On a Logic for Coalitional Games with Priced-Resource Agents

D. Della Monica, M. Napoli, M. Parente

University of Salerno
dellamonica@unisa.it

CILC 2011
August 31, 2011 - Pescara
Outline

1. Introduction

2. The logic *Priced* RB-ATL (PRB-ATL)
 - Model checking
 - Optimization problem

3. Conclusions
Outline

1. Introduction

2. The logic *Priced* RB-ATL (PRB-ATL)
 - Model checking
 - Optimization problem

3. Conclusions
Agents and coalitions

- A Multi-Agent System (MAS) is a system with multiple agents/players.
- Agents can join in coalitions/teams to collectively perform tasks/reach goals.
Agents and coalitions

- A Multi-Agent System (MAS) is a system with multiple agents/players.
- Agents can join in coalitions/teams to collectively perform tasks/reach goals.
Agents and coalitions

- A Multi-Agent System (MAS) is a system with multiple agents/players.
- Agents can join in coalitions/teams to collectively perform tasks/reach goals.

Two sides of the same coin

Artificial Intelligence/Game theory
Agents and coalitions

- A Multi-Agent System (MAS) is a system with multiple agents/players.
- Agents can join in coalitions/teams to collectively perform tasks/reach goals.

Two sides of the same coin
Artificial Intelligence/Game theory

Logical Formalisms
Coalition Logic (CL) and Alternating-time Temporal Logic (ATL)
CL and ATL

CL and ATL

CL and ATL

Theorem (Goranko, TARK 2001)

CL can be embedded into ATL
Addition of bounds on resources to ATL

World is small (resources are bounded)
Addition of bounds on resources to ATL

World is small (resources are bounded)

Extensions of ATL with bounds on resources:
Addition of bounds on resources to ATL

World is small (resources are bounded)

Extensions of ATL with bounds on resources:

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Theorem: Model checking RB-ATL is decidable in $O(|\varphi|^{2\cdot r+1} \times |G|)$

No lower bound
Addition of bounds on resources to ATL

World is small (resources are bounded)

Extensions of ATL with bounds on resources:

RB-ATL [Alechina, Logan, Nga, Rakib, AAMAS 2010]

Theorem: Model checking RB-ATL is decidable in $O(\varphi^{2 \cdot r + 1} \times |G|)$
No lower bound

RAL [Bulling, Farwer, ECAI 2010]

If actions may produce resources, then Model Checking becomes UNDECIDABLE
Resource Bounded ATL (RB-ATL)

Team A

Endowment: $\eta : A \rightarrow \mathbb{N}^r$

$\langle \langle A^\eta \rangle \rangle \diamond p$ whatever other agents do
Due to the nesting of the team operators in a formula, the agents can be provided with a new endowment of resources to perform subtasks.

$$\langle \langle A^n \rangle \rangle \ominus \langle \langle A^{n'} \rangle \rangle \diamond p$$

agents of team A, equipped with the endowment of resources η, can force the next state to be s.t. they can guarantee that p eventually holds equipped with the new endowment η'.
On a Logic for Coalitional Games with Priced-Resource Agents (CILC 2011)
D. Della Monica
Motivations

- In the current approaches there is not a notion of global availability of resources
 - new endowment for each subtask
Motivations

- In the current approaches there is not a notion of global availability of resources
 - new endowment for each subtask UNREALISTIC
Motivations

- In the current approaches there is not a notion of global availability of resources
 - new endowment for each subtask UNREALISTIC

- Very significant present-day issues related to procurement of resources:
 - resources are available on the market (or in nature) in limited amount
 - the cost for achieving them depends on such an availability (price of resources)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the global availability of resources on the market
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of price of resources
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions

1. We introduce the **global availability of resources on the market**
 - acquisition of resources \Rightarrow global availability is decreased
 - production of resources \Rightarrow global availability is increased

2. We introduce the notion of **price of resources**
 - agents are equipped with an amount of money instead of an endowment of resources
 - they can use money for getting resources
 - price of resources can be any function of the several components into play (e.g., prices of resources depend on their global availability, the acting agent, and the physical location)
Our contributions - cont’d

3 Model checking
 ▶ PSPACE-hardness
 ▶ Recover decidability even if actions produce resources
 ★ actions may produce a resource in a quantity that is not greater than
 the amount that has already been consumed so far
 ★ the global availability of the market will never be greater than the
 initial global availability
 ★ several significant real-world scenarios fit (e.g., acquiring memory by
 a program, leasing a car during a travel)

4 Optimization problem
 ▶ minimization of the amount of money needed to acquire the
 resources to perform a task
Our contributions - cont’d

Model checking

- PSPACE-hardness
- Recover decidability even if actions produce resources
 - actions may produce a resource in a quantity that is not greater than the amount that has already been consumed so far
 - the global availability of the market will never be greater than the initial global availability
 - several significant real-world scenarios fit (e.g., acquiring memory by a program, leasing a car during a travel)

Optimization problem

- minimization of the amount of money needed to acquire the resources to perform a task
Our contributions - cont’d

Model checking

- PSPACE-hardness
- Recover decidability even if actions produce resources
 - actions may produce a resource in a quantity that is not greater than the amount that has already been consumed so far
 - the global availability of the market will never be greater than the initial global availability
 - several significant real-world scenarios fit (e.g., acquiring memory by a program, leasing a car during a travel)

Optimization problem

- minimization of the amount of money needed to acquire the resources to perform a task
Our contributions - cont’d

Model checking

- PSPACE-hardness
- Recover decidability even if actions produce resources
 - actions may produce a resource in a quantity that is not greater than the amount that has already been consumed so far
 - the global availability of the market will never be greater than the initial global availability
 - several significant real-world scenarios fit (e.g., acquiring memory by a program, leasing a car during a travel)

Optimization problem

- minimization of the amount of money needed to acquire the resources to perform a task
Our contributions - cont’d

3 Model checking

- PSPACE-hardness
- Recover decidability even if actions produce resources
 - actions may produce a resource in a quantity that is not greater than the amount that has already been consumed so far
 - the global availability of the market will never be greater than the initial global availability
 - several significant real-world scenarios fit (e.g., acquiring memory by a program, leasing a car during a travel)

4 Optimization problem

- minimization of the amount of money needed to acquire the resources to perform a task
Syntax and semantics

Formulae of PRB-ATL are given by the grammar:

\[\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\langle \vec{A}\$\rangle\rangle \diamond \varphi \mid \langle\langle \vec{A}\$\rangle\rangle \varphi U \varphi \mid \langle\langle \vec{A}\$\rangle\rangle \Box \varphi \]
Syntax and semantics

Formulae of PRB-ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\langle A^\$\rangle\rangle \bigcirc \varphi \mid \langle\langle A^\$\rangle\rangle \varphi U \varphi \mid \langle\langle A^\$\rangle\rangle \Box \varphi$$

Formulas of our logic state that a team of agents is able to perform a given task provided with a given amount of money.
Syntax and semantics

Formulae of PRB-ATL are given by the grammar:

$$\varphi ::= p \mid \neg \varphi \mid \varphi \land \varphi \mid \langle\langle A^\$\rangle\rangle \circ \varphi \mid \langle\langle A^\$\rangle\rangle \varphi U \varphi \mid \langle\langle A^\$\rangle\rangle \Box \varphi$$

Formulas of our logic state that a team of agents is able to perform a given task provided with a given amount of money.

Formulae of PRB-ATL are evaluated wrt:

- a priced game structure G
- a location q of G
- an initial availability of resources \vec{m}
A priced game structure G is a weighted graph:
A priced game structure G is a weighted graph:

- **locations** are labeled by **atomic propositions** (represent the configurations of the system)
- in each location, each agent can choose among a non-empty set of **actions** to be performed
- any possible combination of actions gives rise to **transitions** (edges of the graph)
- **actions** consume and produce **resources**
- each resource has a **price** that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent
- a transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough **money** to acquire them
A priced game structure G is a weighted graph:

- **locations** are labeled by **atomic propositions** (represent the configurations of the system)
- in each location, each agent can choose among a non-empty set of **actions** to be performed
- any possible combination of actions gives rise to **transitions** (edges of the graph)
- actions consume and produce resources
- each resource has a **price** that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent
- a transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough **money** to acquire them
Priced game structure

A priced game structure G is a weighted graph:

- **locations** are labeled by atomic propositions (represent the configurations of the system)
- in each location, each agent can choose among a non-empty set of actions to be performed
- any possible combination of actions gives rise to transitions (edges of the graph)
- actions consume and produce resources
- each resource has a price that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent
- a transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough money to acquire them
Priced game structure

A priced game structure G is a weighted graph:

- **locations** are labeled by **atomic propositions** (represent the configurations of the system)
- in each location, each agent can choose among a non-empty set of **actions** to be performed
- any possible combination of actions gives rise to **transitions** (edges of the graph)
- **actions** consume and produce resources
- each resource has a **price** that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent
- a transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough **money** to acquire them
A priced game structure G is a weighted graph:

- **Locations** are labeled by atomic propositions (represent the configurations of the system).
- In each location, each agent can choose among a non-empty set of actions to be performed.
- Any possible combination of actions gives rise to transitions (edges of the graph).
- Actions consume and produce resources.
- Each resource has a price that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent.
- A transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough money to acquire them.
A priced game structure G is a weighted graph:

- Locations are labeled by atomic propositions (represent the configurations of the system).
- In each location, each agent can choose among a non-empty set of actions to be performed.
- Any possible combination of actions gives rise to transitions (edges of the graph).
- Actions consume and produce resources.
- Each resource has a price that is variable and depends on the current availability of that resource on the market, the location q of G and the acting agent.
- A transition can be executed if the resources needed to perform the actions are available and the agents of a team have enough money to acquire them.
Outline

1 Introduction

2 The logic *Priced* RB-ATL (PRB-ATL)
 - Model checking
 - Optimization problem

3 Conclusions
PSPACE-hardness

Theorem (Della Monica, Napoli, Parente, \textit{submitted to LAMAS 2011})

The model checking problem for PRB-ATL is PSPACE-hard

Reduction from the \textit{TQBF} problem
\textit{(the problem of determining whether a Fully Quantified Boolean Formula is true)}

\textbf{Fully Quantified Boolean Formula} a Boolean formula in which all the Boolean variables occur inside the scope of an existential or universal quantifier
Outline

1. Introduction

2. The logic *Priced* RB-ATL (PRB-ATL)
 - Model checking
 - Optimization problem

3. Conclusions
Parametric PRB-ATL formulae

- **PRB-ATL:**
 \[\varphi = \langle\langle A^1 \rangle\rangle \diamond (\langle\langle A^2 \rangle\rangle \bigcirc p \lor \langle\langle A^3 \rangle\rangle q \bigcup p) \]

Definition (Cost of a PRB-ATL formula)

\[f_{\text{cost}}(\varphi) = A_1 \cdot \$_1 + A_2 \cdot \$_2 + A_3 \cdot \$_3 \]

- **parametric PRB-ATL:**
 \[\varphi_{\vec{X}} = \langle\langle X^1 \rangle\rangle \diamond (\langle\langle X^2 \rangle\rangle \bigcirc p \lor \langle\langle A^3 \rangle\rangle q \bigcup p) \]
The *Optimal Coalition* problem

Definition (Optimal Coalition problem)

To determine coalitions that satisfy a PRB-ATL formula with minimum cost

[Della Monica, Napoli, Parente, *submitted to LAMAS 2011*]
The *Optimal Coalition* problem

Definition (Optimal Coalition problem)

To determine coalitions that satisfy a PRB-ATL formula with minimum cost

[Della Monica, Napoli, Parente, *submitted to LAMAS 2011*]

A brute force algorithm only requires polynomial space
The **Optimal Coalition** problem

Definition (Optimal Coalition problem)

To determine coalitions that satisfy a PRB-ATL formula with minimum cost

[Della Monica, Napoli, Parente, *submitted to LAMAS 2011*]

A brute force algorithm only requires polynomial space

Theorem

The Optimal Coalition problem is PSPACE-complete
Outline

1 Introduction

2 The logic Priced RB-ATL (PRB-ATL)
 - Model checking
 - Optimization problem

3 Conclusions
Conclusions and future work

Conclusions:

- PRB-ATL: a formalism to model scenarios with bounded, priced resources
 - Model checking PRB-ATL is PSPACE-complete
 - Determine the optimal coalitions formation is PSPACE-complete
Conclusions and future work

Conclusions:
- PRB-ATL: a formalism to model scenarios with bounded, priced resources
 - Model checking PRB-ATL is PSPACE-complete
 - Determine the optimal coalitions formation is PSPACE-complete

Future work:
- To study variants of the logic (e.g., agents can be viewed as resources)
- Resource-bounded extensions of other classical formalisms (e.g., \(\mu \)-calculus)