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Introduction

Answer Set Programming (ASP)
Logic Programming under stable model semantics
Associates each program with a (possibly empty) set of
stable models

Coherence Problem
Deciding whether a program has at least one stable model.

Super-coherence Problem
Deciding whether a program P is such that P ∪ F is coherent
for each set F of facts.
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Why Studying Super-coherence?

1 Dynamic Magic Sets only apply to super-coherent
programs [A., Faber; 2010]

2 Super-coherent programs are non-constraining
Adding extensional information to these programs will
always result in stable models
Important for modular evaluation: If the top-part of a split
program is super-coherent, coherence of the full program
can be checked by only considering the bottom-part

3 Incoherent programs are one of the main criticisms of ASP
(especially in database theory)

Coherence has been of interest for quite some time
Super-coherence emerges naturally when a fixed program
and a variable database are considered
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Main Contribution

What is the complexity of deciding super-coherence of ASP
programs?

Recall: deciding coherence is
ΣP

2 -complete for disjunctive programs
NP-complete for non-disjunctive programs

Contributions

We prove ΠP
3 -completeness in the disjunctive case

We prove ΠP
2 -completeness in the non-disjunctive case

Note: We focus on propositional programs.
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ASP Syntax

An ASP program P is a finite set of rules r of the form

p1 ∨ · · · ∨ pn ← q1, . . . , qj , not qj+1, . . . , not qm.

At(P): the set of atoms appearing in P

Example

“NP 6= P ” ∨ “NP = P ” ←
“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”
“ASP harder than SAT ” ← not “PH collapses ”
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ASP Semantics

Let P be an ASP program and I ⊆ At(P) an interpretation.
Atoms in I are true; atoms not in I are false
A rule is satisfied if at least one head atom is true
whenever all body literals are true
If all rules of P are satisfied, then I is a model of P

Definition (Stable Models)

Compute the FLP reduct — P I

Delete from P every rule with a false body literal

I is a stable model if I is a subset-minimal model of P I

SM(P): the set of all stable models of P
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ASP Semantics: Example

“NP 6= P ” ∨ “NP = P ” ←
“NP = P ” ← “polynomial algorithm for SAT ”

“PH collapses ” ← “NP = P ”
“ASP harder than SAT ” ← not “PH collapses ”

Stable models
1 {“NP 6= P ”, “ASP harder than SAT ”}
2 {“NP 6= P ”, “NP = P ”, “PH collapses ”}
3 {“NP = P ”, “PH collapses ”}

Compute the reduct, and
Check minimality. . .
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Super-coherence Problems

Definition (Super-coherent Programs)

A program P is super-coherent if, for every set of facts F , the
program P ∪ F is coherent, that is, SM(P ∪ F ) 6= ∅.

We are interested in the complexity of the following decisional
problems:

Deciding super-coherence of disjunctive programs
Deciding super-coherence of normal programs
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Deciding Super-coherence (1)

Example 1
a ∨ b.

Example 2
a← not b.

Example 3
a← not b.
b ← not a.

1 Positive programs are super-coherent
2 Stratified programs are super-coherent
3 Odd-cycle free programs are super-coherent
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Deciding Super-coherence (2)

Up to odd-cycle free programs, it is a trivial problem
The general case is not so easy!

Which of the programs is super-coherent?

P = { a ←
← not b, not c

c ← not b }

Q = { a ← c
b ∨ c ←

c ← not a }

We have:
SM(P) = SM(Q) = {{a, c}} , but
SM(P ∪ {b}) = {{a,b}} and SM(Q ∪ {b}) = ∅.
In fact, P is super-coherent!
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Main Results

Theorem
The problem of deciding super-coherence for disjunctive
programs is ΠP

3 -complete.

Theorem
The problem of deciding super-coherence for normal programs
is ΠP

2 -complete.
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Membership

ΠP
3 -membership follows by the following algorithm for the

complementary problem:

guess a set F ⊆ At(P) and check SM(P ∪ F ) = ∅ via an
oracle-call
checking SM(P ∪ F ) = ∅ is known to be in ΠP

2 [Eiter,
Gottlob; 95]
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Hardness

ΠP
3 -hardness is shown via a reduction from the evaluation

problem of QBFs Φ = ∀X∃Y∀Zφ to super-coherence of
programs PΦ in two steps:

1 we define required properties for PΦ and show for
programs satisfying these properties:

Φ is true if and only if PΦ is super-coherent
2 we provide a poly-time construction of PΦ from Φ
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Hardness — Step 1: Required Properties (1)

Definition (Φ-reduction)
Let Φ = ∀X∃Y∀Zφ be a QBF with φ in DNF; call a program P
satisfying the following properties a Φ-reduction:

1 P is given over atoms U = X ∪ Y ∪ Z ∪ X ∪ Y ∪ Z ∪ {u, v ,w};
2 P has as its models: U and for each I ⊆ X , J ⊆ Y ,

M[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,u}
M ′[I, J] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ Z ∪ Z ∪ {v ,w};

3 models of PM[I,J] are M[I, J] and O[I] = I ∪ (X \ I);

4 models of PM′[I,J] are M ′[I, J] and ∀K ⊆ Z s.t. I ∪ J ∪ K 6|= φ,

N[I, J,K ] = I ∪ (X \ I) ∪ J ∪ (Y \ J) ∪ K ∪ (Z \ K ) ∪ {v};

5 models of PU are given only by the models mentioned above.
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Hardness — Step 1: Required Properties (2)
Lemma
For any QBF Φ = ∀X∃Y∀Zφ with φ in DNF,
a Φ-reduction is super-coherent iff Φ is true.

U

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

⊂

· · ·
⊂ ⊂

· · ·

⊂

O[I0]

PM[I0,J0]

· · · O[Im]

PM[Im,Jn ]

N[I0, J0,K ] s.t.
I0 ∪ J0 ∪ K 6|= φ

PM′[I0,J0]

· · · N[Im, Jn,K ] s.t.
Im ∪ Jn ∪ K 6|= φ

PM′[Im,Jn ]

M[I0, J0] · · · M[Im, Jn] M′[I0, J0] · · · M′[Im, Jn]

O[I0] · · · O[Im]
N[I0, J0,K ] s.t.
I0 ∪ J0 ∪ K 6|= φ

· · · N[Im, Jn,K ] s.t.
Im ∪ Jn ∪ K 6|= φ

PU

Mario Alviano, Wolfgang Faber and Stefan Woltran Complexity of Super-Coherence Problems in ASP 14 / 17
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Hardness — Step 2: Poly-time Reduction

Definition

For any QBF Φ = ∀X∃Y∀Zφ with φ =
∨n

i=1 li,1 ∧ · · · ∧ li,mi a
DNF, define PΦ as follows:
{x ∨ x ←; u ← x , x ; w ← x , x ; x ← u,w ; x ← u,w | x ∈ X} ∪
{y ∨ y ← v ; u ← y , y ; w ← y , y ; y ← u,w ;
y ← u,w ; v ← y ; v ← y | y ∈ Y} ∪
{z ∨ z ← v ; u ← z,not w ; u ← z,not w ; v ← z; v ← z;
z ← w ; z ← w ; z ← u; z ← u; w ∨ u ← z, z | z ∈ Z} ∪
{w ∨ u ← li,1, . . . , li,mi | 1 ≤ i ≤ n}
{v ← w ; v ← u; v ← not u}.

Lemma
For any QBF Φ = ∀X∃Y∀Zφ, the program PΦ is a Φ-reduction.
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Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)
Given programs P and Q, and two sets A,B of atoms,
P ≡A

B Q if and only if, for each set F ⊆ A,

{I ∩ B | I ∈ SM(P ∪ F )} = {I ∩ B | I ∈ SM(Q ∪ F )}.

Known: complexity of deciding P ≡A
B Q is ΠP

3 -complete for
disjunctive programs;

however, hardness was only shown for bound context
alphabets A ⊂ U

Consequence of our results: P ≡A
B Q remains ΠP

3 -hard for
A = U and Q the empty program
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Conclusion Outline

We studied the property of super-coherence; i.e. (here:
propositional) programs which remain coherent no matter
which facts are added
Super-coherent programs have some nice properties and
applications
Complexity of deciding whether a program is
super-coherent is rather high:

ΠP
3 -complete for disjunctive programs

ΠP
2 -complete for normal programs

Future Work: Are there certain problems which become
easier for super-coherent programs?
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Thank you!
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