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Abstract. Abductive Logic Programming (ALP) and Constraint Logic Program-
ming (CLP) share the feature to constrain the set of possible solutions to a pro-
gram via integrity or CLP constraints. These two frameworks have been merged
in works by various authors, who developed efficient abductive proof-procedures
empowered with constraint satisfaction techniques. However, while almost all
CLP languages provide optimization meta-predicates for finding an optimal solu-
tion with respect to some objective function (and not just any solution), the issue
has received little attention in ALP.
In this paper we show how optimisation meta-predicates can be included in ab-
ductive proof-procedures, achieving in this way a significant improvement to re-
search and practical applications of abductive reasoning.
In the paper, we give the declarative and operational semantics of an abductive
proof-procedure that encloses constraint optimization meta-predicates, and we
prove soundness in the three-valued completion semantics. In the proof-procedure,
the abductive logic program can invoke optimisation meta-predicates, which can
invoke abductive predicates, in a recursive way.

1 Introduction

Abductive Logic Programming (ALP) [1] is a set of programming languages deriving
from Logic Programming. In an abductive logic program, a distinguished set of predi-
cates, called abducibles, do not have a definition, but their truth value can be assumed.
A set of formulae, called Integrity Constraints (IC, often in the form of implications)
restrict the set of hypotheses that can be made, in order to avoid unrealistic hypotheses.

ALP is interesting as it supports hypothetical reasoning, and in the context of logic
programming it supports a simple, sound implementation of negation by failure [2]
(also called, in the context of ALP, negation by default). Operationally, various abduc-
tive proof-procedures have been proposed in the past, and they have recently gained
significant efficiency [3–10].

One important milestone in the research on abductive proof procedures was the in-
tegration with constraint logic programming (CLP). After the first works that showed
that ALP and CLP could be cast under a common umbrella [11], many abductive proof-
procedures have been integrated with CLP [5, 7, 9]. However, while in CLP optimiza-
tion meta-predicates are considered vital in order to address many real-life problems,
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the issue has received little attention in the ALP community. As a matter of fact, the
user is not always satisfied in finding one solution, but among the many solutions that
satisfy the constraints, (s)he wants to find the optimal one with respect to some objective
function.

Indeed, some works introduce ad-hoc optimizations into ALP. A common approach
is to assign costs to abduced literals [10]. But, as CLP languages support a full inte-
gration of optimization meta-predicates (including recursion on such meta-predicates),
one would expect such integration also into constrained ALP.

Notably, van Nuffelen and Denecker [12] performed interesting experiments with
ALP and aggregates (optimization is, in fact, an instance of aggregate meta-predicate),
but, to the best of our knowledge, there is no proof of correctness for their procedure
with aggregates. On the other hand the importance of aggregates in ALP is well mo-
tivated in [12], as the ALP solution is compared with a pure CLP solution: “the CLP
solution is a long program (400 lines) developed in some weeks of time [. . . ], where as
the above representation is a simple declarative representation of 11 logical formulae,
written down after some hours of discussion.” The possibility of reducing the develop-
ment time from weeks to hours is very attractive. On the other hand, a logic program-
ming language without a convincing declarative semantics and a proof of soundness is
incomplete.

In this paper, we define a declarative semantics for abduction with optimization
meta-predicates. We first show that a naive integration of the ALP and CLP declarative
semantics has a number of drawbacks, then we propose a new semantics. We propose
an operational semantics, that extends the SCIFF proof-procedure [13], and that recalls
the branch-and-bound procedure used by CLP solvers. Thanks to the new declarative
semantics, we are able to show that the new proof-procedure, called SCIFFopt, is sound
with respect to the three-valued completion semantics, in practical cases (those without
floundering). In particular, we are able to deal with recursion through the optimization
predicates: the abductive proof-procedure can invoke optimization predicates, which in
turn can perform abductive reasoning. Recursion through optimization lets us deal with
problems of games, as we showed in a short version of this paper [14].

2 Preliminaries

SCIFF is an abductive proof-procedure that follows the classical semantics of ALP
with constraints. An ALP with constraints [5] is formally defined as a triple P ≡
〈KB,A, IC〉, whereKB is the knowledge base (a logic program),A is a distinguished
set of predicates, called abducibles, and IC is a set of implications, called Integrity Con-
straints. With abuse of notation, we will use A also for the set of ground atoms built on
the abducible predicates. Given a goal G, the aim of abduction is to find an abductive
answer, i.e., a pair (∆, θ), where ∆ is a set ∆ ⊆ A and θ is a substitution, such that

KB ∪∆ ∪ T |= Gθ ∧ IC (1)

where T is the theory of constraints [15], and will be omitted for simplicity in the
following. Although most of the results are general, in the examples we will use a
constraint sort on finite domains (CLP(FD)). Abducibles are in bold.



The optimization meta-predicates are the main objective of this work. The following
syntax will represent an atom with three arguments:

min(X : G) = V

meaning that we are looking for the solution to the goal G that gives the minimal value
to variableX; such value is V . When the value of the optimal solution is not of interest,
we adopt the simplified syntax min(X : G) (one can think of this simplified syntax
as if adding an unnamed variable, as in Prolog: min(X : G) = ). Of course, we
have a symmetric meta-predicate max. We will use upper-case letters for variables and
lower-case for predicates and constants (as in Prolog).

3 A naive Declarative Semantics

The first intuition of a declarative semantics for abduction with optimization is to start
from the declarative semantics of abduction itself (Eq 1) which states that, given an
abductive program P ≡ 〈KB,A, IC〉, one’s goal is to find a set ∆ ⊆ A of abducibles
that (together with the knowledge base KB) entails both the goal G and the integrity
constraints IC. I.e., we ask ourselves if there exists such a set ∆.

In the simplest possible situation, the optimization meta-predicate occurs only in
the goal, e.g., G ≡ min(X : p(X)) = V , meaning that we want to find the minimal
value V for variable X such that predicate p(X) is true. The temptation is to adopt the
same idea used to give semantics to optimization predicates in CLP, namely to rewrite
min(X : p(X)) = V as p(V )∧not(∃Y p(Y )∧Y < V ), i.e., V is indeed the minimum
if p is true and there is no smaller value Y that makes p true.

Now, combining abduction and optimization we would obtain:

KB ∪∆ |= p(V ) ∧ not(p(Y ) ∧ Y < V ) ∧ IC (2)

This formalisation is very intuitive, but it does not provide a semantics usable in prac-
tical situations. The meaning of equation 2 is “Do there exist a set ∆ and a value V
such that p(V ) is true and no other value Y smaller than V makes p true?” Let us now
consider a very simple abductive program:

p(X)← a(X) ∧ 1 ≤ X ≤ 2. (3)

without integrity constraints. In this case, the declarative semantics in Eq. 2 would pro-
vide the following answers to the goal min(X : p(X)) = V :

∆1 = {a(1)} V = 1
∆2 = {a(2)} V = 2
∆3 = {a(1),a(2)} V = 1.

We find such an answer counter intuitive, in particular ∆2, and not in the direction of
real-life applications. In the semantics of Eq. 2, for each set ∆ that supports p(X) we
have a positive answer; the value V is simply the minimum value amongst the abduced



literals. Classical applications of ALP are diagnosis, and planning; by combining ab-
ductive reasoning with optimization, one would expect to be able to answer to questions
like “What is the plan of minimal cost?” or “What is the explanation of maximal like-
lihood?”, which means that the user wants to find the optimal set ∆, not that she wants
to find any explanation ∆, and then take the minimal value that makes true a predicate
with such assumptions. More formally, the intended meaning is not

(∃∆,V ) KB ∪∆ |= p(V ) ∧ not(∃Y.p(Y ) ∧ Y < V ) ∧ IC

which means that given a set ∆ that satisfies p and IC, V is the optimal value in that
particular ∆, but that the set ∆ should be in the scope of optimization, as in:

(∃V,∆∗) [ KB ∪∆∗ |= p(V ) ∧ IC
∧ not(∃Y,∆′.Y < V ∧KB ∪∆′ |= p(Y ) ∧ IC)] (4)

Of course, Eq 4 is meaningful only for optimization atoms that occur in the goal, but it
does not give a semantics to general ALPs that contain optimization atoms in the KB
or in the IC.

Starting from the practical need to combine abduction and constraint optimization,
we propose a new declarative semantics for ALP with optimization. We ground our
semantics on the SCIFF language and proof-procedure [13], but we believe that our
results could be easily extended to other proof-procedures.

4 Declarative Semantics

The declarative semantics is given, as usual, with respect to the ground program. When
there are optimization literals, defining the grounding of a program is not immediate;
we adopt the same definitions by Faber et al. [16], adapted to the SCIFF syntax.

Definition 1. A Set Term is either a symbolic or a ground set. A Symbolic Set is a pair
{V : Conj}, where V is a variable and Conj is a conjunction of atoms. A Ground
Set is a set of pairs 〈t : Conj〉, where t is a numeric constant and Conj is a ground
conjunction of atoms.

Definition 2. An Optimization Atom is either of the form min(S) = V or max(S) =
V , where S is a set term.

We will suppose for simplicity that optimization atoms occur only in the body of
clauses, and not in Integrity Constraints.

Definition 3. Given a clause, a local variable is a variable that occurs only in an opti-
mization atom. All other variables are global.

Definition 4. Given a symbolic set without global variables S = {V : Conj}, the
instantiation of S is a ground set of pairs {〈γ(V ) : γ(Conj)〉|γ is a substitution for the
local variables in S}.

A Ground Instance of a clause r is obtained in two steps:



1. all global variables are grounded
2. every symbolic set is replaced by its instantiation

After defining the grounding of a program, we can give it semantics. We will restrict
ourselves to locally stratified programs. Note that local stratification does not prevent
the user to use recursion through optimization.

Definition 5. A ground program is locally stratified with respect to optimization if there
exists a level mapping || · || : H 7→ N (where H is the Herbrand Base) such that for
each pair of ground atoms h and b occurring, respectively, in the head and in the body
of a clause:

– if b occurs in the clause in an optimization atom, then ||b|| < ||h||
– otherwise, ||b|| ≤ ||h||.

If such a mapping exists, then the set of ground atoms in the Herbrand base is
partitioned into levels. Suppose for simplicity that the levels take the values of the first
natural numbers (so the first level takes value 0).

4.1 3-valued completion for non-abductive programs

We extend the 3-valued completion semantics [17, 18] to the case with optimization
meta-predicates. A (partial) interpretation I is a set of literals considered true. A literal
p is false in I iff ¬p ∈ I . If {p,¬p} ∩ I = ∅, then p’s truth value is unknown (⊥).

We report the extension of the TP operator to the three-valued case:

Definition 6. Consider an atom p of a defined predicate

– p ∈ TP (I) iff there is some instantiated clause R ∈ P such that R has head p, and
each subgoal literal in the body of R is true in I .

– p ∈ UP (I) iff for all clauses R ∈ P that have head p, the body of the clause is
false in I .

– WP (I) = TP (I) ∪ ¬ · UP (I), where ¬ · UP (I) means the negation of all atoms in
UP (I) (i.e., if atom a ∈ UP (I), then ¬a ∈WP (I)).

Notice that Definition 6 gives a truth value only to literals defined in KB, other
literals (abducibles, optimization atoms) have still unknown ⊥ truth value.

TP , UP and WP are monotonic transformations (i.e., TP (I) ⊆ TP (J) whenever
I ⊆ J), so considering the limit makes sense. For a transformation Φ, let [17]

– Φ ↑0 (S) = S,
– Φ ↑α+1 (S) = Φ(Φ ↑α (S))

– for limit ordinals λ, Φ ↑λ (S) =
⋃
α<λ Φ ↑α (S)

Let I0 = ∅, Iα =WP ↑α (∅), I∞ =WP ↑ω (∅), where ω is the first limit ordinal.



4.2 3-valued completion semantics for abductive programs

Since P is an ALP, the truth of an atom depends on the assumed hypotheses. We con-
sider, in the declarative semantics, all the possible groundings of abducible literals that
satisfy the integrity constraints. Let I0(∆) the 3-valued interpretation corresponding to
the set of abduced atoms ∆, i.e., ∀a ∈ ∆, a ∈ I0(∆) and ∀a ∈ A \∆, ¬a ∈ I0(∆).

Let I∞(∆) = WP ↑ω (I0(∆)). As stated earlier, I∞(∆) assigns value ⊥ to all
optimization atoms. Let us suppose that the program is stratified also with respect to
negation [19]; in such a case, the three-valued completion semantics gives values true-
false to each atom (never unknown), so the only unknown atoms are the optimization
atoms and the atoms that depend on them.

If the program is locally stratified with respect to optimization, there will be an
optimization atom min(S) = Vm such that ∀〈V : C〉 ∈ S, C is not ⊥ (i.e., there will
be an optimization atom of minimum level).

We now define a new operator that gives semantics to the optimization atoms.

4.3 Extension of 3-valued TP for optimization atoms

Before defining the extension of the TP operator to the optimization atoms, consider
the following example, in CLP (without abduction):

min(X : max(Y : p(X,Y ))) = V

Intuitively, this problem can be thought as a two player game: given that the possible
solutions are those that satisfy predicate p(X,Y ), the first player tries to minimize X
while the second maximizes Y . The point here is that the first player has control over the
variableX , while the second instantiates variable Y : player 2 cannot choose the value of
variable X . This means that we need to exclude some variables from the maximization;
for this reason, various authors [20, 21] proposed to extend the syntax, in order to let the
user choose which variables are subject to optimization and which are not, by providing
protected variables [21] to the optimization meta-predicate.

In ALP, we have the same issue, and a further one: which of the two nested atoms
is responsible for grounding the set ∆? We would like both invocations to be able to
abduce literals, otherwise the expressivity of our language would be strongly compro-
mised: in fact, we would boil down to a two step procedure, and lose the possibility of
recursion through optimization predicates. We decided to explicitly communicate to the
optimization atom those literals it is responsible to abduce. We show in the following
of this section that there is a precise declarative semantics.

We extend the syntax of the optimization meta predicate:

minAm
(X : p(X)) = V (5)

the intuitive meaning is that we are looking for the minimum value forX such that p(X)
is true, knowing that in such minimization we are entitled to abduce only the literals oc-
curring in the setAm ⊆ A. Since the setAm could be infinite, we sometimes represent
its content with non-ground atoms, meaning that all possible groundings belong toAm.

We can now define precisely the declarative semantics of the optimization meta-
predicate in the 3-valued completion semantics, by extending the TP operator:



Fig. 1. Relation of sets in Definition 7

Definition 7. A non-optimization literal l ∈MP (I) iff l ∈WP (I).
Otherwise, consider the set of all the possible groundings of the abducible literals

that satisfies the integrity constraints: Cons = {∆ ∈ 2A|KB ∪∆ |= IC}. Consider
one specific set ∆∗ (intuitively, the candidate set of abduced literals).

The atom minAm
(S) = Vm is true, i.e., minAm

(S) = Vm ∈ MP (I(∆
∗)), iff all

the following conditions hold:

1. ∀∆ ∈ Cons, ∀〈V : C〉 ∈ S, either I(∆) |= C or I(∆) |= ¬C (intuitively, C is
not ⊥ in all the possible ∆)

2. there exists some 〈V : C〉 ∈ S such that V = Vm and
(a) I(∆∗) |= C
(b) 6 ∃〈V ′ : C ′〉 ∈ S s.t. I(∆∗) |= C ′ and V ′ < V
(c) 6 ∃(〈V ′′ : C ′′〉 ∈ S and ∆′′ ∈ Cons) such that

i. ∆′′ ∩ (A \∆∗) ⊆ Am
ii. ∆′′ ∩ (A \ Am) = ∆∗ ∩ (A \ Am)

iii. I(∆′′) |= C ′′ and V ′′ < V

The atom minAm(S) = Vm is false, i.e., ¬(minAm(S) = Vm) ∈ MP (I(∆
∗)) iff

condition 1 holds, but at least one of the other conditions does not hold.

Intuitively, condition 2b imposes that no better solution exists in the same∆∗, while
condition 2c requires that a better solution does not exist in a different set ∆′′. Such set
∆′′ cannot be completely different from ∆∗, as in this specific optimization we are
supposed to optimize only with respect to Am, and not with respect to the whole set
of abducibles A. In the current optimization, we will only abduce literals in Am, while
the other literals (in A \ Am) can be abduced externally. For this reason, ∆′′ coincides
with ∆∗ for the part in A \ Am, and differs only for the part in Am (Figure 1).

The operator MP is monotonic, and gives a truth value to optimization predicates
that contain only conditions whose truth value is known. In other words, if one knows
the truth value of the argument of min, he can define the truth of min through the
MP operator. Otherwise, the min literal remains unknown.1 Note that we require such
knowledge for all the possible ∆ that satisfy the integrity constraints (set Cons).

1 This condition could be relaxed; e.g., min(〈1, p〉) = 2 is obviously false even if we do not
know the truth of atom p.



Given a set ∆, we can apply the operator MP up to its fix-point; if a ground literal
a ∈MP ↑ω (I0(∆)), we write

P |=opt∆ a.

5 SCIFFopt operational semantics

The SCIFF proof-procedure consists of a set of transitions that rewrite a node into one
or more children nodes. It encloses the transitions of the IFF proof-procedure [6], and
extends it in various directions. We recall the basics of SCIFF; a complete description
is in [13], with proofs of soundness, completeness, and termination.

Each node of the proof is a tuple T ≡ 〈R,CS, PSIC,∆〉, whereR is the resolvent,
CS is the CLP constraint store, PSIC is a set of implications derived from propagation
of integrity constraints, and∆ is the current set of abduced literals. The main transitions,
inherited from the IFF are:

Unfolding replaces a (non abducible) atom with its definitions;
Propagation if an abduced atom a(X) occurs in the condition of an IC (e.g., a(Y )→

p), the atom is removed from the condition (generating X = Y → p);
Case Analysis given an implication containing an equality in the condition (e.g., X =

Y → p), generates two children in logical or (in the example, either X = Y and p,
or X 6= Y );

Equality rewriting rewrites equalities as in the Clark’s equality theory;
Logic simplifications other simplifications like true→ A⇔ A, etc.

SCIFF includes also the transitions of CLP [15] for constraint solving.
We introduce a new transition to process optimisation meta-predicates.
In order to simplify the exposition, we assume that the goal argument of min con-

strains the value of the objective function to become ground in each leaf node, as in
many practical implementations of CLP (see, e.g., SICStus manual). We plan to remove
such assumption in future work, by considering bounds as in the operational semantics
of optimization in CLP [21].

Definition 8 (Transition Optimize). Given a node

T ′ ≡ 〈R′, CS′, PSIC ′, ∆′〉,

such that the resolvent R′ contains exactly an optimization literal, i.e.,

R′ = {minAm
(F : G) = V },

transition Optimize opens a new SCIFF derivation tree with starting node

T opt ≡ 〈G,CS′, PSIC ′, ∆′〉.

We call the derivations spawning from node T opt sub-derivations. If all sub-derivations
finitely fail, then the successor of T ′ is the special node false .

Otherwise, let S the set of leaf nodes of the sub-derivations starting from node T opt.
For each leaf node Nj ∈ S (Figure 2) one can compute the value of F for the node.
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Fig. 2. SCIFFopt derivation.

As in CLP, we can call F the objective function and write, with an abuse of notation,
F (Nj) to indicate its value in a node.

If there exists a node Nk ∈ S in which the set of abduced literals ∆k contains new
literals not included in Am (i.e., ∆k 6⊆ Am ∪∆′), the derivation flounders.

Note also that transition Optimize is not applicable if R′ contains more than one
literal. In case no transitions are applicable and in the last node the resolvent is not
empty, the derivation flounders (this can happen, e.g., in case the goal contains a con-
junction of minimization literals).

If there is a successful sub-derivation Di starting from node T opt with final node
Ni ∈ S, and value F ∗ ≡ F (Ni), then to the constraint store of each node Nj ∈ S
a new constraint F (Nj) ≤ F ∗ is added. To such nodes, constraint propagation is
applied, and it can possibly fail. In case of success in some node Nk, again the new
value F ∗2 ≡ F (Nk) is computed, and the new constraint F (Nl) ≤ F ∗2 is added to the
store of all the remaining nodes Nl. This process continues until the fix point. The final
nodes of the successful sub-derivations are then generated as children of the node T ′.

If the SCIFFopt operational semantics (including transition Optimize) has a suc-
cessful (non floundering) derivation with abductive answer (∆,σ) for a goal G and a
program P we write

P `opt∆σ Gσ.

Example 1. Consider the program in Eq. 3, with the goal min{a( )}(X : p(X)) = V .
The only applicable transition is Optimize, which opens a new derivation for the goal
p(X). The SCIFF proof-procedure has two possible derivations, with nodes (we report
for simplicity only the sets of abduced literals): ∆1 = {a(1)}, ∆2 = {a(2)}. Optimize
chooses one of them: suppose∆2. F (∆2) = 2, so the new constraintX ≤ 2 is added to
all nodes; constraint propagation does not exclude any value nor causes failure. Another
node is selected: ∆1. F (∆1) = 1, and the constraint X ≤ 1 is added to all nodes. This
causes a failure in ∆2, since 2 � 1, so the only viable solution is the node containing
∆1. Such node is reported as child of the initial goal, with V = 1. No other transition
is applicable, so we have success with V = 1



The optimization predicates are postponed after the others, because they can be
safely applied at the end of a derivation. This is not an issue in many practical applica-
tions: for example, when solving constrained optimization problems in CLP, one first
imposes constraints and then performs a search. Of course, in some cases postponing
the optimization goal can lower efficiency. Another way to deal with such problem is
using protected variables [21]; in this paper we do not use them to simplify the exposi-
tion, and leave for future work the integration of protected variables into our syntax and
semantics.

Note that this limitation does not prevent recursion through optimization: when tran-
sition Optimize is applied, a new derivation starts, and optimisation can be applied in-
side it (it is a different derivation).

Example 2. Consider the goal G1 ≡ min{a( )}
(
X : min{a( )}(Y : p(X,Y ))

)
, with:

p(X,Y )← 0 < X < Y,a(X,Y ).

Start D1: Transition Optimize is applicable, and a new derivation tree is generated,
rooted in G2 ≡ min{a( )}(Y : p(X,Y )).
Start D2: Optimize is applicable in the new derivation, and generates a new tree

rooted in G3 ≡ p(X,Y ).
Start D3: G3 is solved with the SCIFF transitions, that in particular abduce

a(X,Y ). The best solution in this subtree is node Y = 1, X = 0, a(0, 1).
End D3: Derivation D3 terminates, so there is no floundering in it.

End D2: No transitions after Optimize, so no floundering.
End D1: no floundering.

We are not currently dealing with the case in which there is an optimisation sub-
goal in the condition of an integrity constraint. We leave this issue for future research;
if at the end of a derivation there is an implication with a minimization sub-goal in the
condition, the derivation flounders.

6 Soundness

We will rely on the following theorems, proved in [13]:

Theorem 1 (Soundness of SCIFF). Given an abductive logic program P , if P `∆ G
with abductive answer (∆,σ), then P |=∆σ Gσ

Theorem 2 (Completeness of SCIFF). Given an abductive logic programP , a (ground)
goal G, for any ground set ∆ such that P |=∆ G then ∃∆′ such that P `∆′ G with an
abductive answer (∆′, σ) such that ∆′σ ⊆ ∆.

We can now give the main result

Theorem 3 (Soundness of SCIFFopt). Given an abductive logic program P with op-
timization predicates, that is locally stratified both with respect to negation and to opti-
mization, the following results hold:



1. (Soundness of success) if
P `opt∆ G

with abductive answer (∆,σ), then

P |=opt∆σ Gσ

2. (Soundness of failure) if the SCIFFopt derivation for a goal G finitely fails, then

P 6|=opt G

Proof. Suppose that the derivation does not contain applications of the Optimize transi-
tion. In this case, the thesis follows immediately from the soundness and completeness
of the SCIFF proof-procedure (Theorems 1 and 2).

Note that a non-floundering SCIFFopt derivation contains at most one application
of the Optimize transition, otherwise the second application would make the derivation
flounder. However, each SCIFFopt derivation can generate new sub-derivations (each
possibly containing an application of Optimize). We call full derivation the forest of
derivations triggered by a goal, including all sub-derivations for optimisation sub-goals.

By induction, suppose that all SCIFFopt full derivations of depth n (i.e., we have
n levels of application of the Optimize transition) are sound (satisfy conditions 1 and
2). Consider a SCIFFopt derivation D that generates sub-derivations of depth up to n.
The sub-derivations are sound by inductive hypothesis. The derivation D consists of a
SCIFF derivation D′ followed by the application of the Optimize transition (Figure 2).
Derivation D′ is a SCIFF derivation, that is sound and complete [13]. The Optimize
transition is applied only to a node with a min goal, that must be the only element
in the resolvent (otherwise other transitions would be applicable after Optimize). Let
T ′ ≡ 〈minAm

(F : G) = V,CS′, PSIC ′, ∆′〉 the final node of D′ (Figure 2).
Consider a sub-derivationDi (with goalG); letNi the final node ofDi.Di is sound

by inductive hypothesis.
Suppose that transition Optimize generates node Ni as successor of T ′; we prove

that all the conditions in Definition 7 hold.
Condition 1 holds because the program is stratified with respect to both negation and

optimization. Since the program is stratified with respect to negation, the tree-valued
completion semantics has a unique model, and no literal has unknown truth value.

Condition 2a requires the derivation Di to be sound: this holds because of the in-
ductive hypothesis.

Condition 2b requires that there is no other substitution θ′ that, together with the
same set of hypotheses ∆∗, provides a better value for V . In fact, if there existed a
substitution θ′ supporting a value V ′ < V , then (∆∗, θ′) would be an abductive answer
to the goal G ∧ F < V (i.e., P |=∆∗ θ′ (G ∧ F < V )θ′). But the goal G ∧ F ≤ V
is the initial node of another sub-derivation, call it Dj . If Dj succeeded with a value
V ′ < V , then transition Optimize would have added the constraint F (Ni) ≤ V ′ to the
nodeNi, which would have failed (contradicting the hypothesis thatNi is the successor
of T ′). If Dj failed, then, since for inductive hypothesis the soundness of failure holds
for the sub-derivations, there is no abductive answer that supports the goal G∧F ≤ V .
Otherwise, D′ may succeed with V ′ = V , but this does not contradict the assumption
that V is one of the optima.



Condition 2c holds again due to the soundness of failure. It requires that there is
no other substitution θ′′ that, together with a different set of hypotheses ∆′′ provides a
better value V ′′. Moreover, the candidate set ∆′′ can differ from∆∗ only for the literals
in Am (see Definition 7).

Suppose, by contradiction, that there is a set∆′′ satisfying the conditions 2c (i−iii).
Since V ′′ < V , (∆′′, θ′′) is an abductive answer to the goal G ∧ F ≤ V , that is the
initial node of another derivation Dover. If Dover succeeds with a value V ′′ < V ,
then transition Optimize would not return the value V : it would impose the constraint
F (Ni) ≤ V ′′ to the node Ni, which would obviously fail (contradicting a previous
hypothesis). If Dover fails, this failure would be unsound, contradicting the inductive
hypothesis. If Dover succeeds with V ′′ = V , it contradicts the assumption that V ′′ <
V .

7 Example

Consider a two player game, where each of the players A and B can play one move.
The result of the two moves is a configuration with an associated value: one player’s
aim is to maximize the value, the other player’s is to minimize it. Player A’s move
is represented by the abducible a(Ma, X), where Ma is the possible move and X is
the obtained value. Analogously, player B abduces b(Mb, X). The obtained value is
defined with a predicate f(Ma,Mb, X) that gives the obtained value X corresponding
to movesMa andMb. It can be defined (Figure 3) as a set of facts f(0, 0, 5), f(0, 1, 10),
f(1, 0, 4), f(1, 1, 3). To compute the obtained value, we can define a predicate or an IC
as the following:

a(Ma, Xa),b(Mb, Xb)→ Xa = Xb, f(Ma,Mb, Xa). (6)

a(0) a(1)

5

b(0)

10

b(1)

4

b(0)

3

b(1)

Fig. 3. min-max

As playerAmoves first, and wants to maximize the valueX , while playerB moves
next and his goal is to minimize X , the SCIFFopt goal will be

max{a( , ),b( , )}(Vb : a(Ma, Xa) ∧ (Ma = 0 ∨Ma = 1)∧
min{b( , )}(Xb : b(Mb, Xb) ∧ (Mb = 0 ∨Mb = 1)) = Vb)



We have four possible sets∆ satisfying the integrity constraint:∆0
0 = {a(0, 5),b(0, 5)},

∆0
1 = {a(0, 10),b(1, 10)}, ∆1

0 = {a(1, 4),b(0, 4)}, and ∆1
1 = {a(1, 3),b(1, 3)}.

Declaratively, the internal goal min{b( , )} is true in ∆0
0 and ∆1

1: ∆1
0 is ruled out by ∆0

0

(see condition 2c in Definition 7) and ∆0
1 by ∆1

1. The external max{a( , ),b( , )} goal,
thus, chooses from these two sets the ∆ with maximum value of Xb, namely ∆0

0; this
output is the same as a min-max algorithm.

From an operational viewpoint, transition Optimize generates two nodes: one in
which abduces a(0, Xa), and one with a(1, Xa).

Ma = 0 Transition Optimize is applied to min: it opens two nodes, one abducing b(0, Xb),
the other with b(1, Xb).

Mb = 0 In the first, propagation of the integrity constraint (Eq. 6) imposes Xa = Xb =
5. Now transition Optimize of the internal min imposes the constraint Xb ≤ 5
to all the open nodes in its scope, i.e., the node with value 10 in Figure 3

Mb = 1 In the second node, the propagation of the IC imposes Xa = Xb = 10, which
conflicts with the constraint Xb ≤ 5; CLP propagation results in a failure.

Now Optimize applied to min provides value 5 as optimum, and generates the
node with ∆0

0 as successor. The external Optimize (applied to max) adds the new
constraint Xa ≥ 5 to all open nodes, in particular to the open choice point.

Ma = 1 In this node, the external Optimize has imposed Vb ≥ 5. Again, transition Optimize
is applied to themin literal, and it opens two nodes. The minimum value computed
for Vb is 3, and it does not satisfy Vb ≥ 5, so the result is indeed Xa = Xb = 5.

This example shows how min-max problems can be easily encoded in SCIFFopt.
In this simple example, we impose the optimization directly in the goal for ease of
presentation, but it can be simply extended to other example with recursion through
minimization, to solve problems in PSPACE. In [14] we showed one such example.

8 Related work

Since abduction is one of the basic inferences in human reasoning [22], countless works
address it in many different contexts. In many works, abduction is associated to opti-
mization in the sense that a minimal number of hypotheses should be assumed, or that
there is a cost associated to each assumed literal. The work [23] addresses the problem
in the propositional case, with a limited syntax for integrity constraints (that can contain
only abducible literals), and without CLP constraints; the authors use neural networks,
that are an incomplete method, meaning that they cannot prove optimality.

This case can be easily cast in SCIFFopt, by transforming the original program. For
each abducible literal a we have another abducible ca(Ca), with the integrity constraint

a, ca(Ca)→ Ca = γa (7)

where γa is a real number representing the cost of assuming a. Then, we modify the
goal G as follows: the new goal G′ abduces all the new cx literals, where x is a literal
in the original program; then minimizes the sum of the costs:

G′ = min((G, ca(Ca), cb(Cb), cc(Cc), . . . , F = Ca + Cb + Cc + . . . ), F )



The same problem has been addressed also in the context of the stable model seman-
tics [10], for normal logic programs without function symbols. The non-propositional
case without function symbols can be addressed in SCIFFopt by extending the encoding
in Eq. (7).

9 Conclusions

Integration of abductive reasoning and constraint satisfaction has been vastly investi-
gated in the recent years, and efficient proof-procedures have been developed [5, 7, 9].
Surprisingly, constraint optimization, one of the main topics in Constraint Program-
ming, has been often left out of abductive proof-procedures, except for the interesting
experiments reported (without proofs) in [12].

We extended the declarative and operational semantics of the SCIFF proof-pro-
cedure to support this type of reasoning, resulting in the SCIFFopt framework. For
SCIFFopt we proved a soundness result, that, to the best of our knowledge, is the
first in the literature on abductive logic programming with constraint optimization. The
soundness result holds when there is no floundering, a common issue in many logic
programming languages. In future work, we plan to study the floundering issue in more
detail, and extend the applicability of SCIFFopt to other problems, like those in which
a conjunction of optimization atoms is required.
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