

# Formalization and Automated Reasoning about a Complex Signalling Network

#### Annamaria Basile, Maria Rosa Felice and Alessandro Provetti

Informatics Section, Dept. of Physics, Dept. of Life Sciences, Univ. of Messina, Italy.

#### 1.IX.2011

A stream-of-consciousness presentation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <



# Formalization and Automated Reasoning about a Complex Signalling Network

#### Annamaria Basile, Maria Rosa Felice and Alessandro Provetti

Informatics Section, Dept. of Physics, Dept. of Life Sciences, Univ. of Messina, Italy.

#### 1.IX.2011

A stream-of-consciousness presentation

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

...please, PLEASE no questions about carboxypeptidase and the like...

# Signalling Networks

In the life of cells, *a signal* corresponds to sensing, by and apt cellular receptor, of external molecules.

Signalling molecules inside the cell interact with each other to *trasduce* such signal in *risposte cellulari* that regulate the introduction of proteins; those proteins control various cellular functions.

# Signalling Networks

In the life of cells, *a signal* corresponds to sensing, by and apt cellular receptor, of external molecules.

Signalling molecules inside the cell interact with each other to *trasduce* such signal in *risposte cellulari* that regulate the introduction of proteins; those proteins control various cellular functions.

[Tran & Baral, 2009]: Specific collections of interactions with a common theme in a network are often referred to as signalling pathways or signalling networks (SN) [...] Modeling SNs is thus essential for understanding the cell function and can lead to effective therapeutic strategies that correct/alter abnormal cell behavior.



## Classical sitcalc-like framework:

- fluents (partial descr. of the domain that vary over time)
  actions (events capable of modifying fluents)
- observations

(known initial values for fluents)

# Classical sitcalc-like framework:

- fluents (partial descr. of the domain that vary over time)
- actions (events capable of modifying fluents)
- observations (known initial values for fluents)

- Predict: the effect of a given action;
- Explain: observations on the evolution of the cell, and
- Plan: an interaction with esternal agents (pharma)

# Classical sitcalc-like framework:

- ► fluents (partial descr. of the domain that vary over time)
- actions (events capable of modifying fluents)
- observations (known initial values for fluents)
- Predict: the effect of a given action;
- Explain: observations on the evolution of the cell, and
- Plan: an interaction with esternal agents (pharma)

## Para-Turing test:

come up with a formalization s. t. we can automate the qualitative (and atemporal) reasoning of, e.g., a student who uses the network as a guide to answer "what if" questions?

# Classical sitcalc-like framework:

- ► fluents (partial descr. of the domain that vary over time)
- actions (events capable of modifying fluents)
- observations (known initial values for fluents)
- Predict: the effect of a given action;
- Explain: observations on the evolution of the cell, and
- Plan: an interaction with esternal agents (pharma)

## Para-Turing test:

come up with a formalization s. t. we can automate the qualitative (and atemporal) reasoning of, e.g., a student who uses the network as a guide to answer "what if" questions?

## Working hypotheses:

Would real signalling networks become an upper layer to action languages (level 3) and ASP (level 2)?

# Automated Reasoning

With BioSigNet-RR Baral et al. have extend  ${\cal A}$  to facilitate the definition of intracellular interactions. Examples of the new syntax:

binding(br, bki1) causes dissociated(bki1) if high(bri1)

high(br) high(bri1) triggers dissociated(bki1)

high(bri1), high(bak1) inhibits activate(bin2)

# Automated Reasoning

With BioSigNet-RR Baral et al. have extend A to facilitate the definition of intracellular interactions. Examples of the new syntax:

binding(br, bki1) causes dissociated(bki1) if high(bri1)

high(br) high(bri1) triggers dissociated(bki1)

high(bri1), high(bak1) inhibits activate(bin2)

# hypothesis Generation

query with variables that are evaluated by an inferential engine (DLV): ?-F  $_{\rm AFTER}$   $_{\rm ACTIVATE(BR)}$ 

# A successful case study: protein p53

# p53 inhibits tumouros activation



Figure: Signalling Network for protein p53

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# A successful case study: protein p53

# p53 inhibits tumouros activation



Figure: Signalling Network for protein p53

# BioSigNet-RR solution

- a convincing formalization of the pathway for protein p53
- the reflexive effect underlying its activation has been successfully modeled
- direct representation of inhibition is crucial

# Modeling exercise: the SN for Brassinosteroids in thalian Arabidopsis

# State of the art

There is research on observed aberrations of some steroids hormones of plant *(poliossidrilates of brassinosteroides (BRS))*. [Chory et al.] have synthesized what is currently known in a SN

# Modeling exercise: the SN for Brassinosteroids in thalian Arabidopsis

# State of the art

There is research on observed aberrations of some steroids hormones of plant *(poliossidrilates of brassinosteroides (BRS))*. [Chory et al.] have synthesized what is currently known in a SN

## Observed consequences

plant mutations that create:

- dark green pigmentation;
- dwarf leaves with an epinastic development
- retarded aging
- reduction of fertility

# Plants who suffer from...







Petiole: 3.2 ± 0.3 (mm) 2.0 ± 0.4 (mm)

(日)、

æ

Figure: Examples of mutant plants

# Executing the pathway



Figure: Signalling network for BR

#### BRI1 is

- localized on the plasmatic membrane
- part of a large class of receptors for plants (LRR-RKS)
- ► the key component of the signal transmission in BR.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

# Signalling pathway

## Formalizing the Signalling Network

How to express a query relative to the connections between elements of the cell.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

# Signalling pathway

## Formalizing the Signalling Network

How to express a query relative to the connections between elements of the cell.

## Face validation of the queries:

- question
- answer
- query in  $\mathcal{A}_T^0$
- illustration on the Signalling Network

# Signalling pathway

## Formalizing the Signalling Network

How to express a query relative to the connections between elements of the cell.

## Face validation of the queries:

- question
- answer
- query in  $\mathcal{A}_T^0$
- illustration on the Signalling Network

## Temporal aspects:

Time is largely irrelevant and never represented explicitly...

How does BR manifests itself to the cell (inside the network)?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

How does BR manifests itself to the cell (inside the network)?

### Answer

*BR* causes the activation of *BRI1* and *BAK1*, who in turn *inactivate BIN2*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

How does BR manifests itself to the cell (inside the network)?

### Answer

*BR* causes the activation of *BRI1* and *BAK1*, who in turn *inactivate BIN2*.

## Formula

- > ?- high(bri1) after activate(br)
- > ?- high(bak1) after activate(br)
- > ?- low(bin2) after activate(br)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ



◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

## Query

What effects should we expect from the activation of BAK1?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

## Query

What effects should we expect from the activation of BAK1?

## Answer

*BAK1* will provoke the activation of *BRI1*, which in turn shall activate the whole cellular network.

# Query

What effects should we expect from the activation of BAK1?

## Answer

BAK1 will provoke the activation of BRI1, which in turn shall activate the whole cellular network.

## Formula

> ?- high(bri1) after activate(bak1)



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

What are the effects of inactivation of BIN2?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

What are the effects of inactivation of *BIN2*?

## Answer

inactivation of BIN2 will cause the subsequent inhibition of BZR1 and BES1.

What are the effects of inactivation of BIN2?

## Answer

inactivation of BIN2 will cause the subsequent inhibition of BZR1 and BES1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

## Formula

- > ?- low(bzr1) after activate(bin2)
- > ?- low(bes1) after activate(bin2)



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 BioSigNet-RR supports a concise and readable formalization of the knowledge expressed by a graphical SN, now accessible by the computer;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- BioSigNet-RR supports a concise and readable formalization of the knowledge expressed by a graphical SN, now accessible by the computer;
- we are working on a Python-language translator for  $\mathcal{A}_{\mathcal{T}}^0$  to the DLV;

 until now, we refrained from any attempt to formalize implicit/background knowledge.

- BioSigNet-RR supports a concise and readable formalization of the knowledge expressed by a graphical SN, now accessible by the computer;
- we are working on a Python-language translator for  $\mathcal{A}_T^0$  to the DLV;

- until now, we refrained from any attempt to formalize implicit/background knowledge.
- validation will be empirical (so called face-validation).

- BioSigNet-RR supports a concise and readable formalization of the knowledge expressed by a graphical SN, now accessible by the computer;
- we are working on a Python-language translator for  $\mathcal{A}_T^0$  to the DLV;
- until now, we refrained from any attempt to formalize implicit/background knowledge.
- validation will be empirical (so called face-validation).

## Better formalization style?

For each fluent we introduce, at translation time, a couple of actions: *high(bri1)* and *low(bri1)* capture observation and *-essentially-* the incomplete nature of our knowledge.

## More case studies?

are of course welcome but may require a strong biological background;

# Bibliography



#### G. Gelfond

From AL to ASP - The System al2asp. Technical report, Dept. of Computer Science and Engineering (2011).



#### M. Gelfond and V. Lifschitz

*Classical Negation in Logic Programs and Disjunctive Databases.* New Generation Comput. (1991).



#### M. Gelfond and D. Inclezan

Yet Another Modular Action Language. Proc. of Int'l Workshop on Software Engineering for Answer Set Programming (2009).



#### Franziska Klügl

A validation methodology for agent-based simulations, Proc. of ACM SAC (2008).



#### J. Chory, Y. Belkhadir and X. Wang

Arabidopsis Brassinosteroid Signalling Pathway. Science Signaling (2006).



#### Tran N., Baral C., K. Chancellor, E. Berens, M. Joy and N. Tran

A knowledge based approach for representing and reasoning about signalling networks. ISMB/ECCB (Supplement of Bioinformatics) (2004).



Tran N. and Baral C.

Hypothesizing about signalling networks. Journal of Applied Logic, vol 7 (2009).