# Complexity of Super-Coherence Problems in ASP

#### Mario Alviano<sup>1</sup>, Wolfgang Faber<sup>1</sup> and Stefan Woltran<sup>2</sup>

<sup>1</sup> University of Calabria, Italy
 <sup>2</sup> Vienna University of Technology, Austria

Pescara, 1 September 2011 CILC 2011



## Super-coherent ASP Programs

- Introduction, Motivation and Contribution
- Definitions and Examples

## 2 Main Results

- Proof Sketch
- Consequence of our results

## Introduction

#### Answer Set Programming (ASP)

- Logic Programming under stable model semantics
- Associates each program with a (possibly empty) set of stable models

#### **Coherence Problem**

Deciding whether a program has at least one stable model.

#### Super-coherence Problem

Deciding whether a program *P* is such that  $P \cup F$  is coherent for each set *F* of facts.

## Why Studying Super-coherence?

#### Dynamic Magic Sets only apply to super-coherent programs [A., Faber; 2010]

- Super-coherent programs are non-constraining
  - Adding extensional information to these programs will always result in stable models
  - Important for modular evaluation: If the top-part of a split program is super-coherent, coherence of the full program can be checked by only considering the bottom-part
- Incoherent programs are one of the main criticisms of ASP (especially in database theory)
  - Coherence has been of interest for quite some time
  - Super-coherence emerges naturally when a fixed program and a variable database are considered

## Why Studying Super-coherence?

- Dynamic Magic Sets only apply to super-coherent programs [A., Faber; 2010]
- Super-coherent programs are non-constraining
  - Adding extensional information to these programs will always result in stable models
  - Important for modular evaluation: If the top-part of a split program is super-coherent, coherence of the full program can be checked by only considering the bottom-part
- Incoherent programs are one of the main criticisms of ASP (especially in database theory)
  - Coherence has been of interest for quite some time
  - Super-coherence emerges naturally when a fixed program and a variable database are considered

## Why Studying Super-coherence?

- Dynamic Magic Sets only apply to super-coherent programs [A., Faber; 2010]
- Super-coherent programs are non-constraining
  - Adding extensional information to these programs will always result in stable models
  - Important for modular evaluation: If the top-part of a split program is super-coherent, coherence of the full program can be checked by only considering the bottom-part
- Incoherent programs are one of the main criticisms of ASP (especially in database theory)
  - Coherence has been of interest for quite some time
  - Super-coherence emerges naturally when a fixed program and a variable database are considered

## Main Contribution

What is the complexity of deciding super-coherence of ASP programs?

- Recall: deciding coherence is
  - $\Sigma_2^P$ -complete for disjunctive programs
  - NP-complete for non-disjunctive programs

#### Contributions

- We prove Π<sup>P</sup><sub>3</sub>-completeness in the disjunctive case
- We prove  $\Pi_2^P$ -completeness in the non-disjunctive case

Note: We focus on propositional programs.



#### Super-coherent ASP Programs

- Introduction, Motivation and Contribution
- Definitions and Examples

### 2 Main Results

- Proof Sketch
- Consequence of our results

## ASP Syntax

An ASP program P is a finite set of rules r of the form

$$p_1 \lor \cdots \lor p_n \leftarrow q_1, \ldots, q_j, \text{ not } q_{j+1}, \ldots, \text{ not } q_m.$$

• At(P): the set of atoms appearing in P

#### Example

"
$$NP \neq P$$
"  $\lor$  " $NP = P$ "  $\leftarrow$   
" $NP = P$ "  $\leftarrow$  "polynomial algorithm for SAT"  
" $PH$  collapses"  $\leftarrow$  " $NP = P$ "  
" $ASP$  harder than SAT"  $\leftarrow$  not " $PH$  collapses"

## ASP Syntax

An ASP program P is a finite set of rules r of the form

$$p_1 \lor \cdots \lor p_n \leftarrow q_1, \ldots, q_j, \text{ not } q_{j+1}, \ldots, \text{ not } q_m.$$

• At(P): the set of atoms appearing in P

# Example"NP $\neq$ P" $\lor$ "NP = P" $\leftarrow$ <br/>"NP = P" $\leftarrow$ "polynomial algorithm for SAT"<br/>"PH collapses" $\leftarrow$ "NP = P"<br/>"ASP harder than SAT" $\leftarrow$ not "PH collapses"

## **ASP** Semantics

Let *P* be an ASP program and  $I \subseteq At(P)$  an interpretation.

- Atoms in I are true; atoms not in I are false
- A rule is satisfied if at least one head atom is true whenever all body literals are true
- If all rules of P are satisfied, then I is a model of P

#### **Definition (Stable Models)**

Compute the FLP reduct — P<sup>I</sup>
 Delete from P every rule with a false body literal
 I is a stable model if I is a subset-minimal model of P<sup>I</sup>

•  $\mathcal{SM}(P)$ : the set of all stable models of P

## **ASP** Semantics

Let *P* be an ASP program and  $I \subseteq At(P)$  an interpretation.

- Atoms in I are true; atoms not in I are false
- A rule is satisfied if at least one head atom is true whenever all body literals are true
- If all rules of P are satisfied, then I is a model of P

#### Definition (Stable Models)

- Compute the FLP reduct P<sup>I</sup>
  - Delete from P every rule with a false body literal
- I is a stable model if I is a subset-minimal model of P<sup>I</sup>
- SM(P): the set of all stable models of P

## **ASP** Semantics: Example

$$"NP \neq P" \lor "NP = P"$$
$$"NP = P"$$

$$\mathsf{VP} = \mathsf{P}" \leftarrow$$

 $\leftarrow$ 

"PH collapses"

"ASP harder than SAT"

"polynomial algorithm for SAT" "NP = P" ← not "PH collapses"

#### Stable models

• { "NP 
$$\neq$$
 P", "ASP harder than SAT" }

## ASP Semantics: Example

$$"NP \neq P" \lor "NP = P"$$
$$"NP = P"$$

$$VP = P" \leftarrow$$

 $\leftarrow$ 

 $\leftarrow$ 

"ASP harder than SAT"

"polynomial algorithm for SAT" "NP = P" not "PH collapses"

#### Stable models

•  $\{$  "NP  $\neq$  P", "ASP harder than SAT"  $\}$ 

Introduction, Motivation and Contribution Definitions and Examples

## **ASP Semantics: Example**

 $"NP \neq P" \lor "NP = P" \quad \cdot$ 

<u>"PH collapses"</u>  $\leftarrow$  "NP = P"

"ASP harder than SAT"

"polynomial algorithm for SAT" "NP = P"

← not "PH collapses"

#### Stable models

•  $\{"NP \neq P", "ASP harder than SAT"\}$ 

$${}$$
 { "NP  $\neq$  P", "NP = P", "PH collapses" }

 $\{"NP = P", "PH collapses"\}$ 

#### Compute the reduct, and

Check minimality...

**Definitions and Examples** 

## ASP Semantics: Example

" $NP \neq P$ "  $\vee$  "NP = P"  $\leftarrow$ 

<u>"PH collapses"</u>  $\leftarrow$  "NP = P"

 $"NP = P" \leftarrow "polynomial algorithm for SAT"$ 

#### Stable models

 $\mathbf{0} \{ "NP \neq P", "ASP harder than SAT" \}$ 

$${}$$
 { "NP  $\neq$  P", "NP = P", "PH collapses" ]

#### Compute the reduct, and

Check minimality...minimal!

## **ASP Semantics: Example**

$$"NP \neq P" \lor "NP = P"$$

$$VP = P" \leftarrow$$

 $\leftarrow$ 

 $\leftarrow$ 

"ASP harder than SAT"

"polynomial algorithm for SAT" "NP = P" not "PH collapses"

#### Stable models

#### Compute the reduct, and

Check minimality...

Introduction, Motivation and Contribution Definitions and Examples

## **ASP Semantics: Example**

$$"NP \neq P" \lor "NP = P" "NP = P"$$

"PH collapses"  $\leftarrow$  "NP = P"

"ASP harder than SAT"

← "polynomial algorithm for SAT"
 ← "NP = P"
 ← not "PH collapses"

#### Stable models

$$\bigcirc \{"NP \neq P", "ASP harder than SAT"\}$$

$$\{ "NP \neq P", "NP = P", "PH collapses" \}$$

{ "NP = P", "PH collapses"

#### Compute the reduct, and

Check minimality...

Introduction, Motivation and Contribution Definitions and Examples

## **ASP Semantics: Example**

"PH collapses"  $\leftarrow$  "NP = P"

"ASP harder than SAT"

← "polynomial algorithm for SAT"
 ← "NP = P"
 ← not "PH collapses"

#### Stable models

• 
$$\{"NP \neq P", "ASP harder than SAT"\}$$

$$\{ "NP \neq P", "NP = P", "PH collapses" \}$$

{ "NP = P", "PH collapses"

#### Compute the reduct, and

• Check minimality...countermodel: { " $NP \neq P$ " }

## ASP Semantics: Example

$$"NP \neq P" \lor "NP = P"$$

$$\mathsf{NP} = \mathsf{P}" \leftarrow$$

 $\leftarrow$ 

←

"ASP harder than SAT"

"polynomial algorithm for SAT" "NP = P"

#### Stable models

• 
$$\{"NP \neq P", "ASP harder than SAT"\}$$

$$\{ "NP \neq P", "NP = P", "PH collapses" \}$$

#### Compute the reduct, and

Check minimality...

Introduction, Motivation and Contribution Definitions and Examples

## **ASP Semantics: Example**

$$"NP \neq P" \lor "NP = P" \qquad "NP = P"$$

"PH collapses"  $\leftarrow$  "NP = P"

"ASP harder than SAT"

← "polynomial algorithm for SAT"
 ← "NP = P"
 ← not "PH collapses"

#### Stable models

• 
$$\{$$
 "NP  $\neq$  P", "ASP harder than SAT"  $\}$ 

$$\{ "NP \neq P", "NP = P", "PH collapses" \}$$

{ "NP = P", "PH collapses"
 }

#### Compute the reduct, and

Check minimality...

Introduction, Motivation and Contribution Definitions and Examples

## **ASP Semantics: Example**

"ASP harder than SAT"

← "polynomial algorithm for SAT"
 ← "NP = P"
 ← not "PH collapses"

#### Stable models

• 
$$\{"NP \neq P", "ASP harder than SAT"\}$$

$$\{ "NP \neq P", "NP = P", "PH collapses" \}$$

{ "NP = P", "PH collapses"
 }

#### Compute the reduct, and

• Check minimality...minimal!

## Super-coherence Problems

#### Definition (Super-coherent Programs)

A program *P* is super-coherent if, for every set of facts *F*, the program  $P \cup F$  is coherent, that is,  $SM(P \cup F) \neq \emptyset$ .

We are interested in the complexity of the following decisional problems:

- Deciding super-coherence of disjunctive programs
- Deciding super-coherence of normal programs

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**



| $\begin{array}{ccc} \text{- not } b. & a \leftarrow \text{ not } b. \\ b \leftarrow \text{ not } a. \end{array}$ |
|------------------------------------------------------------------------------------------------------------------|
|                                                                                                                  |

- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





#### A positive program

- Positive programs are coherent
- Adding facts cannot introduce negation
- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





#### A positive program

- Positive programs are coherent
- Adding facts cannot introduce negation

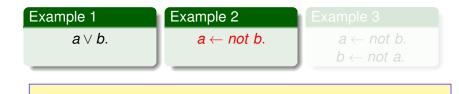
#### Positive programs are super-coherent

- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





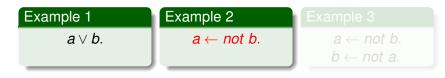
#### Positive programs are super-coherent

- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





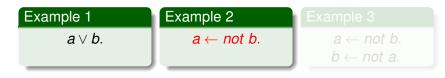
#### A stratified program

- Stratified programs are coherent
- Adding facts cannot introduce cycles
- Positive programs are super-coherent
- 2 Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





#### A stratified program

- Stratified programs are coherent
- Adding facts cannot introduce cycles
- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**

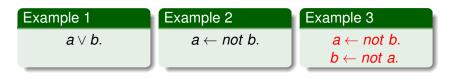




- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**



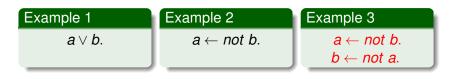
#### An odd-cycle free program

- Odd-cycle free programs are coherent
- Adding facts cannot introduce new cycles
- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**





#### An odd-cycle free program

- Odd-cycle free programs are coherent
- Adding facts cannot introduce new cycles
- Positive programs are super-coherent
- Stratified programs are super-coherent
- Odd-cycle free programs are super-coherent

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**

- Up to odd-cycle free programs, it is a trivial problem
- The general case is not so easy!

#### Which of the programs is super-coherent?

$$P = \{ \begin{array}{cccc} a & \leftarrow & Q = \{ \begin{array}{cccc} a & \leftarrow & c \\ & \leftarrow & \text{not } b, \text{ not } c & & b \lor c & \leftarrow \\ c & \leftarrow & \text{not } b & \} & c & \leftarrow & \text{not } a \end{array} \}$$

We have:

- $\mathcal{SM}(P) = \mathcal{SM}(Q) = \{\{a, c\}\}$ , but
- $\mathcal{SM}(P \cup \{b\}) = \{\{a, b\}\} \text{ and } \mathcal{SM}(Q \cup \{b\}) = \emptyset.$
- In fact, P is super-coherent!

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**

- Up to odd-cycle free programs, it is a trivial problem
- The general case is not so easy!

#### Which of the programs is super-coherent?

$$P = \{ \begin{array}{cccc} a & \leftarrow & Q = \{ \begin{array}{cccc} a & \leftarrow & c \\ & \leftarrow & \text{not } b, \text{ not } c & & b \lor c & \leftarrow \\ c & \leftarrow & \text{not } b & \} & c & \leftarrow & \text{not } a \end{array} \}$$

We have:

- $\mathcal{SM}(P) = \mathcal{SM}(Q) = \{\{a, c\}\}$ , but
- $\mathcal{SM}(P \cup \{b\}) = \{\{a, b\}\} \text{ and } \mathcal{SM}(Q \cup \{b\}) = \emptyset.$

In fact, P is super-coherent!

Introduction, Motivation and Contribution Definitions and Examples

## **Deciding Super-coherence**

- Up to odd-cycle free programs, it is a trivial problem
- The general case is not so easy!

#### Which of the programs is super-coherent?

$$P = \{ \begin{array}{cccc} a & \leftarrow & Q = \{ \begin{array}{cccc} a & \leftarrow & c \\ & \leftarrow & \text{not } b, \text{ not } c & & b \lor c & \leftarrow \\ c & \leftarrow & \text{not } b & \} & c & \leftarrow & \text{not } a \end{array} \}$$

We have:

- $\mathcal{SM}(P) = \mathcal{SM}(Q) = \{\{a, c\}\}$ , but
- $\mathcal{SM}(P \cup \{b\}) = \{\{a, b\}\} \text{ and } \mathcal{SM}(Q \cup \{b\}) = \emptyset.$
- In fact, P is super-coherent!



## Super-coherent ASP Programs

- Introduction, Motivation and Contribution
- Definitions and Examples

## 2 Main Results

- Proof Sketch
- Consequence of our results

## Main Results

#### Theorem

The problem of deciding super-coherence for disjunctive programs is  $\Pi_3^P$ -complete.

#### Theorem

The problem of deciding super-coherence for normal programs is  $\Pi_2^P$ -complete.



## Outline

## Super-coherent ASP Programs

- Introduction, Motivation and Contribution
- Definitions and Examples

### 2 Main Results

- Proof Sketch
- Consequence of our results

 $\Pi_3^P$ -membership follows by the following algorithm for the complementary problem:

- guess a set F ⊆ At(P) and check SM(P ∪ F) = Ø via an oracle-call
- checking SM(P∪F) = Ø is known to be in Π<sup>P</sup><sub>2</sub> [Eiter, Gottlob; 95]

 $\Pi_3^P$ -hardness is shown via a reduction from the evaluation problem of QBFs  $\Phi = \forall X \exists Y \forall Z \phi$  to super-coherence of programs  $P_{\Phi}$  in two steps:

 we define required properties for P<sub>Φ</sub> and show for programs satisfying these properties:

 $\Phi$  is true if and only if  $P_{\Phi}$  is super-coherent

2 we provide a poly-time construction of  $P_{\Phi}$  from  $\Phi$ 

## Hardness — Step 1: Required Properties

### Definition ( $\Phi$ -reduction)

Let  $\Phi = \forall X \exists Y \forall Z \phi$  be a QBF with  $\phi$  in DNF; call a program *P* satisfying the following properties a  $\Phi$ -reduction:

- P is given over atoms  $U = X \cup Y \cup Z \cup \overline{X} \cup \overline{Y} \cup \overline{Z} \cup \{u, v, w\};$
- 2 *P* has as its models: *U* and for each  $I \subseteq X$ ,  $J \subseteq Y$ ,

$$M[I, J] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup Z \cup \overline{Z} \cup \{v, u\}$$
$$M'[I, J] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup Z \cup \overline{Z} \cup \{v, w\};$$

- ③ models of  $P^{M[I,J]}$  are M[I,J] and  $O[I] = I \cup \overline{(X \setminus I)}$ ;
- Image of  $P^{M'[l,J]}$  are M'[l,J] and  $\forall K \subseteq Z$  s.t.  $l \cup J \cup K \not\models \phi$ ,

 $N[I, J, K] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup K \cup \overline{(Z \setminus K)} \cup \{v\};$ 

models of P<sup>U</sup> are given only by the models mentioned above.

## Hardness — Step 1: Required Properties

### Definition ( $\Phi$ -reduction)

Let  $\Phi = \forall X \exists Y \forall Z \phi$  be a QBF with  $\phi$  in DNF; call a program *P* satisfying the following properties a  $\Phi$ -reduction:

• P is given over atoms  $U = X \cup Y \cup Z \cup \overline{X} \cup \overline{Y} \cup \overline{Z} \cup \{u, v, w\};$ 

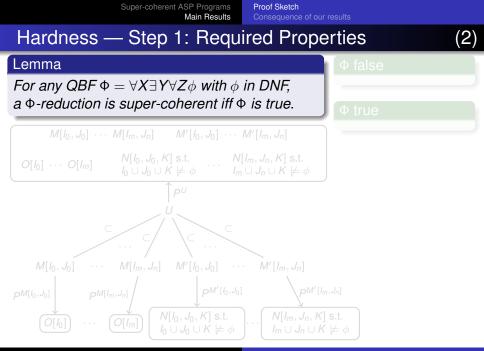
2 P has as its models: U and for each  $I \subseteq X$ ,  $J \subseteq Y$ ,

$$M[I,J] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup Z \cup \overline{Z} \cup \{v,u\}$$
$$M'[I,J] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup Z \cup \overline{Z} \cup \{v,w\};$$

- (a) models of  $P^{M[I,J]}$  are M[I,J] and  $O[I] = I \cup \overline{(X \setminus I)}$ ;
- models of  $P^{M'[I,J]}$  are M'[I,J] and  $\forall K \subseteq Z$  s.t.  $I \cup J \cup K \not\models \phi$ ,

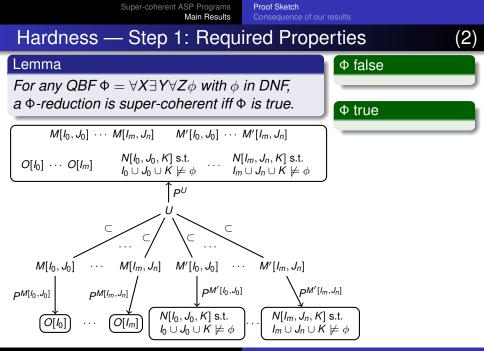
 $N[I, J, K] = I \cup \overline{(X \setminus I)} \cup J \cup \overline{(Y \setminus J)} \cup K \cup \overline{(Z \setminus K)} \cup \{v\};$ 

Models of P<sup>U</sup> are given only by the models mentioned above.



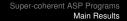
Mario Alviano, Wolfgang Faber and Stefan Woltran

Complexity of Super-Coherence Problems in ASP 14/17



Mario Alviano, Wolfgang Faber and Stefan Woltran

Complexity of Super-Coherence Problems in ASP 14/17

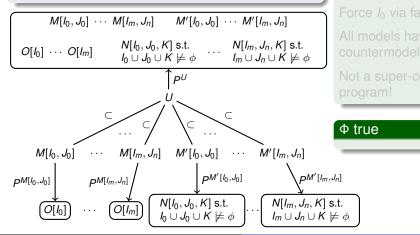


## Hardness — Step 1: Required Properties

## (2)

#### Lemma

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$  with  $\phi$  in DNF, a  $\Phi$ -reduction is super-coherent iff  $\Phi$  is true.

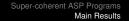


Mario Alviano, Wolfgang Faber and Stefan Woltran

Φ false

Let  $I_0$  be s.t.

 $\forall Y \exists Z \phi(I_0)$  is false.



## Hardness — Step 1: Required Properties

#### Lemma

 $P^{M[I_0,J_0]}$ 

 $O[l_0]$ 

(2)

### For any QBF $\Phi = \forall X \exists Y \forall Z \phi$ with $\phi$ in DNF, a $\Phi$ -reduction is super-coherent iff $\Phi$ is true.

$$M[I_0, J_0] \cdots M[I_m; J_n] \qquad M'[I_0, J_0] \cdots M'[I_m; J_n]$$

$$O[I_0] \cdots O[I_m] \qquad N[I_0, J_0, K] \text{ s.t.} \qquad N[I_m, J_n, K] \text{ s.t.} \qquad I_m \cup J_n \cup K \not\models \phi$$

$$P^U$$

$$C \qquad C \qquad U \qquad C \qquad M[I_0, J_0] \qquad M[I_m; J_n] \qquad M'[I_n, J_n]$$

 $P^{M'[I_0,J_0]}$ 

 $N[I_0, J_0, K]$  s.t.

 $I_0 \cup J_0 \cup K \not\models \phi$ 

### Φ false

Let  $I_0$  be s.t.  $\forall Y \exists Z \phi(I_0)$  is false.

### Force $I_0$ via facts.

All models have countermodels.

Not a super-coherent program!

Φ true

PM' Hm, Jn

 $N[I_m, J_n, K]$  s.t.

 $m \cup J_n \cup K \not\models \phi$ 

Mario Alviano, Wolfgang Faber and Stefan Woltran

 $PM[I_m, J_n]$ 

O[Im

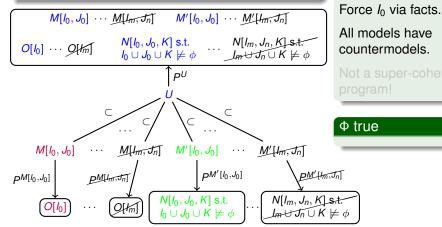


## Hardness — Step 1: Required Properties

#### Lemma

(2)

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$  with  $\phi$  in DNF, a  $\Phi$ -reduction is super-coherent iff  $\Phi$  is true.



Mario Alviano, Wolfgang Faber and Stefan Woltran

Φ false

Let  $I_0$  be s.t.

 $\forall Y \exists Z \phi(I_0)$  is false.

Super-coherent ASP Programs Main Results Proof Sketch

## Hardness — Step 1: Required Properties

#### Lemma

 $O[h] \cdots O[h]$ 

 $M[I_0, J_0]$ 

 $P^{M[I_0,J_0]}$ 

(2)

### For any QBF $\Phi = \forall X \exists Y \forall Z \phi$ with $\phi$ in DNF. a $\Phi$ -reduction is super-coherent iff $\Phi$ is true.

 $M[I_0, J_0] \cdots M[I_m, J_n] \qquad M'[I_0, J_0] \cdots M'[I_m, J_n]$ 

рU

 $M'[I_0, J_0]$ 

*N*[*I*<sub>0</sub>, *J*<sub>0</sub>, *K*] s.t.

 $h \cup J_h \cup K \nvDash \phi$ 

 $P^{M'[I_0,J_0]}$ 

Force  $I_0$  via facts. All models have  $N[I_0, J_0, K] \text{ s.t.} \qquad N[I_m, J_n, K] \text{ s.t.} \\ I_0 \cup J_0 \cup K \not\models \phi \qquad I_m \forall J_n \cup K \not\models \phi$ 

M'Hm, Jn

PM' Hm, Jn

 $N[I_m, J_n, K]$  s.t.

 $m \cup J_n \cup K \not\models \phi$ 

countermodels.

 $\forall Y \exists Z \phi(I_0)$  is false.

Not a super-coherent program!

Φ true

Φ false

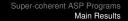
Let  $I_0$  be s.t.

Mario Alviano, Wolfgang Faber and Stefan Woltran

 $M[I_m, J_n]$ 

 $PM[I_m, J_n]$ 

Q1/m

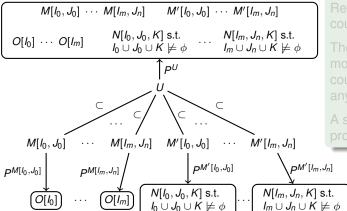


## Hardness — Step 1: Required Properties



(2)

### For any QBF $\Phi = \forall X \exists Y \forall Z \phi$ with $\phi$ in DNF, a $\Phi$ -reduction is super-coherent iff $\Phi$ is true.



Φ true

Φ false

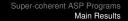
Remove inapplicable countermodels.

There is always a model with no countermodels (for any choice of facts).

A super-coherent program!

Mario Alviano, Wolfgang Faber and Stefan Woltran

Complexity of Super-Coherence Problems in ASP 14/17

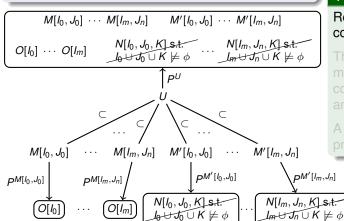


## Hardness — Step 1: Required Properties

#### Lemma

(2)

### For any QBF $\Phi = \forall X \exists Y \forall Z \phi$ with $\phi$ in DNF, a $\Phi$ -reduction is super-coherent iff $\Phi$ is true.



### Φ true

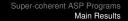
Φ false

Remove inapplicable countermodels.

There is always a model with no countermodels (for any choice of facts).

A super-coherent program!

Mario Alviano, Wolfgang Faber and Stefan Woltran

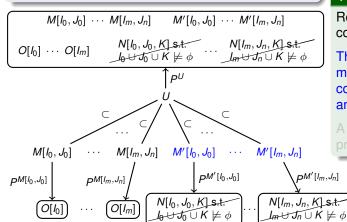


## Hardness — Step 1: Required Properties



(2)

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$  with  $\phi$  in DNF, a  $\Phi$ -reduction is super-coherent iff  $\Phi$  is true.



#### Φ true

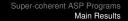
Φ false

Remove inapplicable countermodels.

There is always a model with no countermodels (for any choice of facts).

A super-coherent program!

Mario Alviano, Wolfgang Faber and Stefan Woltran

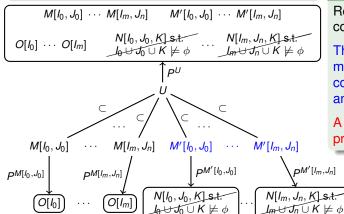


## Hardness — Step 1: Required Properties



Φ false

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$  with  $\phi$  in DNF, a  $\Phi$ -reduction is super-coherent iff  $\Phi$  is true.



Φ true

Remove inapplicable countermodels.

2)

There is always a model with no countermodels (for any choice of facts).

A super-coherent program!

## Hardness — Step 2: Poly-time Reduction

### Definition

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$  with  $\phi = \bigvee_{i=1}^{n} I_{i,1} \land \dots \land I_{i,m_i}$  a DNF, define  $P_{\Phi}$  as follows:  $\{x \lor \overline{x} \leftarrow; u \leftarrow x, \overline{x}; w \leftarrow x, \overline{x}; x \leftarrow u, w; \overline{x} \leftarrow u, w \mid x \in X\} \cup$  $\{y \lor \overline{y} \leftarrow v; u \leftarrow y, \overline{y}; w \leftarrow y, \overline{y}; y \leftarrow u, w; \overline{y} \leftarrow u, w; v \leftarrow y; v \leftarrow \overline{y} \mid y \in Y\} \cup$  $\{z \lor \overline{z} \leftarrow v; u \leftarrow z, not w; u \leftarrow \overline{z}, not w; v \leftarrow z; v \leftarrow \overline{z}; z \leftarrow w; \overline{z} \leftarrow w; z \leftarrow u; \overline{z} \leftarrow u; w \lor u \leftarrow z, \overline{z} \mid z \in Z\} \cup$  $\{w \lor u \leftarrow I_{i,1}, \dots, I_{i,m_i} \mid 1 \le i \le n\}$  $\{v \leftarrow w; v \leftarrow u; v \leftarrow not u\}.$ 

#### Lemma

For any QBF  $\Phi = \forall X \exists Y \forall Z \phi$ , the program  $P_{\Phi}$  is a  $\Phi$ -reduction.



### Super-coherent ASP Programs

- Introduction, Motivation and Contribution
- Definitions and Examples

## 2 Main Results

- Proof Sketch
- Consequence of our results

## Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)

Given programs *P* and *Q*, and two sets *A*, *B* of atoms,  $P \equiv_B^A Q$  if and only if, for each set  $F \subseteq A$ ,

 $\{I \cap B \mid I \in \mathcal{SM}(P \cup F)\} = \{I \cap B \mid I \in \mathcal{SM}(Q \cup F)\}.$ 

- Known: complexity of deciding  $P \equiv_B^A Q$  is  $\Pi_3^P$ -complete for disjunctive programs;
  - however, hardness was only shown for bound context alphabets  $A \subset U$
- Consequence of our results:  $P \equiv_B^A Q$  remains  $\Pi_3^P$ -hard for A = U and Q the empty program

## Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)

Given programs *P* and *Q*, and two sets *A*, *B* of atoms,  $P \equiv_B^A Q$  if and only if, for each set  $F \subseteq A$ ,

 $\{I \cap B \mid I \in \mathcal{SM}(P \cup F)\} = \{I \cap B \mid I \in \mathcal{SM}(Q \cup F)\}.$ 

- Known: complexity of deciding P ≡<sup>A</sup><sub>B</sub> Q is Π<sup>P</sup><sub>3</sub>-complete for disjunctive programs;
  - however, hardness was only shown for bound context alphabets  $A \subset U$
- Consequence of our results:  $P \equiv_B^A Q$  remains  $\Pi_3^P$ -hard for A = U and Q the empty program

## Related Problem: Uniform Equivalence with Projection

Definition (Oetsch, Tompits, Woltran; 2007)

Given programs *P* and *Q*, and two sets *A*, *B* of atoms,  $P \equiv_B^A Q$  if and only if, for each set  $F \subseteq A$ ,

 $\{I \cap B \mid I \in \mathcal{SM}(P \cup F)\} = \{I \cap B \mid I \in \mathcal{SM}(Q \cup F)\}.$ 

- Known: complexity of deciding P ≡<sup>A</sup><sub>B</sub> Q is Π<sup>P</sup><sub>3</sub>-complete for disjunctive programs;
  - however, hardness was only shown for bound context alphabets  $A \subset U$
- Consequence of our results:  $P \equiv_B^A Q$  remains  $\Pi_3^P$ -hard for A = U and Q the empty program



- We studied the property of super-coherence; i.e. (here: propositional) programs which remain coherent no matter which facts are added
- Super-coherent programs have some nice properties and applications
- Complexity of deciding whether a program is super-coherent is rather high:
  - $\Pi_3^P$ -complete for disjunctive programs
  - $\Pi_2^{\not{P}}$ -complete for normal programs
- Future Work: Are there certain problems which become easier for super-coherent programs?



- We studied the property of super-coherence; i.e. (here: propositional) programs which remain coherent no matter which facts are added
- Super-coherent programs have some nice properties and applications
- Complexity of deciding whether a program is super-coherent is rather high:
  - $\Pi_3^P$ -complete for disjunctive programs
  - $\Pi_2^{P}$ -complete for normal programs
- Future Work: Are there certain problems which become easier for super-coherent programs?

# Conclusion

• We studied the property of super-coherence; i.e. (here: propositional) programs which remain coherent no matter which facts are added

Questions?

Outline

**Thank you!** 

- Super-coherent programs have some nice properties and applications
- Complexity of deciding whether a program is super-coherent is rather high:
  - $\Pi_3^P$ -complete for disjunctive programs
  - $\Pi_2^{P}$ -complete for normal programs
- Future Work: Are there certain problems which become easier for super-coherent programs?