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Mean-Payoff Games MPG
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• played on a finite graph (arena)

• turn based

• infinite number of turns

• goal (for Bob): maximazing the long-run
average weight
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Mean-Payoff Games Exact Solutions Approximation

MPG in Formal Term

In a MPG Γ = (V ,E ,w : V → Z, 〈V�,V4〉):
B�b wants to maximize his payoff, i.e. the long-run average

weight in a play .

Given a play p = {vi}i∈N in Γ, the payoff of B�b on p is:

MP(v0v1 . . . vn . . . ) = lim inf
n→∞

1

n
·
n−1∑
i=0

w(vi , vi+1)
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MPG in Formal Term

Example

The value secured by a strategy σ�: V ∗ · V� → V in vertex v is:

valσ�(v) = inf
σ4∈Σ4

MP(outcomeΓ(v , σ�, σ4))

supσ�∈Σ�
(valσ�(v)) is the optimal value that B�b can secure in v
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MPG are Memoryless Determined

Example

Theorem [Ehrenfeucht&Mycielsky’79]

valΓ(v) = supσ�∈Σ�
infσ4∈Σ4 MP(outcomeΓ(v , σ�, σ4)) =

= infσ4∈Σ4 supσ�∈Σ�
MP(outcomeΓ(v , σ�, σ�)).

There exist uniform memoryless strategies, π� : V� → V for B�b ,
π4 : V4 → V for 4lice such that:

valΓ(v) = valπ�(v) = valπ4(v).
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MPG are Memoryless Determined

Example

valΓ(v)= n
d ∈ Q : 0 ≤ d ≤ |V | and |n|d ≤ M= maxe∈E{|w(e)|}.
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MPG Problems

1. Decision Problem Given v ∈ V , µ ∈ Z, decide if B�b has a
strategy π� to secure valπ�(v) ≥ µ.

2. Value Problem: Compute the set of (rational) values:

{valΓ(v) | v ∈ V }

3. (Optimal) Strategy Synthesis Construct an (optimal) strategy
for B�b.
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MPG Problems: Why They Matter?

Solved as a game: System vs Environment
Solution = Winning Strategy

System Model?

|=
Correctness

Relation

Quantitative Requirements:

• limited resources

• average performance . . .
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MPG Problems: Why They Matter?

• MPG significative for theoretical and applicative aspects

• µ-calculus model checking
PTIME⇐⇒ parity games

PTIME
=⇒ MPG

• MPG
PTIME
=⇒ simple stochastic games

• MPG
PTIME
=⇒ discounted payoff games

• MPG problems have an interesting complexity status
• MPG decision problem belongs to NP ∩ coNP (and even to

UP ∩ coUP)
• No polynomial algorithm known so far
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Solving MPG Problems

Consider Γ = (V ,E ,w , 〈V�,V4〉), where w : V → [−M · · ·+ M]:

U. Zwick and M. Paterson, 1996

• Θ(EV 2M) algorithm for the decision problem

• Θ(EV 3M) algorithm for the value problem

• Θ(EV 4M log( E
V )) algorithm for optimal strategy synthesis

Y. Lifshits and D. Pavlov, 2006

• O(EV 2V log(Z )) algorithm for the decision/value problem
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U. Zwick and M. Paterson, 1996

• Θ(EV 2M) algorithm for the decision problem

• Θ(EV 3M) algorithm for the value problem

• Θ(EV 4M log( E
V )) algorithm for optimal strategy synthesis

Pseudopolynomial Algorithms

Y. Lifshits and D. Pavlov, 2006

• O(EV 2V log(Z )) algorithm for the decision/value problem

L. Brim, J. Chaloupka, L. Doyen, R. Gentilini and J-F. Raskin – 2010

• O(E · V ·M) for the decision problem & strategy synthesis

• O(E · V 2 ·M · (log(V ) + log(M))) for the value problem

• O(E · V 2 ·M · (log(V ) + log(M))) algorithm for optimal strategy
synthesis
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Value Approximation: Basics (I)

Let Γ = (V ,E ,w , 〈V0,V1〉) be a MPG, let v ∈ V and consider
ε ≥ 0.

Definition (MPG additive ε-value)

The value ṽal ∈ Q is said an additive ε-value on v if and only if:

|ṽal − valΓ(v)| ≤ ε

Definition (MPG relative ε-value)

The value ṽal ∈ Q is said an relative ε-value on v if and only if:

|ṽal − valΓ(v)|
|valΓ(v)|

≤ ε
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Value Approximation: Basics (II)

Let Γ = (V ,E ,w , 〈V0,V1〉) be a MPG:

MPG Polynomial Time Approximation Scheme (PTAS)

An additive/relative polynomial approximation scheme for Γ is an
algorithm A such that for all ε > 0, A computes an additive/relative
ε-value in time polynomial w.r.t. the size of Γ.

MPG Fully Polynomial Time Approximation Scheme (FPTAS)

An additive/relative fully polynomial approximation scheme for Γ
is an algorithm A such that for all ε > 0, A computes an addi-
tive/relative ε-value in time polynomial w.r.t. Γ and 1

ε .
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Additive Approximations – FPTAS (I)

A. Roth, M. Balcan, A. Kalai & Y. Mansour – 2010

The MPGvalue problem on graphs with rational weights in [-1,+1]
admits an additive FPTAS.

Easy approximation algorithm based on:
existing pseudopolynomial procedures + graph reweighting

13 / 20



Mean-Payoff Games Exact Solutions Approximation

Additive Approximations – FPTAS (I)

A. Roth, M. Balcan, A. Kalai & Y. Mansour – 2010

The MPGvalue problem on graphs with rational weights in [-1,+1]
admits an additive FPTAS.

Easy approximation algorithm based on:
existing pseudopolynomial procedures + graph reweighting

13 / 20



Mean-Payoff Games Exact Solutions Approximation

Additive Approximations – FPTAS (II)

Can we efficiently approximate the value in MPG with no
restriction on the weights?

Theorem

The MPG value problem does not admit an additive FPTAS ,
unless it is in P.

Proof (Sketch):

• By contradiction. Assume an additive FPTAS exists.

• Choose ε = 1
2n(n−1) and compute the additive ε-value v ε.

• The MPG value v is the unique rational with denominator
1 ≤ d ≤ n in the interval [v ε − ε, v ε + ε].
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Additive Approximations – PTAS

Are weaker notions of approximation usefull to obtain some
positive result w.r.t. the MPG value approximation problem?

Theorem

For any constant k :
If the problem of computing an additive k-approximate MPG value

can be solved in polynomial time (w.r.t. the size of the MPG),
then the MPG value problem belongs to P.
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Additive Approximations

Corollary

The following problems are P-time equivalent:

1. Solving the MPG value problem.

2. Determining an additive FPTAS for the MPG value problem.

3. Determining an additive PTAS for the MPG value problem.

4. Computing an additive k-approximate MPG value in
polynomial time, for any constant k .
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Relative Approximations (I)

Y. Boros, E. Elbassioni, M. Fouz, V. Gurvich, K. Makino i & B.
Manthey – 2011

The MPG value problem on graphs with nonnegative weights admits
a relative FPTAS.

17 / 20



Mean-Payoff Games Exact Solutions Approximation

Relative Approximations (II)

Can we design efficient relative approximations for the MPG value
problem on graphs with no restriction on the weights?

Theorem

The MPG value problem does not admit a relative PTAS, unless it
is in P.
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Relative Approximations (II)

Can we design efficient relative approximations for the MPG value
problem on graphs with no restriction on the weights?

Theorem

The MPG value problem does not admit a relative PTAS, unless it
is in P.

18 / 20



Mean-Payoff Games Exact Solutions Approximation

Relative Approximations (III)

Corollary

The following problems are P-time equivalent:

1. Solving the MPG value problem.

2. Determining a relative FPTAS for the MPG value problem.

3. Determining a relative PTAS for the MPG value problem.
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The End

Thank you!
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