Winning CaRet Games with Modular Strategies

Ilaria De Crescenzo and Salvatore La Torre

University of Salerno

Pescara, 31st August - CILC 2011
In this work we focus on **pushdown systems**

They can model systems with potentially recursive procedure calls, as:

- control flows in programs of sequential imperative and object oriented programming languages
- distributed architectures
- communication protocols

In an open pushdown system, some of the choices depend upon the controllable inputs and some represent uncontrollable nondeterminism (as a two-players game)
Recursive Game Graphs

We chose to use *recursive game graphs* as model. An RGG is composed of *game modules*, one of which is the start module.
We chose to use **recursive game graphs** as model. An RGG is composed of **game modules**, one of which is the start module.
Recursive Game Graphs

We chose to use recursive game graphs as model. An RGG is composed of game modules, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are GreenPlayer and RedPlayer.

- Each module has entry nodes and exit nodes. The boxes map the other game modules.

- An edge that goes from a node to a box is a call.

- An edge that goes from a box to a node is a return.
We chose to use **recursive game graphs** as model. An RGG is composed of **game modules**, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are **GreenPlayer** and...
We chose to use recursive game graphs as model. An RGG is composed of game modules, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The players are GreenPlayer and RedPlayer.
Recursive Game Graphs

We chose to use recursive game graphs as model. An RGG is composed of game modules, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are GreenPlayer and RedPlayer
- Each module has entry nodes

[Diagram of Recursive Game Graphs]

Ilaria De Crescenzo and Salvatore La Torre
Winning CaRET Games with Modular Strategies
We chose to use recursive game graphs as model. An RGG is composed of game modules, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are GreenPlayer and RedPlayer.
- Each module has entry nodes and exit nodes.
Recursive Game Graphs

We chose to use **recursive game graphs** as model. An RGG is composed of **game modules**, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are **GreenPlayer** and **RedPlayer**.
- Each module has **entry** nodes and **exit** nodes.

The **boxes** map the other game modules.
Recursive Game Graphs

We chose to use recursive game graphs as model. An RGG is composed of game modules, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are GreenPlayer and RedPlayer.
- Each module has entry nodes and exit nodes.

The boxes map the other game modules.
- An edge that goes from a node to box is a call.
Recursive Game Graphs

We chose to use **recursive game graphs** as model. An RGG is composed of **game modules**, one of which is the start module.

- Vertices are partitioned into two sets depending on player who controls the next move. The player are **GreenPlayer** and **RedPlayer**.

- Each module has **entry** nodes and **exit** nodes.

The **boxes** map the other game modules.

- An edge that goes from a node to box is a **call**
- An edge that goes from a box to a node is a **return**
A play of an RGG is a sequence of vertices starting from an entry node of the start module and from a node to its successor there is a permitted transition.

- A winning set over an RGG is a language on the alphabet of the RGG.
- A winning set can be expressed by a winning condition (automata, formulas, etc...).
- A play is said to be winning if its labeling is a string that belongs to the winning set.
A strategy for a player is a function that encodes how the player must play the game. It associates a move to every run that ends in a node controlled by that player.

A strategy is winning for a player if all plays according with that strategy are winning, whatever are the moves of the other player.

On RGGs can be defined a specific type of strategy, called modular.

A strategy is said modular iff it can only refer to the local memory of the module to choose the next move.
We consider a reachability condition on x_2
We consider a reachability condition on x_2

- The following strategy is winning:
 - from n_4 go to x_4
 - from e_2 call b_1
 - from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

- The following strategy is winning:
 - from n_4 go to x_4
 - from e_2 call b_1
 - from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

The following strategy is winning:

- from n_4 go to x_4
- from e_2 call b_1
- from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

The following strategy is winning:

- from n_4 go to x_4
- from e_2 call b_1
- from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

The following strategy is winning:

- from n_4 go to x_4
- from e_2 call b_1
- from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

The following strategy is winning:
- from n_4 go to x_4
- from e_2 call b_1
- from e_1, if the previous move was a call, go to x_1, else go to b_2
We consider a reachability condition on x_2

- The strategy seen before is not modular, because the third rule must know informations of the previous module to choose the internal move to e_1 or the call to b_2.
- The strategy **modular** highlighted in this example is winning.
We consider a reachability condition on \(x_2 \)

- The strategy seen before is not modular. Because the third rule must know informations of the previous module to choose the internal move to \(e_1 \) or the call to \(b_2 \).
- The strategy **modular** highlighted in this example is winning.
Reasons

Studying games on graphs allows to analyze behaviors of *open systems*

- In open system settings, the execution depends on the interaction between a **controller** and an **external environment**

- Design a controller that supplies inputs to the system so that the product of controller and system satisfies correctness specification corresponds to computing *winning strategies* in two-player games
Reasons

Studying games on graphs allows to analyze behaviors of open systems

- In open system settings, the execution depends on the interaction between a controller and an external environment

- Design a controller that supplies inputs to the system so that the product of controller and system satisfies correctness specification corresponds to computing winning strategies in two-player games

If a winning modular strategy can be found, it means that we can design for every module a controller that guarantees the correctness of the system whatever is the context in which the module is invoked
It is not always possible to have a winning strategy for the protagonist on a RGG, and not all RGGs that have a winning strategy have also a winning modular strategy for the protagonist.
It is not always possible to have a winning strategy for the protagonist on a RGG, and not all RGGs that have a winning strategy have also a winning modular strategy for the protagonist.

Problem

Given a RGG G and a winning condition, is there a modular winning strategy for the GreenPlayer?
In this work we analyze and resolve the problem for a new class of games that we have defined: Modular CaRet Games.
CaRet is a temporal logic designed for recursive machines.

Allows to express also stack inspection properties and specifications of partial and total correctness with respect to pre and post conditions.

The syntax is:

\[\varphi ::= p \mid \varphi \lor \varphi \mid \neg \varphi \mid \bigcirc^g \varphi \mid \bigcirc^a \varphi \mid \bigcirc^- \varphi \mid \varphi U^g \varphi \mid \varphi U^a \varphi \mid \varphi U^- \varphi \]

Temporal operators are defined in three different modalities:

- **Global successor**
- **Abstract successor**
- **Caller**
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRET Games with Modular Strategies
Differences between modalities
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre
Winning CaRet Games with Modular Strategies
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRET Games with Modular Strategies
Differences between modalities

Ilaria De Crescenzo and Salvatore La Torre

Winning CAReT Games with Modular Strategies
Differences between modalities

S1

- e1
- n1 → x1
- b2 → x2

S2

- e2
- b1 → n4
- n3 → x4

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRET Games with Modular Strategies
Differences between modalities

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRET Games with Modular Strategies
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRet Games with Modular Strategies
Differences between modalities

Ilaria De Crescenzo and Salvatore La Torre
Winning CaRET Games with Modular Strategies
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre

Winning CaRET Games with Modular Strategies
Differences between modalities

S1

S2

Ilaria De Crescenzo and Salvatore La Torre

Winning CaREt Games with Modular Strategies
Our result

- We show that deciding the existence of a winning modular strategy in a CaRet game is 2ExpTime-Complete.
- The lower bound derives from the fact that LTL-games for not recursive graph are already 2ExpTime-Hard.
- We’ll show only that the upper bound of the proposed construction is 2ExpTime.
Our Solution

Idea

Reduce the decision problem to a problem of emptiness of nondeterministic automata with parity condition

Let $\langle G, \varphi \rangle$ be a modular CaRET game

- Constructing an equivalent game $\langle G', \text{color} \rangle$ with a parity winning condition such that $|G'| = O(2^{\varphi})$.

- Constructing from $\langle G', \text{color} \rangle$ a two-way alternating parity tree automaton A_{win} that accepts a strategy iff corresponds to a winning modular strategy.

- Convert A_{win} in a one-way nondeterministic automaton, take its intersection with the tree automaton that accepts strategy trees and check the emptiness of this resulting automaton.
Deciding existence of modular winning strategies is solved in [Alur, La Torre, Madhusudan, 2003] for:
- Reachability and safety winning condition \((\text{finite plays})\)
- External winning condition given as deterministic/universal Büchi/coBüchi or LTL formulas \((\text{infinite plays})\)

As far as we know, studies that analyze the problem with non-regular winning condition are not known

Our work extends the previous results to this class of winning conditions, because CaRet formulas can express also not regular properties
Conclusions

- The implementability of the proposed technique in tools, however, is countered by the high complexity, exponential in the size of the graph and doubly exponential in the size of the formula.

- Typically, the analysis of real systems are done for small formulas.

- Regarding the structural complexity, deciding the existence of modular strategies for LTL games is NP-complete.

- In this paper we have not analyzed the structural complexity and the question remains open.