
PrettyCLP: a Light Java Implementation
for Teaching CLP

Alessio Stalla1, Davide Zanucco2, Agostino Dovier2, and Viviana Mascardi1

1 DISI - Univ. of Genova,
alessiostalla@gmail.com,mascardi@disi.unige.it

2 DIMI - Univ. of Udine,
zanucco.davide@spes.uniud.it,agostino.dovier@uniud.it

Abstract. Recursion is nowadays taught to students since their first
programming days in order to embed it deeply in their brains. However,
students’ first impact on Prolog programs execution sometimes weakens
their faith in recursive programming thus invalidating our initial efforts.
The selection and computation rules implemented by all Prolog systems,
although clearly explained in textbooks, are hard to be interiorized by
students also due to the poor system debugging primitives. Problems
increase in Constraint Logic Programming when unification is replaced
by constraint simplification in a suitable constraint domain. In this pa-
per, we extend PrettyProlog, a light-weight Prolog interpreter written in
Java capable of system primitives for SLD tree visualization, to deal with
Constraint Logic Programming over Finite Domains. The user, in partic-
ular, can select the propagation strategies (e.g. arc consistency vs bound
consistency) and can view the (usually hidden) details of the constraint
propagation stage.

1 Introduction

PrettyProlog was developed two years ago by a team of the University of Gen-
ova, for providing concrete answers to demands raised by Prolog novices [14].
Teaching experience demonstrated that one of the hardest concepts for Prolog
students is to understand the construction and the visit strategy of the SLD tree.
PrettyProlog was developed from scratch, without reusing any existing Prolog
implementation, and designed to be simple, modular, and easily expandable.
Research on visualization of the execution of Prolog programs has a long history
(just to make some examples, [13, 7, 15], many papers collected in [6], and [9]).
Nevertheless, nowadays few Prolog implementations offer a Stack Viewer and
an SLD tree visualizer as graphical means for debugging. The open-source im-
plementations that provide these facilities are even fewer. Among them, SWI-
Prolog1 offers a debugging window showing current bindings, a diagrammatic
trace of the call history, and a highlighted source code listing. No SLD tree vi-
sualization is given. On the other hand, many Java implementations of a Prolog

1 http://www.swi-prolog.org/

interpreter exist, starting from W-Prolog2. Although at a prototypical stage,
PrettyProlog presents three features that, to the best of our knowledge, cannot
be found together in any other Prolog implementation:

1. it provides Stack and SLD Tree visualizers;

2. it is open source;

3. it is written in Java, and fully compliant with Java ME CDC application
framework.

The desirable architectural features of PrettyProlog have been exploited in the
research activity described in this paper where PrettyProlog has been extended
for dealing with Constraint Logic Programming on Finite Domains (briefly,
CLP(FD)). As a matter of fact, experience in teaching CLP(FD) evidenced
further problems for students, first of all the replacement of unification with
constraint solving. The term 1 + 3 does not unify with the term 3 + 1. However,
they are both considered as 4 by CLP(FD). Moreover, the constraint propa-
gation stage is parametric on some choices. For instance, bounds consistency
and arc consistency return different “results” to the constraint 2X = Y where
the domain DX and DY of the variables X and Y are both the intervals 0..3
(DX = {0, 1}, DY = {0, 1, 2} in the former case, DX = {0, 1}, DY = {0, 2}
in the latter case). Although different propagation techniques are studied in
theory, Prolog interpreters supporting CLP(FD) usually implement only one of
them, and students using different systems can be confused. Another source of
confusion is introduced by some implementations of the SLD resolution with
constraints that manage the ordering of literals in goals in a different way de-
pending on whether they are constraint literals or user-defined literals. Moreover,
during constraint’s solution search (if explicitly required by a labeling) an aux-
iliary tree named prop-labeling tree is created and visited. This tree is sometimes
wrongly confused with the SLD tree.

The proposed extension of PrettyProlog, called PrettyCLP, has been devel-
oped to help the new CLP programmers in a deeper understanding of what
happens during the execution of a CLP(FD) program. The basic procedures for
constraint propagation have been implemented in Java, either in the case of (hy-
per) arc consistency or in the case of (hyper) bounds consistency. A labeling

built-in has also been developed for the solution’s search using a prop-labeling
tree.

This paper is organized in the following way: Section 2 recalls the functionali-
ties of PrettyProlog and its implementation; Section 3 provides some background
on CLP; Section 4 describes the original contribution of this paper, namely the
design and implementation of PrettyCLP. In particular, it discusses PrettyCLP
syntax, the supported mechanism for constraint propagation and labeling, and
the output renderer. Section 5 analyzes the related work and concludes by out-
lining some future extensions.

2 http://waitaki.otago.ac.nz/~michael/wp/

2

2 PrettyProlog

2.1 Functionalities

PrettyProlog implements a Prolog engine able to deal with basic data types
(integer and real numbers, lists, strings), and offering metaprogramming facil-
ities that, combined with the “cut” predicate, make the definition of negation
as failure possible. Despite to some simplifications that were made during its
design and implementation, sophisticated programs may be implemented with
PrettyProlog thanks to these features.

The main functionality of PrettyProlog, however, is that it allows the user
to visualize how the Stack and the SLD Tree evolve during a computation made
by the interpreter to solve a given goal.

The SLD tree viewer panel shows the steps the PrettyProlog engine has
performed as a tree. Each branch represents the selection of a clause from the
theory, which can be selected in the “theory panel”, whereas leaves are either
solutions or dead ends, i.e. goals that could not be solved. The substitution that
was valid at a given point is shown aside the corresponding node in the tree.
Also, the SLD tree shows which frames are removed from the stack as the effect
of a cut, by printing them with a different font and icon.

Fig. 1. SLD Viewer.

3

Figure 1 shows the SLD tree of a Prolog program that implements a classical
instance of a search problem: that of moving from a city in Romania (Arad, in
our case) to Bucharest [11, Chapter 3]. We implemented a depth first search
with control of cycles, as well as the auxiliary not and member predicates.

Because of space constraints, we do not show here the code of the imple-
mented “DFS with control of cycles” program. It can be found in [14], as well
as in most Prolog textbooks.

Besides showing what happens both to the stack and to the SLD tree (while it
is built), PrettyProlog correctly visualizes the effect of a “cut” on the SLD tree. In
the upper part of Figure 1 there are goals written in italic (from not(member(arad,

[oradea, zerind, arad])), ... to !, fail, write(....)). These nodes
are cut after the execution of the ! in the first clause defining not, called with
member(arad, [oradea, zerind, arad])) as argument. PrettyProlog SLD vie-
wer keeps the cut goals for didactic purposes, but shows them in a different
font to emphasize that they no longer belong to the tree. The system predi-
cates supported by PrettyProlog, although limited, include simple predicates for
input-output, such as write and nl.

The stack viewer shows each frame pushed onto the stack. When the user
clicks on a frame, its content is displayed: the goal that still had to be solved at
the time the frame was pushed on the stack; the substitution that is the partial
solution to such goal at this point; the clause that has been used to obtain the
goal; the index from where, on backtracking, the engine will search for the next
clause.

When the PrettyProlog engine solves a goal step-by-step, the clause used in
each resolution step is highlighted in the theory panel.

2.2 Implementation

PrettyProlog is made of several modules, each one corresponding roughly to a
Java package. Modules are pretty much organized in a layered fashion, with
the lower-level ones providing services to the upper-level ones. Currently im-
plemented modules include: the Data Types Module, the Parser Module, the
Engine Module, the GUI Module.

– The Data Types Module includes data types that are commonly used through-
out many other PrettyProlog modules. From this point of view, the Data
Types Module is the lowest-level one.

– The Parser Module contains the Parser class and some parser exception
classes. This module lies just above the Data Types Module; its task is to
read characters from a stream and produce instances of PrettyProlog data
types, or throw an exception if something goes wrong.

– The GUI Module includes the classes that make up the PrettyProlog GUI,
including the viewers for the Stack, Theory, and SLD Tree.

– The Engine Module is the main PrettyProlog module. It contains the Engine
class as well as many helper classes such as Theory, Goal and Clause. This
module contains also two sub-modules: EventListeners , which provides

4

classes and interfaces used to attach listeners to the Engine, the Stack, and
the Theory; and Syspreds, which defines the built-in system predicates and
gives the programmer the possibility to easily add new ones.
The classes that make up the Engine Module are the following:
Unifier. This class provides a single public method, unify(Term, Term),

that returns a substitution that unifies the two terms passed as argu-
ments, or null if they are not unifiable. This class exists as a separate
class for reasons of modularity and extensibility.

Clause. A clause is an object made of a Callable (the head) and a body,
again a nameless callable.

Theory. This class implements a list of clauses, with the usual operations
for adding to, removing from, or navigating through the list.

Frame. A Frame is a single piece of data that is contained in a stack.
Stack. In addition to the usual stack operations, this class can register

StackListeners which are notified of every change in the stack’s state.
The lack of an explicit representation of the stack in many prolog im-
plementations, and the requirement to have such a data structure for
inspecting the behavior of the Prolog engine were the main motivations
for building a new interpreter from scratch.

Goal. A goal is a list of callables.
Engine. The main class of the Engine module.

3 Constraint Logic Programming

We briefly recall here some basic notions of Constraint Logic Programming
(CLP). The reader is referred to [10] for a recent survey. We mix syntax and
semantics to shorten the presentation.

Let us consider a first-order language 〈Π,F ,V〉, where Π,F ,V are the sets
of predicate symbols, functional symbols, and variables, respectively. The set Π
is partitioned in the two sets ΠC and ΠP (Π = ΠC ∪ΠP and ΠC ∩ΠP = ∅).
ΠC (ΠP) is the set of constraints (resp., program defined) predicate symbols.
ΠC is assumed to contain the equality symbol “=”. Similarly, F is partitioned
into FC and FP . In this paper we focus on CLP on finite domains (CLP(FD)),
therefore, we assume that FC contains the binary arithmetic function symbols
+,−, ∗, /, mod etc. as well as a constant symbol for any integer number, and
ΠC contains ≤, <, etc. false is assumed to be a special predicate in ΠP which
has no rules defining it. domain is assumed to be a predicate in ΠC assigning a
domain to a list of variable or refining it, if the variables already have one.

An atom built on 〈ΠP ,FP ,V〉 (resp. 〈ΠC ,FC ,V〉) is said to be a program
(resp. constraint) atom. Any constraint atom and any subterm based on 〈FC ,V〉
is interpreted in a constraint domain, namely, fulfilling the intended semantics
of its symbols (in this case, the arithmetical properties on integer numbers).
The same happens to constraint atoms. To this aim, each variable X used in
constraint atoms is associated with a domain DX . We will use the functions min
and max that return the smallest (resp., largest) value of a domain.

5

A primitive constraint is a constraint atom or its negation and a constraint
is a conjunction of primitive constraints. We denote the empty conjunction by
true. This syntactic notion of constraint has a semantic counterpart: a constraint
C on n variables X1, . . . , Xn with domains D1, . . . , Dn, respectively, is a relation
on D1 × · · · ×Dn. A solution for C is a mapping [X1/d1, . . . , Xn/dn] such that
〈d1, . . . , dn〉 ∈ C. If there are no solutions, then C is inconsistent.

A goal CLP is of the form ← B̄, where B̄ is a conjunction of program atoms
and primitive constraints. A CLP rule is of the form A ← B̄ where A is a
program atom and ← B̄ is a CLP goal. A CLP program is a set of CLP rules.

The operational semantics of CLP is parametric on the function solve that
given a constraint C should detect whether C is satisfiable (consistent) in the
constraint domain chosen (in this paper finite domains). During its computation,
solve(C) might rewrite C to an equivalent simplified constraint. In practice, for
complexity reasons, solve is an incomplete procedure, in the sense that instead
of verifying consistency of the (entire) constraints, acts locally in each primitive
constraint, removing some values in domains that cannot belong to any solution
until a local property is satisfied. Typical local properties are (hyper)arc consis-
tency and (hyper)bounds consistency (see below for details). This operation is
called constraint propagation and is required to be as fast as possible. During this
computation, inconsistency of C can be detected. In this case solve(C) returns
false. But, even if solve(C) 6= false we cannot be sure of the consistency
of the constraint. As we will see below, the user might require the search for a
solution using the labeling predicate.

As an example, let us consider the constraint X 6= Y,X 6= W,X 6= Z, Y 6=
W,Y 6= Z,W 6= Z, where DX = DY = DZ = DW = {0, 1, 2}. Although it is
inconsistent, default options in Prolog implementations are such that it is left
unaltered by solve and, therefore, inconsistency is not detected. This constraint
is the encoding of the 3-coloring problem of a graph (in this case, of four nodes,
{X,Y,W,Z}, disequations are added for each edge). Checking consistency of this
class of constraints is therefore NP-complete and a fast propagation algorithm
can not check it (unless P=NP).

Operational semantics of CLP is based on the notion of state. Some variants
are possible. The one presented here is the one we believe is the closest to
standard SLD resolution.

A state is a pair 〈G |C〉 where G is a CLP goal and C is a constraint (also
known as the constraint store). A state 〈G |C〉 is said to be:

– successful if G = true and solve(C) 6= false.
– failing if either solve(C) = false or there are no clauses in P with the

same predicate of the head of the selected atom in G.
– unsolved if G 6= true and it is not failing.

Let 〈G1 |C1〉 be an unsolved state, where G1 =← L1, . . . , Lm, and P a pro-
gram. A CLP-derivation step 〈G1 |C1〉 ⇒ 〈G2 |C2〉 is defined as follows:

– Let Li be the selected literal in G1 (for simplicity, let us assume it is L1).

6

– Then 〈G2 |C2〉 is obtained from S and P in one of the following ways:
• L1 is a primitive constraint, C2 = L1 ∧ C1. If solve(C2) = false, then
G2 =← false, otherwise G2 =← L2, . . . , Ln.

• If L1 = p(t1, . . . , tn) is a program atom, and p(s1, . . . , sn) ← B̄ is a re-
naming of a clause of P then G2 =← t1 = s1, . . . , tn = sn, B̄, L2, . . . , Ln

and C2 = C1.

A derivation for a state S0 in P is a maximal sequence of derivations such
that S0 ⇒ S1 ⇒ · · ·. A derivation for a goal G is a derivation for the state
〈G | true〉.

A finite derivation S0 ⇒ · · · ⇒ Sn is said successful (resp. failing) if Sn

is a successful (resp., failing) state. In the case of a successful derivation the
computed answer is the projection of the constraint store of Sn on the variables
in S0. Of course, a simplification, based on solve, is usually employed to make
the output readable.

Although the computed answer is returned in implicit form, explicit enumer-
ation of the solutions can be forced by using the built-in predicate labeling. In
this stage inconsistency of a constraint is discovered. The main parameter is a list
of variables to be instantiated (labeled). Other optional parameters are related
to the search heuristics and are different in different Prolog implementations.
We use here the choice of not allowing extra parameters.

Basically, starting from a successful state 〈true |C〉 (or equivalently, by a
constraint C) the labeling builds a search tree that alternates two stages: a
constraint propagation stage followed by a non deterministic assignment of a
(selected) variable. During the propagation stage the constraint is simplified
and, possibly, its inconsistency is detected. In this case, the search backtracks
to the last non deterministic choice. If all variables are assigned (labeled) a
solution is found. If all possible backtracks are applied and no solution is found,
the constraint is inconsistent. The derivation step is extended with:

• If L1 = labeling([V1, . . . , Vn]) thenG2 =← V1 = v1, . . . , Vn = vn, L2, . . . , Ln

and C2 = C1 if [V1/v1, . . . , Vn/vn] is an assignment that do not lead C1 to
inconsistency. If there are not such assignments, then G2 =← false.

Every variable X used in constraint is associated with a domain DX . This
is done initially by the built-in predicate domain; domains and later reduced by
effect of the computation. As common in CLP, we denote the interval {a, a +
1, a+ 2, . . . , b} by a..b.

Let us consider a primitive constraint c on the variables X1, . . . , Xn. c is arc
consistent (hyper arc consistent if n > 2) if for all i ∈ {1, . . . , n} and for all
di ∈ Di exist d1 ∈ D1, . . . di−1 ∈ Di−1, di+1 ∈ Di+1, . . . , dn ∈ Dn such that
[X1/d1, . . . , Xn/dn] is a solution of c.

As explained in [5] there are several definitions of bounds consistency in
literature. We refer to the one implemented by SICStus Prolog3, by B Prolog4,
and by SWI Prolog, just to cite a few, and and called interval consistency in [2].

3 http://www.sics.se/isl/sicstuswww/site/
4 http://www.probp.com/

7

Let us consider a primitive constraint c on the variables X1, . . . , Xn. c is
bounds consistent (hyper bounds consistent if n > 2) if for all i ∈ {1, . . . , n} and
for all di ∈ {minDi,maxDi} (the two interval bounds), exist

d1 ∈ minD1..maxD1, . . . , di−1 ∈ minDi−1..maxDi−1,
di+1 ∈ minDi+1..maxDi+1, . . . , dn ∈ minDn..maxDn

such that [X1/d1, . . . , Xn/dn] is a solution of c.
Going back to the example in the Introduction, the constraint 2X = Y

where the domains DX = {0, 1}, DY = {0, 1, 2} is bounds consistent but not arc
consistent.

4 PrettyCLP

This section introduces PrettyCLP: Section 4.1 reports the concrete syntax of
the CLP part of PrettyCLP, Section 4.2 describes the procedures implemented
for constraint propagation and labeling, and Section 4.3 shows how the output
primitives have been modified and reports some system screenshots.

4.1 Concrete CLP syntax for PrettyCLP

Concretely, the set ΠC contains the constraint predicate symbols #= and #=<;
symbols #\=, #>, #>=, #< are accepted as a syntactic sugar for building negated
constraint literals. Standard arithmetic functional symbols are allowed as well.

The built-in instruction domain for assigning a finite domain to variables can
be used in two ways (lists are usual Prolog lists):

– domain(VARS, min, max), where VARS is a list of variables, and the domain
is the interval min..max.

– domain(VARS, DOMAIN): where VARS is a list of variables, and DOMAIN is a
list of integer numbers.

The labeling built-in has a unique argument: labeling(VARS), where VARS

is a list of variables assigned to a finite domain.

4.2 Constraint Propagation and Labeling

Every finite domain variable is assigned to a domain, namely a set of points that
can monotonically decrease during the computation, or increase again due to
backtracking. Domains are stored in a vector of integer values (we recall that
Java vectors are in fact a dynamic data structures that can be increased and
decreased as needed). This is realized by modifying the class Variable within
the module Data Types.

More in detail, a Java constructor is changed in order to characterize a vari-
able by a symbol. symbol is a PrettyProlog class, and a symbol can be the string
naming a variable or a constant or functional symbol of FC .

8

Moreover, the class Domain is defined in the module Engine. This class stores
an array (again, a Java dynamic array) with an entry for each of the variables oc-
curring in the derivation and implements the methods for domain manipulation.
Among them, we would like to point out the methods:

– getDomain(Var X) that returns the (vector storing the) domain of a variable
X.

– domainVar(Var X, int min, int max) that initializes the domain of the
variable X with the interval min..max.

– updateDomain(Var X, Vector D) that replaces the current domain of the
variable X with the domain array D. This method simplifies propagation and
backtracking operations.

The parser of Pretty Prolog has been slightly modified to be able to deal
with constraint terms and atoms.

The class Engine is the core of the computation. Since the SLD resolution
is now coupled with constraint solving, we need to act on the class Engine.
Unification is called for standard terms, constraint solving for constraint terms.
The constructor that creates a new instance has been modified for dealing with
the array domains. Then the method ContinueSolving is called. Its role is
to either call the Constraint Solver procedure, called SolveConstraint, or the
unification procedures already developed in PrettyProlog.

The Constraint Solver returns a Boolean value: false can be obtained as
effect of constraint propagation; if constraint propagation ends without failing
it returns true. Constraint Propagation operates on both arc and bounds con-
sistency. The procedures called by the Constraint Solver are:

– Solve that receives as input a constraint and the domains of the variables
in it and elaborates it on the basis of its main predicate symbol. When se-
lected, unary constraints are used to reduce the domain of the corresponding
variable and removed. Constraints with two or more variables, instead, are
dealt with by:
• ArcSolveConstraint, implementing arc consistency, and
• BoundSolveConstraint, that implements bounds consistency.

In these two procedures, one variable per time is selected, then every value
in its domain is considered and a support for it is looked for in the domains
of the remaining variables (but with a different rule for arc vs bounds). In
the case of bounds, of course, a faster algorithm based on the bounds of the
domains is employed.

– SolveConstraint repeatedly applies the Solve procedures on all the con-
straints until a fixpoint is reached.

– ExprEval computes the various expressions involved in constraints when val-
ues are assigned to variables and is used as auxiliary procedure by ArcSolve/
BoundSolveConstraint.

The handling of labeling is made by a homonymous method. Variables in
the argument list are selected from left to right (heuristics leftmost of other
CLP(FD) systems) and smallest domain values are tried first (heuristics up).5

5 It it easy to implement other heuristics here. This will be done as future work.

9

This method also deals with backtracking, handling,choice points, and storing
and retrieving intermediate constraint stores.

Remark 1. As a final observation for this section, we would like to underline
a typical problem in CLP implementations coming from the weak typing of
constraint functional symbols and variables. In theory, terms and variables are
sorted, in practice this is not true. If the two terms 1 + 3 and 3 + 1 are found
within a unification they are assumed to be different even if the arguments are
integer numbers and the binary symbol + ∈ FC . On the contrary the constraint
1 + 3 #= 3 + 1 is true. This is also the behavior of our interpreter, but this may
lead a student, the target of PrettyCLP, to confusion.

Similarly, let us assume to find the constraint atom X #< 3 and the variable
X is not yet assigned to a domain. Some Prolog implementations will answer
X in -inf..2, thus implicitly assuming a starting domain -inf..+inf for each
finite domain variable. We have chosen a more rigid option: if the variable has
been not yet associated with a domain, it cannot be used in a constraint atom.
An error (a sort of type error) is returned.

4.3 Output rendering

After the parametric propagation procedures and the procedures for the labeling
have been implemented, we modified the graphical applet of PrettyProlog for
showing the new information. In particular:

– buttons for visualizing and erasing domains have been added to the applet
window;

– the field Constraint can be inspected from the Stack Viewer;
– two windows for inspecting Arc Consistency and Bounds Consistency based

propagation have been made available to PrettyCLP users.

Changes are done in the method TheoryViewer.

In Figures 2 and 3 we report the rendering of the two alternative executions
to a goal p(X,Y) where the predicate p is defined by the constraint:

domain([X],0,2), domain([Y],0,5), Y #= 2 * X.

In the current implementation, we decided to leave an unique SLD tree, while
different computed answers are returned in the Arc Consistency and Bounds
Consistency windows. Since Arc Consistency is more effective in reducing the
domains, it can be the case that an inconsistent branch of the SLD tree is found
some steps before than using bounds consistency. However, this case is extremely
rare. We have preferred to leave the tree obtained using Bounds Consistency (the
same computed by Standard Prolog system) only. However, the user can view
what would have happened with the other propagation technique looking at the
Arc Consistency window. In particular, all domains computed during the com-
putation are included in those computed with Bounds Consistency. Sometimes
they are strictly included and it may happen that one domain becomes empty

10

before arriving at the end of the tree. This choice can be changed as future
work, namely, we could leave the user to select in advance (with a button) the
propagation choice and report the selected computation only.

In Figures 4–5 we report the execution of PrettyCLP on a Knapsack prob-
lem. The explicit labeling is required for variable W only. The computed solution
is shown in the main picture (Fig 4). In the labeling case the differences be-
tween Arc and Bounds become evident. An excerpt of the executed constraint
propagation is shown in Fig 5.

5 Related Work and Conclusions

Although visualization and tracing of constraint programs do not constitute a
new research area, implemented systems that provide dynamic visualization and
control functionalities for CLP(FD) are still few.

Among the oldest ones we may mention the Oz-Explorer system by C. Schulte
[12] which uses the search tree of a constraint problem as its central metaphor,
and exploration and visualization of the search tree are user-driven and inter-
active. Within the community of constraint programming, ILOG debugger6 is a
configurable tool with nice graphics capabilities. But, according to our opinion,
it is not suitable for beginners (and it is not a CLP visual debugger). Simi-
larly, CPVisu tracer7 is a module of the Java constraint solver on finite domains
CHOCO, producing XML files that, once interpreted using CPViz8, allow to see
information on the tree search, the states of constraints and variables at dif-
ferent points of computations, and a configuration file. It is a professional tool
(together with CHOCO, which is developed by a large group of people includ-
ing Francois Laburthe, Narendra Jussien, Xavier Lorca, and other contributors,
such as Nicolas Beldiceanu), but its scope is for debugging large programs rather
than for learning CP (and, in any case, it does not deal with CLP).

In [3], M. Carro and M. V. Hermenegildo address the design and implementa-
tion of visual paradigms for observing the execution of constraint logic programs,
aiming at debugging, tuning and optimization, and teaching. They describe two
tools, VIFID and TRIFID, exemplifying the devised depictions. In the compan-
ion paper [4] they describe the APT tool for running constraint logic programs
while depicting a (modified) search tree, keeping information about the state of
the variables at every moment in the execution. This information can be used to
replay the execution at will, both forwards and backwards in time. The search-
tree view is used as a framework onto which constraint-level visualizations can
be attached.

The integration of explanations in the trace structure and some ideas on how
to implement the trace structure in a high-end system like SICStus are addressed
by [1].

6 http://www.cs.cornell.edu/w8/iisi/ilog/cp11/pdf/debugsolver.pdf
7 http://www.emn.fr/z-info/choco-solver/cpvisu-tracer/index.html
8 http://cpviz.sourceforge.net/

11

Fig. 2. PrettyCLP in action: Arc Consistency Propagation

Fig. 3. PrettyCLP in action: Bounds Consistency Propagation

12

Fig. 4. PrettyCLP in action: Knapsack main output

Fig. 5. PrettyCLP in action: Knapsack, propagation details

13

More recently, F. Fages, S. Soliman, and R. Coolen developed CLPGUI [8],
a generic graphical user interface for visualizing and controlling the execution of
constraint logic programs. CLPGUI is based on a client-server architecture for
connecting a CLP process to a Java-based GUI process, and integrates a non-
intrusive tracing and control method based on annotations in the CLP program.
Arbitrary constraints and goals can be posted incrementally from the GUI in an
interactive manner, and arbitrary states can be recomputed. Several generic 2D
and 3D viewers of the variables and of the search tree are supported.

Although definitely simpler than some of the above systems as far as the
visualization of variables is concerned, PrettyCLP shows the original feature of
allowing the user to select the propagation strategies (e.g. arc consistency vs
bound consistency), which – to the best of our knowledge – is not supported by
any other tool.

As part of our close future activities we are planning to incorporate some
global constraints, such as the alldifferent one, into PrettyCLP. Propagation
procedures of global constraints allow to sensibly prune the search tree. This
has effects on the size and on the form of the SLD tree too. Therefore, we will
add buttons to enable/disable global consistency vs simple consistency so as to
select one or the other search tree.

Because of our teaching mission, from which the development of both Pret-
tyProlog and PrettyCLP stemmed, we are currently facing the problem of guid-
ing the student in his/her CLP learning activity. To this aim, we are designing
a set of benchmarks for supporting self-evaluation and for helping students in
identifying those aspects of CLP design and programming that they still need
to better understand. This benchmark will heavily ground upon PrettyCLP as
the tool that the students will be suggested to use in order to appreciate CLP
not only on the stage, but also behind the scene.

All the material relevant to PrettyProlog and PrettyCLP can be found at
http://code.google.com/p/prettyprolog/.

Acknowledgments

This work is partially supported by INdAM-GNCS 2010, INdAM-GNCS 2011,
and PRIN 20089M932N. We would like to thank Maurizio Martelli for the pre-
cious discussions during the design and implementation of the PrettyProlog vi-
sualizer.

References

1. Ågren, M., Szeredi, T., Beldiceanu, N., and Carlsson, M. Tracing and
explaining execution of clp(fd) programs. In WLPE (2002), pp. 1–16.

2. Carlsson, M., Ottosson, G., and Carlson, B. An open-ended finite domain
constraint solver. In Proc. Programming Languages: Implementations, Logics, and
Programs (1997), vol. 1292 of LNCS, Springer, pp. 191–206.

14

3. Carro, M., and Hermenegildo, M. V. Tools for constraint visualisation: The
vifid/trifid tool. In Analysis and Visualization Tools for Constraint Programming
(2000), P. Deransart, M. V. Hermenegildo, and J. Maluszynski, Eds., vol. 1870 of
Lecture Notes in Computer Science, Springer, pp. 253–272.

4. Carro, M., and Hermenegildo, M. V. Tools for search-tree visualisation: The
apt tool. In Analysis and Visualization Tools for Constraint Programming (2000),
P. Deransart, M. V. Hermenegildo, and J. Maluszynski, Eds., vol. 1870 of Lecture
Notes in Computer Science, Springer, pp. 237–252.

5. Choi, C. W., Harvey, W., Lee, J. H. M., and Stuckey, P. J. Finite domain
bounds consistency revisited. In Australian Conference on Artificial Intelligence
(2006), vol. 4304 of LNCS, Springer, pp. 49–58.

6. Ducassé, M., Emde, A.-M., Kusalik, T., and Levy, J., Eds. Logic Program-
ming Environments, ICLP’90 Preconference Workshop. 1990. ECRC Technical
Report IR-LP-31-25.

7. Eisenstadt, M., and Brayshaw, M. A fine-grained account of Prolog execution
for teaching and debugging. Instructional Science 19, 4/5 (1990), 407–436.

8. Fages, F., Soliman, S., and Coolen, R. Clpgui: A generic graphical user inter-
face for constraint logic programming. Constraints 9, 4 (2004), 241–262.

9. Gavanelli, M. SLDNF-Draw: a visualisation tool of prolog operational semantics.
In CILC’07, Messina (June 2007).

10. Gavanelli, M., and Rossi, F. Constraint logic programming. In A 25-Year
Perspective on Logic Programming (2010), vol. 6125 of LNCS, pp. 64–86.

11. Russell, S., and Norvig, P. Artificial Intelligence: A Modern Approach, Second
Edition. Prentice Hall, 2003.

12. Schulte, C. Using the oz explorer for the development of constraint programs.
In LPE (1997), pp. 55–56.

13. Shinomi, H. Graphical representation and execution animation for Prolog pro-
grams. In MIV (1989), IEEE Computer Society, pp. 181–186.

14. Stalla, A., Mascardi, V., and Martelli, M. PrettyProlog: A Java Interpreter
and Visualizer of Prolog Programs. In CILC’09, Ferrara (June 2009). System
available at http://code.google.com/p/prettyprolog/.

15. Tamir, D. E., Ananthakrishnan, R., and Kandel, A. A visual debugger for
pure Prolog. Inf. Sci. Appl. 3, 2 (1995), 127–147.

15

