• A tableau of $\mathcal{TAB}_{PH2}^{\mathcal{EL}^{\perp}\mathbf{T}}$ is a tree whose nodes are triples of the form $\langle S \mid U \mid K \rangle$

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- ▲ A tableau of $\mathcal{TAB}_{PH2}^{\mathcal{EL}^{\perp}T}$ is a tree whose nodes are triples of the form $\langle S \mid U \mid K \rangle$
- $\langle S \mid U \rangle$ is a constraint system (as in $\mathcal{TAB}_{PH1}^{\mathcal{EL}^{\perp}\mathbf{T}}$)

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- A tableau of $\mathcal{TAB}_{PH2}^{\mathcal{EL}^{\perp}\mathbf{T}}$ is a tree whose nodes are triples of the form $\langle S \mid U \mid K \rangle$
- $\langle S \mid U \rangle$ is a constraint system (as in $\mathcal{TAB}_{PH1}^{\mathcal{EL}^{\perp}\mathbf{T}}$)
- \blacktriangleright K contains formulas of the form $x : \neg \Box \neg C$, with $C \in \mathcal{L}_T$

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

- ▲ A tableau of $\mathcal{TAB}_{PH2}^{\mathcal{EL}^{\perp}T}$ is a tree whose nodes are triples of the form $\langle S \mid U \mid K \rangle$
- $\langle S \mid U \rangle$ is a constraint system (as in $TAB_{PH1}^{\mathcal{EL} \perp T}$)
- \blacktriangleright K contains formulas of the form $x : \neg \Box \neg C$, with $C \in \mathcal{L}_T$
- Basic idea: given an open B built by $TAB_{PH1}^{\mathcal{EL}\perp T}$, K is initialized with B^{\Box^-} in order to build smaller models

Phase 2: $TAB_{PH2}^{\mathcal{EL}^{\perp}T}$

The Tableau calculus $TAB_{min}^{\mathcal{EL}^{\perp}T}$

- $\langle S \mid U \mid \emptyset \rangle$ is the corresponding constraint system of KB
- \checkmark F= query
- S'= set of constraints obtained by adding to S the constraint corresponding to ¬F
- The calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ checks whether a query *F* is minimally entailed from a KB by means of the following procedure:
 - (phase 1) the calculus $\mathcal{TAB}_{PH1}^{\mathcal{EL}^{\perp}\mathbf{T}}$ is applied to $\langle S' \mid U \mid \emptyset \rangle$;
 - if, for each branch B built by $\mathcal{TAB}_{PH1}^{\mathcal{EL}\perp T}$, either
 - (i) B is closed or
 - (ii) (phase 2) the tableau built by the calculus $\mathcal{TAB}_{PH2}^{\mathcal{EL}^{\perp}T}$ for $\langle S \mid U \mid \mathbf{B}^{\Box^{-}} \rangle$ is open,

then $\mathsf{KB} \models_{\mathcal{EL}^{\perp}\mathbf{T}\min} F$, otherwise $\mathsf{KB} \not\models_{\mathcal{EL}^{\perp}\mathbf{T}\min} F$.

An example

An example

An example

- **•** Theorem: $TAB_{min}^{\mathcal{EL}^{\perp}T}$ is a sound and complete decision procedure for verifying if KB $\models_{\mathcal{EL}^{\perp}T_{min}} F$.
- **Proposition**: Given a KB and a query F, the problem of checking whether KB $\cup \{\neg F\}$ is satisfiable is in NP.
- **Theorem**: The problem of deciding whether $\mathsf{KB} \models_{\mathcal{EL}^{\perp}\mathbf{T}\min} F$ by means of $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}\mathbf{T}}$ is in Π_2^p . (matching known complexity)

Conclusions

- We have provided a two-phase tableau calculus $\mathcal{TAB}_{min}^{\mathcal{EL}^{\perp}T}$ for minimal entailment in the Left Local fragment of the logic $\mathcal{EL}^{\perp}T_{min}$ of the family of low complexity DLs \mathcal{EL}^{\perp} .
- The proposed calculus matches the known complexity results: Π_2^p
- A similar tableau procedure can be defined for DL-lite_cT fragment for which a Π_2^p upper bound for minimal entailment has been shown [GGOP].
- Study optimizations.
- Find polynomial fragments for minimal entailment, in analogy with circumscription [PFS10].

References

- [BH95] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge representation formalisms. <u>J. Autom. Reasoning</u>, 14(1):149–180, 1995.
- [BLW06] P. A. Bonatti, C. Lutz, and F. Wolter. Description logics with circumscription. In <u>KR</u>, pages 400–410, 2006.
- [DLN⁺98] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic operator for description logics. Artif. Intell., 100(1-2):225–274, 1998.
- [DNR02] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge and negation as failure. <u>ACM Trans. Comput. Log.</u>, 3(2):177–225, 2002.
- [ELST] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set programming with description logics for the semantic web. In <u>KR 2004, 141-151</u>.
- [GGOP] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning about typicality in low complexity DLs: the logics $\mathcal{EL}^{\perp}\mathbf{T}_{min}$ and DL-lite_c \mathbf{T}_{min} . In <u>IJCAI 2011, 894-899</u>.
- [GGOP09] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. ALC + T_{min}: a
 preferential extension of description logics. <u>Fundamenta Informaticae</u>, 96:1–32, _
 2009.
- Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods p. 37

Thank you!!!