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Multi-sorted stratified syllogistics – motivation

Multi-sorted stratified syllogistics are set-theoretic languages
admitting variables of different sorts (sort 0, sort 1,.. and so on)

Assignments for such variables are based on collections of objects
(natural numbers, real numbers, possible worlds...)

• Variables of sort 0 → objects of the considered domain

• Variables of sort 1 → sets of such objects

• Variables of sort 2 → collections of sets

• ...
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Multi-sorted stratified syllogistics – motivation

The study of set-theoretic languages admitting variables of
different sorts is motivated by the fact that most of the formulae
in the statements and proofs of theorems in many fields of
mathematics and computer science involve variables of different
sorts

Example:
In modal logics there are entities of different types: possible
worlds, formulae, accessibility relations

4



Multi-sorted stratified syllogistics – motivation

Less investigated than one-sorted multi-level syllogistics

Some results:
• Two-level syllogistics, 2LS

(A. Ferro and E. Omodeo, 1978)

• Extension of 2LS with singleton and cartesian product

(D. Cantone, V. Cutello, 1990)

• Three-level syllogistics, extended with powerset, general union, singleton

(D. Cantone, V. Cutello 1993)

More recently, decidability of the satisfiability problem for a three-level stratified

syllogistic, 3LQSR, admitting a restricted form of quantification over individual

and set variables was proved in (D. Cantone, M. Nicolosi Asmundo 2008)
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This work

We prove the decidability of the satisfiability problem for a
four-level stratified syllogistic, 4LQSR, admitting variables of four
sorts and a restricted form of quantification over variables of the
first three sorts

Given a satisfiable formula ϕ and a model M

we construct a finite model M∗ for ϕ

Complexity results:
Sublanguages (4LQSR)k, k ≥ 0 are NP-complete

Applications:
Modal logics S5 and K45 can be formalized in (4LQSR)1
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Syntax of 4LQS

• Pairing operator 〈·, ·〉

• Predicate symbols = and ∈

(i) variables of sort 0 : x, y, z, . . .

(ii) variables of sort 1 : X1, Y 1, Z1, . . .

(iii) variables of sort 2 : X2, Y 2, Z2, . . .

(iv) variables of sort 3 : X3, Y 3, Z3, . . .

4LQS quantifier-free atomic formulae

level 0: x = y, x ∈ X1

level 1:X1 = Y 1, X1 ∈ X2

level 2:X2 = Y 2, 〈x, y〉 = X2, 〈x, y〉 ∈ X3, X2 ∈ X3
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Syntax of 4LQS

4LQS quantified atomic formulae

level 1: (∀z1) . . . (∀zn)ϕ0, ϕ0 propositional combination of
quantifier-free atomic formulae

level 2: (∀Z1
1) . . . (∀Z

1
m)ϕ1, ϕ1 propositional combination of

quantifier-free atomic formulae and of quantified atomic
formulae of level 1

level 3: (∀Z2
1) . . . (∀Z

2
p)ϕ2, ϕ2 propositional combination of

quantifier-free atomic formulae and of quantified atomic
formulae of levels 1 and 2

4LQS -Formulae

Propositional combinations of quantifier-free atomic formulae of
levels 0, 1, 2, and of quantified atomic formulae of levels 1, 2, 3
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Semantics of 4LQS

A 4LQS -interpretation is a pair M = (D,M ), where

•Mx ∈ D

•MX1 ∈ pow(D)

•MX2 ∈ pow(pow(D))

•MX3 ∈ pow(pow(pow(D)))

We put M〈x, y〉 = {{Mx}, {Mx,My}}
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Semantics of 4LQS

Formulae are interpreted as usual. In particular

M |= (∀z1) . . . (∀zn)ϕ0 iff M[z1/u1, . . . , zn/un] |= ϕ0, for
all u1, . . . , un ∈ D

M |= (∀Z1
1) . . . (∀Z

1
m)ϕ1 iff M[Z1

1/U
1
1 , . . . , Z

1
m/U

1
m] |= ϕ1,

for all U1
1 , . . . , U

1
m ∈ pow(D)

M |= (∀Z2
1) . . . (∀Z

2
p)ϕ2 iff M[Z2

1/U
2
1 , . . . , Z

2
p/U

2
p ] |= ϕ2,

for all U2
1 , . . . , U

2
p ∈ pow(pow(D))
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Examples

• (∀z)(z ∈ X1 ↔ ϕ(z))

• (∀Xi−1)(Xi−1 ∈ Xi ↔ ϕ(Xi−1)), for i ∈ {2, 3}

For instance

(∀Z2)(Z2 ∈ Y 3 ↔

(∀Z1)(Z1 ∈ Z2 ↔

¬(∀z1)(∀z2)(∀z3)¬(z1 ∈ Z1 ∧ z2 ∈ Z1 ∧ z3 ∈ Z1∧

¬(z1 = z2 )∧¬(z1 = z3 )∧¬(z2 = z3 ))))
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Characterizing 4LQSR

4LQSR is the subcollection of the formulae of 4LQS such that

Restriction I
Nestings of quantifiers over variables of sort 0 into quantifiers over
variables of sort 1 are allowed if the former are linked to the
corresponding variables of sort 1

[¬ϕ0 → ∧ni=1 ∨
m
j=1 zi ∈ Z1

j ]

Example

(∀Z1)(Z1 ∈ X2 ↔ (∀z) (z ∈ Z1 → z ∈ X1) )

If M |= ¬ (z ∈ Z1 → z ∈ X1) then M |= z ∈ Z1

12



Characterizing 4LQSR

Restriction II
Every quantified atomic formula of level 3 is

• either of type (∀Z2
1), . . . , (∀Z

2
p)ϕ2, where ϕ2 is a propositional

combination of quantifier-free atomic formulae

• or of type (∀Z2)(Z2 ∈ X3 ↔ ¬(∀z1)(∀z2)¬(〈z1, z2〉 = Z2)

Examples

• (∀Z2)(Z2 ∈ X3 ↔ (Z2 ∈ X3
1 ∧ Z

2 ∈ X3
2)) (intersection)

• (∀Z2)(Z2 ∈ X3 ↔ (Z2 ∈ X3
1 ∧ ¬(Z2 ∈ X3

2))) (set difference)
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A decision procedure for

the satisfiability problem for 4LQSR

Given a satisfiable 4LQSR-formula ϕ and a model M for it, we
construct a finite 4LQSR-interpretation M∗ = (D∗,M∗), where
D∗ ⊆ D is finite

1. Normalized 4LQSR-conjunctions

2. Construction of D∗

3. Definition of M∗
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Normalized 4LQSR-conjunctions

Let ϕ be a 4LQSR-formula

construct ϕDNF and consider only one of its disjuncts

Negative quantified conjuncts occurring in it are eliminated

Each

¬(∀z1) . . . (∀zn)ϕ0 is replaced by ¬(ϕ0)
z1,...,zn
z′1,...,z

′
n

negative quantified literals of levels 2 and 3 are dealt with in
an analogous way
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Example

ϕ = (∀Z1)(Z1 ∈ X2
1 → (∀z)(z ∈ Z1 → z ∈ X1))

∧¬(X2
1 = X2

2)∧ ¬(∀z1)(∀z2)¬ (( 〈z1, z2〉 = X2
2 ∧X

2
2 ∈ X3)

⇓

ϕN = (∀Z1)(Z1 ∈ X2
1 → (∀z)(z ∈ Z1 → z ∈ X1))

∧¬(X2
1 = X2

2) ∧ 〈x1, x2〉 = X2
2 ∧X

2
2 ∈ X3
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A model for ϕN

ϕN = (∀Z1)(Z1 ∈ X2
1 → (∀z)(z ∈ Z1 → z ∈ X1))

∧¬(X2
1 = X2

2) ∧ 〈x1, x2〉 = X2
2 ∧X

2
2 ∈ X3

M = (D,M ) where

D = N

Mx1, Mx2 ∈ N

MX1 = N

MX2
1 the collection of subsets of N with at least three elements

MX2
2 = {{Mx1}, {Mx1,Mx2}}

MX2
2 ∈MX3
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Construction of the finite domain D∗

V ′
0, V

′
1, V

′
2 the collections of variables of sorts 0, 1, 2 free in ϕN

Step 1: find distinguishers and witnesses of cardinality at level 2

• F1 ‘distinguishes’ S = {MX2 : X2 ∈ V ′
2}, and |F1| ≤ |S| − 1

• F2 satisfies |MX2 ∩F2| ≥ min(3, |MX2|), and |F2| ≤ 3 · |V ′
2|

Example

• S = {MX2
1 ,MX2

2}

• F1 = {F} with F ⊆ N, F ∈MX2
1 , F /∈MX2

2

• F2 = {F1, F2, F3, F
′
1, F

′
2},

where F1, F2, F3 ∈MX2
1 and F ′

1, F
′
2 ∈MX2

2
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Construction of the finite domain D∗

Step 2: associate variables to distinguishers and witnesses of
cardinality

• {F1, . . . , Fk} = (F1 ∪ F2) \ {MX1 : X1 ∈ V ′
1}

• VF1 = {X1
1 , . . . , X

1
k} ⊆ V1 distinct from the variables in ϕN

Example
Assume MX1 /∈ F1 ∪ F2

• VF1 = {Y, Y1, Y2, Y3, Y
′
1 , Y

′
2}

•MY = F

•MYi = Fi

•MY ′
j = F ′

j
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Construction of the finite domain D∗

Step 3: find distinguishers and witnesses of cardinality at level 1

•∆1 distinguishes T = {MX1 : X1 ∈ (V ′
1 ∪ VF1 )}

◮ |∆1| ≤ |T | − 1

•∆2 satisfies |J ∩∆2| ≥ min(3, |J |)

◮ |∆2| ≤ 3 · |V ′
1 ∪ VF1 |

•D∗ = {Mx : x ∈ V ′
0} ∪∆1 ∪∆2

Example

•∆1 = {u1, . . . , uk}, k ≤ 6

•∆2 = {v1, . . . , vl}, l ≤ 3 · 5 + 1 + 2
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Construction of the finite domain D∗

Step 4: complete D∗ to preserve satisfiability of level 1 literals
Let Φ be the set of formulae (∀z1) . . . (∀zn)ϕ0 in conjuncts of
type (∀Z1

1) . . . (∀Z
1
m)ϕ1

• for every ϕ ∈ Φ and for each (X1
i1
, . . . , X1

im
)

if Mϕ
Z1
1 ,..., Z1

m

X1
i1
,...,X1

im

= false then

D∗ := D∗ ∪ {u1, . . . , un}, u1, . . . , un of D

M[z1/u1, . . . , zn/un]ϕ0
Z1
1 ,..., Z

1
m

X1
i1
,...,X1

im

= false
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Definition of the interpretation M∗

M∗x =Mx, if Mx ∈ D∗

M∗X1 =MX1 ∩D∗

M∗X2 = ((MX2 ∩ pow(D∗))

\{M∗X1 : X1 ∈ (V ′
1 ∪ VF1 )})

∪{M∗X1 : X1 ∈ (V ′
1∪V

F
1 ), MX1 ∈MX2}

M∗X3 = ((MX3 ∩ pow(pow(D∗)))

\{M∗X2 : X2 ∈ V ′
2})

∪{M∗X2 : X2 ∈ V ′
2, MX2 ∈MX3}
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Correctness of the procedure

Let M be a 4LQSR-interpretation satisfying a normalized
4LQSR-conjunction ϕN . Further, let M∗ = (D∗,M∗) be a
4LQSR-interpretation defined as shown in the procedure above.
Then M∗ |= ϕN .

The correctness proof is carried out by means of some technical
lemmas showing that

• for every quantifier-free literal ψ of ϕN , M |= ψ iff M∗ |= ψ

• for every quantified literal χ of ϕN , if M |= χ then M∗ |= χ
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Complexity results

(4LQSR)k are sublanguages of 4LQSR in which the quantifier
prefixes of quantified atoms of level 2 have length not exceeding k

Lemma The satisfiability problem for (4LQSR)k is NP-complete,
for any k ≥ 0

• NP-hardness is proved by a reduction to the satisfiability
problem of propositional logic

• The problem is in NP:

– |D∗| is polynomial in the size of ϕN (polynomial in the size
of ϕ)

–M∗ |= ϕN can be verified in polynomial time
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Expressibility of 4LQSR

• Set theoretic constructs expressed by 3LQSR

• Binary relations

• Conditions on binary relations which characterize accessibility
relations of modal logics

• Boolean operations over relations and the inverse of a given
binary relation

• The modal logics S5 and K45

• . . .
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4LQSR formalization of conditions of accessibility relations

Binary relation (∀Z2)(Z2 ∈ R3 ↔ ¬(∀z1, z2)¬(〈z1, z2〉 = Z2))

Reflexive (∀z1)(〈z1, z1〉 ∈ R3)
Symmetric (∀z1, z2)(〈z1, z2〉 ∈ R3 → 〈z2, z1〉 ∈ R3)
Transitive (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z3〉 ∈ R3) → 〈z1, z3〉 ∈ R3)
Euclidean (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3) → 〈z2, z3〉 ∈ R3)
Weakly-connected (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z1, z3〉 ∈ R3)

→ (〈z2, z3〉 ∈ R3 ∨ z2 = z3 ∨ 〈z3, z2〉 ∈ R3))
Irreflexive (∀z1)¬(〈z1, z1〉 ∈ R3)
Intransitive (∀z1, z2, z3)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z3〉 ∈ R3) → ¬〈z1, z3〉 ∈ R3)
Antisymmetric (∀z1, z2)((〈z1, z2〉 ∈ R3 ∧ 〈z2, z1〉 ∈ R3) → (z1 = z2))
Asymmetric (∀z1, z2)(〈z1, z2〉 ∈ R3 → ¬(〈z2, z1〉 ∈ R3))
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4LQSR formalization of Boolean operations over relations

Intersection R3 = R3

1
∩R3

2
(∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3

1
∧ Z2 ∈ R3

2
))

Union R3 = R3

1
∪R3

2
(∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3

1
∨ Z2 ∈ R3

2
))

Complement R3

1
= R3

2
(∀Z2)(Z2 ∈ R3

1
↔ ¬(Z2 ∈ R3

2
))

Set difference R3 = R3

1
\ R3

2
(∀Z2)(Z2 ∈ R3 ↔ (Z2 ∈ R3

1
∧ ¬(Z2 ∈ R3

2
)))

Set inclusion R3

1
⊆ R3

2
(∀Z2)(Z2 ∈ R3

1
→ Z2 ∈ R3

2
)
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The logic S5

Modal logic S5 can be obtained from the logic K by adding to

K : �(p1 → p2) → (�p1 → �p2) ,

the axioms

T : �p→ p (reflexive accessibility relation)
5 : ♦p→ �♦p (euclidean accessibility relation)

Semantics of the modal operators

•K , w |= �ϕ iff K , v |= ϕ, for every v ∈ W ,

•K , w |= ♦ϕ iff K , v |= ϕ, for some v ∈ W .
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Translation of a formula of S5 in 4LQSR

• worlds → variables of sort 0

• formulae → variables of sort 1

• relations → variables of sort 3

τS5(�p) = τ2S5(�p)

= (∀z)(z ∈ X1
p) → (∀z)(z ∈ X1

�p)

∧¬(∀z)(z ∈ X1
p) → (∀z)¬(z ∈ X1

�p)

Lemma
For every formula ϕ of the logic S5, ϕ is satisfiable in a model
K = 〈W,R, h〉 iff there is a 4LQSR-interpretation satisfying
x ∈ Xϕ.

29



The logic K45

Modal logic K45 can be obtained from the logic K by adding to

K : �(p1 → p2) → (�p1 → �p2) ,

the axioms

4 : �p→ ��p (transitive accessibility relation)
5 : ♦p→ �♦p (euclidean accessibility relation)

Semantics of the modal operators

•K |= �ϕ iff K , v |= ϕ, for every v ∈ W s.t. there is a w′ ∈ W
with (w′, v) ∈ R,

•K |= ♦ϕ iff K , v |= ϕ, for some v ∈ W s.t. there is a w′ ∈ W
with (w′, v) ∈ R.
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Translation of a formula of K45 in 4LQSR

τK45(�p)

= τ2K45(�p)

= (∀z1)((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) → z1 ∈ X1
p)

→ (∀z)(z ∈ X1
�p)

∧¬(∀z1)¬((¬(∀z2)¬(〈z2, z1〉 ∈ R3)) ∧ ¬(z1 ∈ X1
p))

→ (∀z)¬(z ∈ X1
�p)

Lemma
Given a formula ϕ of τK45, ϕ is satisfiable in K = 〈W,R, h〉 iff
there is a 4LQSR- interpretation satisfying x ∈ Xϕ
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Conclusions

We have presented a decidability result for the satisfiability
problem for a 4-level quantified syllogistic (4LQSR)

4LQSR expresses in a natural way

• pairs

• (binary) relations

• Boolean operations over relations

• properties of binary relations

The modal logics S5 and K45 can be embedded into 4LQSR
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Future work

• Exploring the problem of expressing:

– Set theoretic general union

– Composition of binary relations

– The modal logic K

• Characterizing the conditions a modal logic has to fulfil in order
to be embedded into 4LQSR

• Finding classes of

–Modal formulae with bounded modal nesting

–Multi-modal logics

that can be embedded into 4LQSR

33


