
Nonmonotonic Extensions of Low
Complexity DLs: Complexity
Results and Proof Methods

Laura Giordano1, Valentina Gliozzi2, Nicola Olivetti3, and Gian Luca Pozzato2

1 Dipartimento di Informatica - Università del Piemonte Orientale “A. Avogadro”
2 Dipartimento di Informatica - Università edgli Studi di Torino

3 LSIS-UMR CNRS 6168 Universitè “Paul Cézanne” - Aix-Marseille 3

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 1

Introduction

A non-monotonic extension of the low complexity (lightweight)

Description Logics EL⊥ and DL-litec for reasoning about

prototypical properties and inheritance with exceptions

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 2

Introduction

A non-monotonic extension of the low complexity (lightweight)

Description Logics EL⊥ and DL-litec for reasoning about

prototypical properties and inheritance with exceptions

Basic idea: to extend DLs with a typicality operator T

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 2

Introduction

A non-monotonic extension of the low complexity (lightweight)

Description Logics EL⊥ and DL-litec for reasoning about

prototypical properties and inheritance with exceptions

Basic idea: to extend DLs with a typicality operator T

T(C) singles out the “most normal” instances of the concept C

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 2

Introduction and recall to DLs

knowledge base KB ⇛ two components:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

ABox= instances of concepts and roles ⇛ properties and

relations of individuals

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

ABox= instances of concepts and roles ⇛ properties and

relations of individuals

TBox ⇛ taxonomy of concepts

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

ABox= instances of concepts and roles ⇛ properties and

relations of individuals

TBox ⇛ taxonomy of concepts

need of representing prototypical properties and of reasoning

about defeasible inheritance

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

ABox= instances of concepts and roles ⇛ properties and

relations of individuals

TBox ⇛ taxonomy of concepts

need of representing prototypical properties and of reasoning

about defeasible inheritance

to handle defeasible inheritance needs the integration of some

kind of nonmonotonic reasoning mechanism

[BH95, BLW06, DLN+98, DNR02, ELST, Str93]

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Introduction and recall to DLs

knowledge base KB ⇛ two components:

TBox=inclusions relations among concepts

ABox= instances of concepts and roles ⇛ properties and

relations of individuals

TBox ⇛ taxonomy of concepts

need of representing prototypical properties and of reasoning

about defeasible inheritance

to handle defeasible inheritance needs the integration of some

kind of nonmonotonic reasoning mechanism

[BH95, BLW06, DLN+98, DNR02, ELST, Str93]

However, all these methods present some difficulties

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 3

Logic of typicality

We propose a logic for defeasible reasoning in DLs

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 4

Logic of typicality

We propose a logic for defeasible reasoning in DLs

DL + a typicality operator T

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 4

Logic of typicality

We propose a logic for defeasible reasoning in DLs

DL + a typicality operator T

meaning of T: (for any concept C) T(C) singles out the

“typical” instances of C

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 4

Logic of typicality

We propose a logic for defeasible reasoning in DLs

DL + a typicality operator T

meaning of T: (for any concept C) T(C) singles out the

“typical” instances of C

semantics of T defined by a set of postulates that are a

restatement of Kraus-Lehmann-Magidor axioms of preferential

logic P (Representation Theorem [GGOP09])

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 4

Logic of typicality

A KB comprises, in addition to the standard TBox and ABox, a

set of assertions of the type T(C) ⊑ D where D is a concept

not mentioning T

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 5

Logic of typicality

A KB comprises, in addition to the standard TBox and ABox, a

set of assertions of the type T(C) ⊑ D where D is a concept

not mentioning T

“normally students do not pay taxes” ⇛

T(Student) ⊑ ¬TaxPayer

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 5

Logic of typicality

A KB comprises, in addition to the standard TBox and ABox, a

set of assertions of the type T(C) ⊑ D where D is a concept

not mentioning T

“normally students do not pay taxes” ⇛

T(Student) ⊑ ¬TaxPayer

Example: normally a student does not pay taxes, normally a

working student pays taxes, but normally a working student

having children does not pay taxes (because he is discharged

by the government)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 5

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 6

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

T is nonmonotonic = C ⊑ D does not imply T(C) ⊑ T(D)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 6

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

T is nonmonotonic = C ⊑ D does not imply T(C) ⊑ T(D)

Which inferences?

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 6

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

3. Student(john),Worker(john), ∃HasChild .⊤(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

3. Student(john),Worker(john), ∃HasChild .⊤(john)

expected conclusions:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

3. Student(john),Worker(john), ∃HasChild .⊤(john)

expected conclusions:

1. ¬TaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

3. Student(john),Worker(john), ∃HasChild .⊤(john)

expected conclusions:

1. ¬TaxPayer(john)

2. TaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

T(Student) ⊑ ¬TaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer

ABox:

1. Student(john)

2. Student(john),Worker(john)

3. Student(john),Worker(john), ∃HasChild .⊤(john)

expected conclusions:

1. ¬TaxPayer(john)

2. TaxPayer(john)

3. ¬TaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 7

Logic of typicality

We have defined a nonmonotonic inference based on a

minimal model semantics

For DL + T = ALC + T nonmonotonic inference has a high

complexity, namely CO-NEXPNP , comparable however with

that one of other NMR DL (circumscription)

We are interested in applying our approach to low-complexity

DLs EL⊥ and DL-Litecore .

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 8

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Logic EL⊥ of the EL family

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Logic EL⊥ of the EL family

allows for conjunction (⊓) and existential restriction (∃R.C)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Logic EL⊥ of the EL family

allows for conjunction (⊓) and existential restriction (∃R.C)

allows for ⊥

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Logic EL⊥ of the EL family

allows for conjunction (⊓) and existential restriction (∃R.C)

allows for ⊥

relevant for several applications, in particular in the

bio-medical domain (GALEN Medical Knowledge Base,

Systemized Nomenclature of Medicine, Gene Ontology)

formalized in small extensions of EL

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

The logic EL+⊥
T

Extension of our approach to Low Complexity DL EL⊥

Logic EL⊥ of the EL family

allows for conjunction (⊓) and existential restriction (∃R.C)

allows for ⊥

relevant for several applications, in particular in the

bio-medical domain (GALEN Medical Knowledge Base,

Systemized Nomenclature of Medicine, Gene Ontology)

formalized in small extensions of EL

reasoning in EL is polynomial-time decidable

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 9

Language of EL⊥
Tmin

Alphabet of

concept names C

role names R

individuals O

Given A ∈ C and r ∈ R, we define:

C := A | ⊤ | ⊥ | C ⊓ C

CR := C | CR ⊓ CR | ∃r.C

CL := CR | T(C)

TBox contains a finite set of concept inclusions CL ⊑ CR

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 10

Example

The reformulation of the previous example in EL+⊥

T gives the

following KB:

TaxPayer ⊓ NotTaxPayer ⊑ ⊥

Parent ⊑ ∃HasChild .⊤

∃HasChild .⊤ ⊑ Parent

T(Student) ⊑ NotTaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ Parent) ⊑ NotTaxPayer

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 11

Language of DL-LitecTmin

Alphabet of

concept names C

role names R

individuals O

Given A ∈ C and r ∈ R, we define:

CL := A | ∃R.⊤ | T(A)

R := r | r−

CR := A | ¬A | ∃R.⊤ | ¬∃R.⊤

TBox contains a finite set of concept inclusions CL ⊑ CR

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 12

Monotonic Semantics

A model M is a structure 〈∆, <, I〉, where ∆ is the domain and

for each extended concept C, CI ⊆ ∆, and for each role R

RI ⊆ ∆ × ∆

< is an irreflexive and transitive relation over ∆ satisfying the

Smoothness Condition (well-foundness)

< is multilinear (or weakly connected): if u < z and v < z, then

either u = v or u < v or v < u

Semantics of the T operator: (T(C))I = Min<(CI) . For the other

operators CI is defined in the usual way (in particular,

(r−)I = {(a, b) | (b, a) ∈ rI})

A model satisfying a Knowledge Base (TBox,ABox) is defined as
usual

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 13

Modal interpretation

We introduce a new modality �

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 14

Modal interpretation

We introduce a new modality �

we interpret the relation < as an accessibility relation

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 14

Modal interpretation

We introduce a new modality �

we interpret the relation < as an accessibility relation

by the Smoothness Condition (well-foundness), it turns out

that � has the properties of Gödel-Löb modal logic G

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 14

Modal interpretation

We introduce a new modality �

we interpret the relation < as an accessibility relation

by the Smoothness Condition (well-foundness), it turns out

that � has the properties of Gödel-Löb modal logic G

(�C)I = {x ∈ ∆ | for every y ∈ ∆, if y < x then y ∈ CI}

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 14

Modal interpretation

We introduce a new modality �

we interpret the relation < as an accessibility relation

by the Smoothness Condition (well-foundness), it turns out

that � has the properties of Gödel-Löb modal logic G

(�C)I = {x ∈ ∆ | for every y ∈ ∆, if y < x then y ∈ CI}

Thus T(C)I = (C ⊓ �¬C)I

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 14

Weakness of monotonic semantics

EL+⊥

T allows one to reason about typicality

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 15

Weakness of monotonic semantics

EL+⊥

T allows one to reason about typicality

e.g. we can consistently express that student, working student

and working student with children have a different status as

taxpayers

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 15

Weakness of monotonic semantics

EL+⊥

T allows one to reason about typicality

e.g. we can consistently express that student, working student

and working student with children have a different status as

taxpayers

but we cannot derive anything about the prototypical properties

of a given individual, unless the KB contains explicit tipicality

assumptions concerning this individual

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 15

Weakness of monotonic semantics

TaxPayer ⊓ NotTaxPayer ⊑ ⊥

T(Student) ⊑ NotTaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ Parent) ⊑ NotTaxPayer

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 16

Weakness of monotonic semantics

TaxPayer ⊓ NotTaxPayer ⊑ ⊥

T(Student) ⊑ NotTaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ Parent) ⊑ NotTaxPayer

What can we conclude about john?

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 16

Weakness of monotonic semantics

TaxPayer ⊓ NotTaxPayer ⊑ ⊥

T(Student) ⊑ NotTaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ Parent) ⊑ NotTaxPayer

What can we conclude about john?

If T(Student ⊓ Worker ⊓ Parent)(john) ∈ ABox, then in

EL+⊥

T we can conclude NotTaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 16

Weakness of monotonic semantics

TaxPayer ⊓ NotTaxPayer ⊑ ⊥

T(Student) ⊑ NotTaxPayer

T(Student ⊓ Worker) ⊑ TaxPayer

T(Student ⊓ Worker ⊓ Parent) ⊑ NotTaxPayer

What can we conclude about john?

If T(Student ⊓ Worker ⊓ Parent)(john) ∈ ABox, then in

EL+⊥

T we can conclude NotTaxPayer(john)

If (Student ⊓ Worker ⊓ Parent)(john) ∈ ABox, we cannot

derive NotTaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 16

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

In order to maximize the typicality of instances:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

In order to maximize the typicality of instances:

we define a preference relation on models

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

In order to maximize the typicality of instances:

we define a preference relation on models

we introduce a semantic entailment determined by minimal

models

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

In order to maximize the typicality of instances:

we define a preference relation on models

we introduce a semantic entailment determined by minimal

models

Informally, we prefer a model M to a model N if M contains

more typical instances of concepts than N

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

We would like to infer that individuals are typical instances of

the concepts they belong to, if consistent with the KB

In order to maximize the typicality of instances:

we define a preference relation on models

we introduce a semantic entailment determined by minimal

models

Informally, we prefer a model M to a model N if M contains

more typical instances of concepts than N

Given a KB, we consider a finite set LT of concepts occurring in

the KB, the typicality of whose instances we want to maximize

LT contains at least all concepts C such that T(C) occurs in

the KB or in the query

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 17

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Given two models M = 〈∆M, <M, IM〉 and

N = 〈∆N , <N , IN 〉 of KB, we say that M is preferred to N

w.r.t. LT (M <LT
N), if:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Given two models M = 〈∆M, <M, IM〉 and N = 〈∆N , <N , IN 〉

of KB, we say that M is preferred to N w.r.t. LT (M <LT
N), if:

∆M = ∆N

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Given two models M = 〈∆M, <M, IM〉 and N = 〈∆N , <N , IN 〉

of KB, we say that M is preferred to N w.r.t. LT (M <LT
N), if:

∆M = ∆N

M�−

LT
⊂ N�−

LT

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Given two models M = 〈∆M, <M, IM〉 and N = 〈∆N , <N , IN 〉

of KB, we say that M is preferred to N w.r.t. LT (M <LT
N), if:

∆M = ∆N

M�−

LT
⊂ N�−

LT

aI = aI′ for all a ∈ O

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

NonMonotonic semantics

M�−

LT
= {(a,¬�¬C) | a ∈ (¬�¬C)I , with a ∈ ∆, C ∈ LT }

Given two models M = 〈∆M, <M, IM〉 and N = 〈∆N , <N , IN 〉

of KB, we say that M is preferred to N w.r.t. LT (M <LT
N), if:

∆M = ∆N

M�−

LT
⊂ N�−

LT

aI = aI′ for all a ∈ O

A model M is a minimal model for KB (with respect to LT) if it

is a model of KB and there is no a model M′ of KB such that

M′ <LT
M

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 18

Nonmonotonic Semantics

Query F : either a formula C(a) or a subsumption C ⊑ D

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 19

Nonmonotonic Semantics

Query F : either a formula C(a) or a subsumption C ⊑ D

Minimal Entailment in EL⊥
Tmin

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 19

Nonmonotonic Semantics

Query F : either a formula C(a) or a subsumption C ⊑ D

Minimal Entailment in EL⊥
Tmin

A query F is minimally entailed from KB w.r.t. LT :

KB |=
EL⊥

Tmin
F

if F holds in all models of KB minimal w.r.t. LT

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 19

Example

Let LT = {Student , Student ⊓ Worker , Student ⊓ Worker ⊓ Parent}

KB ∪ {Student(john)} |=EL⊥
Tmin

NotTaxPayer(john)

KB ∪ {Student(john),Worker(john)} |=EL⊥
Tmin

TaxPayer(john)

KB∪ {Student(john),Worker(john),Parent(john)} |=EL⊥
Tmin

NotTaxPayer(john)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 20

Complexity results for EL⊥
Tmin

Entailment for EL+⊥

T is CoNP , but

Theorem 3.1 in [GGOP]. Entailment in EL⊥
Tmin is

EXPTIME-hard .

We need further restrctions

One possibility: Left Local EL⊥
Tmin (considered for

circumscriptive extension [BLW06])

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 21

Language of Left Local EL⊥
Tmin

Alphabet of

concept names C

role names R

individuals O

Given A ∈ C and r ∈ R, we define:

C := A | ⊤ | ⊥ | C ⊓ C

CR := C | CR ⊓ CR | ∃r.C

CLL
L := C | CLL

L ⊓ CLL
L | ∃r.⊤ | T(C)

TBox contains a finite set of concept inclusions CLL
L ⊑ CR

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 22

Complexity results for Left Local EL⊥
Tmin

Small model theorem (Theorem 3.11 in [GGOP]). KB
|=

EL
⊥
Tmin

F if and only if F holds in all models of KB

whose size is polynomial in the size of KB.

Theorem 3.12 in [GGOP]. If KB is Left Local, the problem of
deciding whether KB |=

EL
⊥
Tmin

F is in Π
p
2
.

A small model theorem and a similar complexity result can
be proved for DL-LitecTmin [GGOP]

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 23

Complexity results for Left Local EL⊥
Tmin

Small model theorem (Theorem 3.11 in [GGOP]). KB
|=

EL
⊥
Tmin

F if and only if F holds in all models of KB

whose size is polynomial in the size of KB.

Theorem 3.12 in [GGOP]. If KB is Left Local, the problem of
deciding whether KB |=

EL
⊥
Tmin

F is in Π
p
2
.

A small model theorem and a similar complexity result can
be proved for DL-LitecTmin [GGOP]

∃R.C

∃R.C

C

C

C

R

R

R

∃R.C

∃R.C

CR

R

R

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 23

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

extension of the “standard” tableau calculus for ALC

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

extension of the “standard” tableau calculus for ALC

TABEL
⊥T

min tries to build an open branch representing a minimal
model satisfying KB ∪ {¬F}

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

extension of the “standard” tableau calculus for ALC

TABEL
⊥T

min tries to build an open branch representing a minimal
model satisfying KB ∪ {¬F}

two-phase computation:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

extension of the “standard” tableau calculus for ALC

TABEL
⊥T

min tries to build an open branch representing a minimal
model satisfying KB ∪ {¬F}

two-phase computation:

1. Phase 1: TABEL
⊥T

PH1 verifies whether KB ∪{¬F} is satisfiable

in an EL+
⊥

T model, building candidate models

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Tableau calculus TABEL
⊥T

min
for deciding whether a query F is

minimally entailed from a KB (TBox,ABox)

extension of the “standard” tableau calculus for ALC

TABEL
⊥T

min tries to build an open branch representing a minimal
model satisfying KB ∪ {¬F}

two-phase computation:

1. Phase 1: TABEL
⊥T

PH1 verifies whether KB ∪{¬F} is satisfiable

in an EL+
⊥

T model, building candidate models

2. Phase 2: TABEL
⊥T

PH2 checks whether the candidate models
found in Phase 1 are minimal models of KB

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 24

The Tableau calculus TABEL⊥
T

min

Given a knowledge base (TBox,ABox), tableaux nodes of

TABEL⊥T
min are called constraint systems and have the form

〈S | U | W 〉, where :

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 25

The Tableau calculus TABEL⊥
T

min

Given a knowledge base (TBox,ABox), tableaux nodes of

TABEL⊥T
min are called constraint systems and have the form

〈S | U | W 〉, where :

S = {a : C | C(a) ∈ ABox} ∪ {a
R

−→ b | aRb ∈ ABox}

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 25

The Tableau calculus TABEL⊥
T

min

Given a knowledge base (TBox,ABox), tableaux nodes of

TABEL⊥T
min are called constraint systems and have the form

〈S | U | W 〉, where :

S = {a : C | C(a) ∈ ABox} ∪ {a
R

−→ b | aRb ∈ ABox}

U = {C ⊑ D∅ | C ⊑ D ∈ TBox}

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 25

The Tableau calculus TABEL⊥
T

min

Given a knowledge base (TBox,ABox), tableaux nodes of

TABEL⊥T
min are called constraint systems and have the form

〈S | U | W 〉, where :

S = {a : C | C(a) ∈ ABox} ∪ {a
R

−→ b | aRb ∈ ABox}

U = {C ⊑ D∅ | C ⊑ D ∈ TBox}

W is a set of labels xC used by existential rules

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 25

Special Existential Rules

The rule (∃+) is split in the following two rules:

〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

〈S, u
R

−→ y1, y1 : C | U | W 〉 〈S, u
R

−→ ym, ym : C | U | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC | U | W 〉 . . .〈S, u
R

−→ y1, y1 : C | U | W 〉 〈S, u
R

−→ ym, ym : C | U | W 〉

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 26

Special Rule for (�−)

S = S, u : ¬�¬C1, . . . , u : ¬�¬Cn.

SM
u→y = {y : ¬D, y : �¬D | u : �¬D ∈ S} and, for k = 1, 2, . . . , n,

S
�−k

u→y = {y : ¬�¬Cj ⊔ Cj | u : ¬�¬Cj ∈ S ∧ j 6= k}.

〈S, x : Ck, x : !¬Ck, SM

u→x
, S

!
−k

u→x
| U | W 〉

. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | W 〉

〈S, u : ¬!¬C1,¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!

−k

u→ym
| U | W 〉

for all k = 1, 2, . . . , n, where y1, . . . , ym are all the labels occurring in

S and x is new.
Rule (�−) contains:

n branches, one for each u : ¬�¬Ck in S;

other n × m branches, where m is the number of labels occurring in
S, one for each label yi and for each u : ¬�¬Ck in S

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 27

Phase 1: TABEL⊥
T

PH1

〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC , xC : C | U | W ∪ {xC}〉 . . .
(∃+)1

if y : ¬C !∈ S

〈S | U,C ⊑ DL | W 〉

if x occurs in S and x !∈ L

(Unfold)〈S, x : T(C) | U | W 〉 〈S, x : ¬T(C) | U | W 〉

〈S, x : C, x : !¬C | U | W 〉 〈S, x : ¬C | U | W 〉 〈S, x : ¬!¬C | U | W 〉
(T+) (T−)

(⊓+) (⊓−)

(cut)

x occurs in S

if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | W 〉〈S, x : ¬C | U | W 〉〈S, x : C, x : D | U | W 〉

〈S, x : C ⊓ D | U | W 〉 〈S, x : ¬(C ⊓ D) | U | W 〉

〈S, x : C, x : ¬C | U | W 〉 (Clash)⊥(Clash)
¬⊤

〈S, x : !¬C | U | W 〉〈S, x : ¬∃R.C, x
R

−→ y, y : ¬C | U | W 〉

〈S, x : ¬∃R.C, x
R

−→ y | U | W 〉
(∃−)

(Clash)

〈S, x : ¬!¬C | U | W 〉

〈S | U | W 〉

〈S, x : ⊥ | U | W 〉〈S, x : ¬⊤ | U | W 〉

〈S, x : ¬C ⊔ D | U,C ⊑ D
L,x | W 〉

(∃+)2
〈S, u : ∃R.C | U | W 〉

〈S, u
R

−→ xC | U | W 〉

〈S, x : C | U | W 〉 〈S, x : D | U | W 〉

〈S, x : C ⊔ D | U | W 〉
(⊔+)

〈S, u
R

−→ y1, y1 : C | U | W 〉

. . .〈S, u
R

−→ y1, y1 : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, u
R

−→ ym, ym : C | U | W 〉

〈S, x : Ck, x : !¬Ck, SM

u→x
, S

!
−k

u→x
| U | W 〉

. . .

(!−)

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | W 〉

〈S, u : ¬!¬C1,¬!¬C2, . . . , u : ¬!¬Cn | U | W 〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!

−k

u→ym
| U | W 〉

k = 1, 2, . . . , n

x new

if xC !∈ W and y1, . . . , ym are all the labels occurring in S

if xC ∈ W and y1, . . . , ym are all the labels occurring in S

if y1, . . . , ym are all the labels occurring in S, y1 != u, . . . , ym != u

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 28

Phase 2: TABEL⊥
T

PH2

for each open branch B built by TABEL⊥T
PH1 , verifies if it is a

minimal model of the KB

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 29

Phase 2: TABEL⊥
T

PH2

for each open branch B built by TABEL⊥T
PH1 , verifies if it is a

minimal model of the KB

Given an open branch B of a tableau built from TABEL⊥T
PH1 , we

define:

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 29

Phase 2: TABEL⊥
T

PH2

for each open branch B built by TABEL⊥T
PH1 , verifies if it is a

minimal model of the KB

Given an open branch B of a tableau built from TABEL⊥T
PH1 , we

define:

D(B) as the set of labels occurring on B

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 29

Phase 2: TABEL⊥
T

PH2

for each open branch B built by TABEL⊥T
PH1 , verifies if it is a

minimal model of the KB

Given an open branch B of a tableau built from TABEL⊥T
PH1 , we

define:

D(B) as the set of labels occurring on B

B�−

= {x : ¬�¬C | x : ¬�¬C occurs in B}

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 29

Phase 2: TABEL⊥
T

PH2

A tableau of TABEL⊥T
PH2 is a tree whose nodes are triples of the

form 〈S | U | K〉

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 30

Phase 2: TABEL⊥
T

PH2

A tableau of TABEL⊥T
PH2 is a tree whose nodes are triples of the

form 〈S | U | K〉

〈S | U〉 is a constraint system (as in TABEL⊥T
PH1)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 30

Phase 2: TABEL⊥
T

PH2

A tableau of TABEL⊥T
PH2 is a tree whose nodes are triples of the

form 〈S | U | K〉

〈S | U〉 is a constraint system (as in TABEL⊥T
PH1)

K contains formulas of the form x : ¬�¬C, with C ∈ LT

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 30

Phase 2: TABEL⊥
T

PH2

A tableau of TABEL⊥T
PH2 is a tree whose nodes are triples of the

form 〈S | U | K〉

〈S | U〉 is a constraint system (as in TABEL⊥T
PH1)

K contains formulas of the form x : ¬�¬C, with C ∈ LT

Basic idea: given an open B built by TABEL⊥T
PH1 , K is initialized

with B�−

in order to build smaller models

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 30

Phase 2: TABEL⊥
T

PH2

(∃+)

(Unfold)

(Clash)〈S, x : C, x : ¬C | U | K〉

(Clash)∅ (Clash)!−〈S | U | ∅〉 〈S, x : ¬!¬C | U | K〉
if x : ¬!¬C !∈ K

〈S | U, C ⊑ DL | K〉

x ∈ D(B) and x !∈ L

〈S, x : C ⊓ D | U | K〉

〈S, x : C, x : D | U | K〉 〈S, x : ¬C | U | K〉
(T+)

(T−)

(⊓+) (⊓−)

(cut)

if x : ¬!¬C !∈ S and x : !¬C !∈ S

C ∈ LT

〈S, x : ¬D | U | K〉

〈S, x : ¬(C ⊓ D) | U | K〉

〈S, x : !¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S | U | K〉〈S, x : ¬T(C) | U | K〉

〈S, x : ¬C | U | K〉 〈S, x : ¬!¬C | U | K〉

〈S, x : T(C) | U | K〉

〈S, x : C, x : !¬C | U | K〉

〈S, u : ¬!¬C1, . . . , u : ¬!¬Cn | U | K, u : ¬!¬C1, . . . , u : ¬!¬Cn〉

(Clash)⊥〈S, x : ¬⊤ | U | K〉 (Clash)
¬⊤ 〈S, x : ⊥ | U | K〉

(!−)

〈S, x : ¬C ⊔ D | U,C ⊑ D
L,x | K〉

x ∈ D(B)

〈S, u
R

−→ y1, y1 : C | U | K〉

〈S, u : ∃R.C | U | K〉

〈S, u
R

−→ ym, ym : C | U | K〉

〈S, ym : Ck, ym : !¬Ck, SM
u→ym

, S
!

−k

u→ym
| U | K〉

. . .

〈S, y1 : Ck, y1 : !¬Ck, SM

u→y1
, S

!
−k

u→y1
| U | K〉 . . .

if D(B) = {y1, . . . , ym}

if D(B) = {y1, . . . , ym} and y1 != u, . . . , ym != u

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 31

The Tableau calculus TABEL⊥
T

min

〈S | U | ∅〉 is the corresponding constraint system of KB

F= query

S′= set of constraints obtained by adding to S the constraint

corresponding to ¬F

The calculus TABEL⊥T
min checks whether a query F is minimally

entailed from a KB by means of the following procedure:

(phase 1) the calculus TABEL⊥T
PH1 is applied to 〈S′ | U | ∅〉;

if, for each branch B built by TABEL⊥T
PH1 , either

(i) B is closed or

(ii) (phase 2) the tableau built by the calculus TABEL⊥T
PH2

for 〈S | U | B�−

〉 is open,

then KB |=EL⊥
Tmin

F , otherwise KB 6|=EL⊥
Tmin

F .

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 32

An example

{∃hc.S(j),T(S) ⊑ NTP} |=EL⊥
Tmin

∃hc.NTP (j)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 33

An example

{∃hc.S(j),T(S) ⊑ NTP} |=EL⊥
Tmin

∃hc.NTP (j)

〈j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP ∅ | ∅〉

〈j : ¬T(S) ⊔ NTP, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : ¬T(S), j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉 〈j : NTP, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉 〈j : ¬!¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : !¬S, j : NTP, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : ¬!¬S, j : NTP, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉 〈j : ¬!¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

〈j : !¬S, j : ¬!¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

(Clash)
〈j : ¬!¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

(cut)

(cut)

(cut)

(Unfold)

(T−)

(⊔+)

〈j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | xS〉 〈j

hc
−→ j, j : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | ∅〉

(Clash)

〈xS : ¬NTP, j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | xS〉

〈xS : ¬!¬S, xS : ¬NTP, j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | xS〉

〈j : S, . . . , xS : ¬NTP, j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | xS〉

(Clash)

〈y : S, y : S, xS : ¬NTP, j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP | T(S) ⊑ NTP {j} | xS〉

. . .

. . .

〈y : NTP, y : S, y : S, xS : ¬NTP, j
hc
−→ xS , xS : S, j : !¬S, j : ¬S, j : ∃hc.S, j : ¬∃hc.NTP |T(S) ⊑ NTP {j,xS ,y} | xS〉

all these branches close

(!−)

static rules

static rules

open branch

(∃+

1)

(∃−)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 33

An example

〈j : ∃hc.S | T(S) ⊑ NTP ∅ | xS : ¬!¬S〉D(B) = {j, y, xS}

〈j : ¬T(S) ⊔ NTP, j : ∃hc.S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉

〈j : ¬T(S), j : ∃hc.S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉 〈j : NTP, j : ∃hc.S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉

〈j : ¬S, j : ∃hc.S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉 〈j : ¬!¬S, j : ∃hc.S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉

(Clash)!−

. . .

(Unfold)

(⊔+)

(T−)

〈j
hc
−→ j, j : S, j : ¬S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉〈j

hc
−→ y, y : S, j : ¬S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉

〈j
hc
−→ xS , xS : S, j : ¬S | T(S) ⊑ NTP {j} | xS : ¬!¬S〉

. . .

〈xS : ¬T(S) ⊔ NTP, j
hc
−→ xS , xS : S, j : ¬S | T(S) ⊑ NTP {j,xS} | xS : ¬!¬S〉

(Unfold)

〈xS : ¬T(S), j
hc
−→ xS , xS : S, j : ¬S | T(S) ⊑ NTP {j,xS} | xS : ¬!¬S〉

(⊔+)

〈xS : NTP, j
hc
−→ xS , xS : S, j : ¬S | T(S) ⊑ NTP {j,xS} | xS : ¬!¬S〉

. . .

〈y : !¬S, j : !¬S, xS : !¬S, xS : NTP, j
hc
−→ xS , xS : S, j : ¬S | T(S) ⊑ NTP {j,xS ,y} | xS : ¬!¬S〉

(∃+)

(Clash)

(cut) and static rules

. . .

. . .

complete open branch

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 34

The Tableau calculus TABEL⊥
T

min

Theorem: TABEL⊥T
min is a sound and complete decision

procedure for verifying if KB |=
EL⊥

Tmin
F .

Proposition: Given a KB and a query F , the problem of

checking whether KB ∪{¬F} is satisfiable is in NP.

Theorem: The problem of deciding whether KB |=
EL⊥

Tmin
F

by means of TABEL⊥T
min is in Πp

2
. (matching known complexity)

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 35

Conclusions

We have provided a two-phase tableau calculus TABEL⊥T
min for

minimal entailment in the Left Local fragment of the logic

EL⊥
Tmin of the family of low complexity DLs EL⊥.

The proposed calculus matches the known complexity results:

Πp
2

A similar tableau procedure can be defined for DL-litecT

fragment for which a Πp
2

upper bound for minimal entailment

has been shown [GGOP].

Study optimizations.

Find polynomial fragments for minimal entailment, in analogy

with circumscription [PFS10].

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 36

References
[BH95] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge

representation formalisms. J. Autom. Reasoning, 14(1):149–180, 1995.

[BLW06] P. A. Bonatti, C. Lutz, and F. Wolter. Description logics with circumscription. In
KR, pages 400–410, 2006.

[DLN+98] F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An epistemic
operator for description logics. Artif. Intell., 100(1-2):225–274, 1998.

[DNR02] F. M. Donini, D. Nardi, and R. Rosati. Description logics of minimal knowledge
and negation as failure. ACM Trans. Comput. Log., 3(2):177–225, 2002.

[ELST] T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining answer set
programming with description logics for the semantic web. In KR 2004, 141-151.

[GGOP] L. Giordano, V. Gliozzi, N. Olivetti, and G. L. Pozzato. Reasoning about typicality
in low complexity DLs: the logics EL⊥

Tmin and DL-litecTmin. In IJCAI 2011,
894-899.

[GGOP09] L. Giordano, V. Gliozzi, N. Olivetti, and G.L. Pozzato. ALC + Tmin: a
preferential extension of description logics. Fundamenta Informaticae, 96:1–32,
2009.

[PFS10] P.A.Bonatti, M. Faella, and L. Sauro. EL with default attributes and overriding. In
Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 37

Thank you!!!

Nonmonotonic Extensions of Low Complexity DLs: Complexity Results and Proof Methods – p. 38

	Introduction
	Introduction
	Introduction

	Introduction and recall to DLs
	Introduction and recall to DLs
	Introduction and recall to DLs
	Introduction and recall to DLs
	Introduction and recall to DLs
	Introduction and recall to DLs
	Introduction and recall to DLs

	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality

	Logic of typicality
	Logic of typicality
	Logic of typicality

	Logic of typicality
	Logic of typicality
	Logic of typicality

	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality
	Logic of typicality

	Logic of typicality
	The logic $elt $
	The logic $elt $
	The logic $elt $
	The logic $elt $
	The logic $elt $
	The logic $elt $

	Language of $eltm $
	Example
	Language of $dlltm $
	Monotonic Semantics
	Modal interpretation
	Modal interpretation
	Modal interpretation
	Modal interpretation
	Modal interpretation

	Weakness of monotonic semantics
	Weakness of monotonic semantics
	Weakness of monotonic semantics

	Weakness of monotonic semantics
	Weakness of monotonic semantics
	Weakness of monotonic semantics
	Weakness of monotonic semantics

	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics

	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics
	NonMonotonic semantics

	Nonmonotonic Semantics
	Nonmonotonic Semantics
	Nonmonotonic Semantics

	Example
	Complexity results for $eltm $
	Language of Left Local $eltm $
	�egin {large}Complexity results for Left Local $eltm $end {large}
	�egin {large}Complexity results for Left Local $eltm $end {large}

	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $

	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $
	The Tableau calculus $
uovocel $

	Special Existential Rules
	Special Rule for $(�box ^{-})$
	Phase 1: $primoel $
	Phase 2: $secondoel $
	Phase 2: $secondoel $
	Phase 2: $secondoel $
	Phase 2: $secondoel $

	Phase 2: $secondoel $
	Phase 2: $secondoel $
	Phase 2: $secondoel $
	Phase 2: $secondoel $

	Phase 2: $secondoel $
	The Tableau calculus $
uovocel $
	An example
	An example

	An example
	The Tableau calculus $
uovocel $
	Conclusions

