
On a Logic for Coalitional Games with Priced-Resource

Agents

Dario Della Monica1, Margherita Napoli1, and Mimmo Parente1

Dept. of Computer Science, Universitá di Salerno, Fisciano (Italy),
{ddellamonica|napoli|parente}@unisa.it

Abstract. Alternating-time Temporal Logic (ATL) and Coalition Logic (CL) are well-estab-
lished logical formalisms particularly suitable to model games between dynamic coalitions
of agents (like e.g. the system and the environment). Recently, the ATL formalism has been
extended in order to take into account boundedness of the resources needed for a task to be
performed. The resulting logic is known as Resource-bounded ATL (RB-ATL) and has been
presented in quite a variety of scenarios. Model checking RB-ATL in very general setting is
usually undecidable. Nevertheless, model checking procedures for semantically or syntactically
restricted versions of RB-ATL have been proposed. In this paper, we analyze the problem of
coalitions of agents that need to perform complex tasks, by using resources with a variable
price. We highlight a certain number of problems and considerations, based on different
interpretations of shortage of resources, leading to different scenarios.

1 Introduction

Automated verification of multi-agent systems is a significant topic in the recent literature in ar-
tificial intelligence [1]. The need of modeling this kind of systems has inspired logical formalisms,
the most famous being the Alternating-time Temporal Logics [4] and the Coalition Logic (CL) [7,8],
oriented towards the description of collective behaviors.

The idea of such logics is that agents can join together in team (or coalitions) and share resources
to accomplish a task (or reach a goal). In particular, Alternating-time Temporal Logics have been
introduced in [4], where the full alternating-time temporal language, denoted by ATL

∗, has been
presented, along with two significant fragments, namely, ATL and ATL

+.
In [6], Goranko has studied the relationship between the (expressive power of the) two for-

malisms. In particular, he has shown that CL can be embedded into ATL. Anyway, none of the
two logics takes into account the boundedness of the resources. Approaches towards verification
of multi-agent systems under resource constraints can be found in [2,3,5]. In [2], Alechina et al.
introduce the logic RBCL, whose language extends the one of CL with explicit representation of
resource bounds. In [3], the same authors propose an analogous extension for ATL, called RB-ATL,
and give a PTIME model checking procedure mostly based on the one for ATL. In [5], Bulling and
Farwer introduce the logics RAL and RAL

∗. The former represents a generalization of Alechina et
al.’s RB-ATL, the latter is ATL∗ extended with resource bounds. The authors study several syntactic
and semantic variants of RAL and RAL

∗ with respect to the (un)decidability of the model checking
problem. In particular, while previous approaches only conceive actions consuming resources, they
introduce the notion of actions producing resources. It turned out that such a new notion makes
the model checking problem undecidable.

The paper is structured as follows. In the next section, we make some considerations about
scenarios proposed in the literature, we illustrate our proposals, and show that the model checking
problem is still decidable. Then, in the last section, we propose new scenarios for which the model
checking problem is under study.

2 Our scenario

This section contains an epistemic discussion about the formalization of a multi-agent system in
which agents can cooperate to perform a task and are subject to a limited availability of resources,
that is an intrinsic feature of any real-world system. Our discussion hinges on existing approaches
in the literature (see e.g. [2,3,5]) and represents an attempt to do a further step towards the
formalization of such complex systems.

Formulas of the formalisms proposed in [2,3,5] allow one to assign an endowment of resources to
the agents by means of the so-called team operators, (borrowed from ATL) and to state that a team
of agents can perform a task. Due to the nesting of the team operators in a formula (which reflects
the fact that coalitions may change in a game), during the execution of the task, the agents can
be provided with a new endowment of resources to perform subtasks. This is somehow unrealistic,
as it does not take into account issues related to procurement of resources. In particular, a very
significant present-day issue is that resources are available on the market (or in nature) in limited
amount, and the cost for achieving them depends on such an availability.

First improvement. Thus, our first proposal is to introduce the notion of price of resources. Unlike
the existing approaches, agents are equipped with an amount of money instead of an endowment
of resources. They can use money for getting resources. Notice that money cannot be considered
as a resource like the others for at least two reasons. First, according to our aim of assigning, to
each resource, a price that is variable depending on several factors (e.g., the current availability
of the resource on the market), it is necessary to introduce the new component money with the
special ability of “measuring” the value of all the resources, thus making it possible for the agent
to acquire them when needed. Second, since the money as the special ability of “measuring” the
value of the resources makes sense to consider problems of optimization (e.g., minimization of the
amount of money needed to acquire the resources to perform a task). Formulas of our logic state
that a team of agents is able to perform a given task provided with a given amount of money. We
also introduce a notion of global availability of resources on the market, the intended meaning being
that, whenever an agent acquires resources from the market, the global availability is decreased,
whenever it produces resources, the global availability is increased. The price of resources can be
any function of the several components into play. In our approach, prices of resources depend on
their global availability, the acting agent, and the physical location.

Second improvement. Another aspect that has not been fully analyzed in the literature is the
problem of actions producing resources. On the one hand, in [2,3], actions can only consume re-
sources; on the other hand, in [5], the authors state that whenever actions can produce resources the
model checking problem is undecidable. In this paper, we show how to constrain the way in which
actions can produce resources, still preserving the decidability of the model checking problem. The
idea is that it is possible, at a given time, for an action to produce a resource in a quantity that
is not greater than the amount that has already been consumed so far. This implies that, even if
actions can produce resources, the global availability of the market will never be greater than the
initial global availability, that is crucial for the model checking algorithm. Such a notion makes
sense as, in practical terms, it allows one to model significant real-world scenarios, such as, acquir-
ing memory by a program, leasing a car during a travel, and, in general, any scenario in which an
agent is releasing resources previously acquired.

2.1 Team and task

So far, we have talked about teams (or coalitions) of agents performing a task. But we have not
clarified yet the two notions of team and task. First of all, a task is a goal that has to be reached

and, for what concerns us, is represented by a logical formula that has to be satisfied. A team of
agents is a subset of agents that act collectively in order to perform a task. To this end, they select
a strategy that univocally determines their behavior in each possible configuration of the system.
Nevertheless, the behavior of the remaining agents, that we collectively denote as the opponent, is
undetermined. Aim of the team is to guarantee that the task is performed independently of the
opponent’s behavior, that is, the task must be guaranteed for each possible opponent’s strategy.

The formalism that naturally fits our intention is the logic ATL, that allows one to fix a strategy
for the agents of a team and to force an ‘LTL-like’ property, representing the task, to be true over
all the possible executions (or outcomes) of the system. Obviously, its syntax and semantics will be
extended in order to deal with resource constraints.

2.2 The special resource ‘time’

One can be interested in answering questions of the kind “is it possible for the team A of agents to
complete the task in x time-unit?”. It is clear that the resource ‘time’ neither can be bought nor
rented. It is in a certain sense out of the control of the agents, as it is only possible to specify that
a task should be executed within some given time constraints, while it is not possible to administer
it. Thus, resource ‘time’ will be treated in a special way with respect to other resources.

2.3 Game structure

A game structure G is based on a graph whose vertices, called locations, are labeled by atomic
propositions. In each location, each agent can choose among a non-empty set of actions to be
performed. Any possible combination of actions gives rise to transitions, that are the edges of the
graph. In general, actions consume and produce resources. Each resource has a price that is variable
and depends on, inter alia, the current availability of that resource on the market. Thus, a transition
can be executed if the resources needed to perform the actions are available and each agent has
enough money to acquire them.

Let Z denote the set of integers, N denote the set of non-negative integers, and let M =
(N ∪ {∞})r. A game structure G is a tuple 〈Q,AP, V, Ag,Σ,∆,R, t, c, ρ〉, where:

– Q is the finite set of locations, AP is the finite set of propositional letters, and V : Q→ 2AP is
the valuation function;

– Ag = {a1, a2, . . . , an} is the finite set of agents, and Σ is the finite set of actions, denoted by
α1, α2, . . .,

– ∆ : Q×Ag → 2Σ is the action function that defines the possible actions of an agent in a given
location. By an abuse of notation, we use ∆ also to denote the function from Q to 2Σ

n

defined
as ∆(q) = ∆(q, a1)× . . .×∆(q, an);

– R = {R1, . . . , Rr} is the finite set of resource types. It contains the particular resource time,
denoted by R1;

– t : Q × Σn → Q is the transition function over the set of locations. It is a partial function
defined for any pair (q, 〈α1, . . . , αn〉) such that 〈α1, . . . , αn〉 ∈ ∆(q);

– c : Σ × Ag → Z
r is the cost function, assigning a cost to each action performed by an agent.

A negative cost represents a resource consumption, while a positive cost represents a resource
production;

– ρ : M × Ag × Q → N
r is the price function, denoting the price of each resource, depending

on the current resource availability, the acting agent, and the current location. Without loss of
generality, we can assume the price of the resource ‘time’ to be always zero, as it is a resource
that cannot be acquired and thus its price is meaningless.

2.4 A logical formalization: PRB-ATL

We now define the logic Priced RB-ATL (PRB-ATL). The formulae are given by the following
grammar.

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | 〈〈A$〉〉 © ϕ | 〈〈A$〉〉2ϕ | 〈〈A$〉〉ϕUϕ | ∼ ~b

where p ∈ AP , A ⊆ Ag, ∼∈ {<,≤,=,≥, >}, and ~b ∈ M. Moreover, $ ∈ (N ∪ {∞})n is a vector
representing the availability of money of the agents. For each agent a ∈ Ag, by $a we denote
the availability of money for the agent a. Intuitively, formulae of the kind ∼ ~b tests the current
availability of resources on the market. Formulae of the kind 〈〈A$〉〉ψ, with ψ ∈ {©ϕ,2ϕ, ϕUϕ}
state that the team A has a strategy such that, for every action performed by the opponent (i.e,
Ag \ A), ψ is satisfied, and such that the total expenses of each agent a ∈ A is less than or equal
to $a. Without loss of generality, we can assume $a = ∞ for each a /∈ A.

In order to give the formal semantics we must first define the following notions. From now on, let
G be a generic game structure. We extend the sum operation to sum between vectors component-
wise. Additionally, we use the usual component-wise comparison relations between vectors.

Definition 1 (configuration and computation). A configuration of G is a pair c = 〈q, ~m〉 ∈
Q×M. A finite computation (resp., infinite computation) over G is a finite (resp., infinite) sequence
of configurations (of G) π = c1c2 . . ., such that, for each i, if ci = 〈qi, ~mi〉 and ci+1 = 〈qi+1, ~mi+1〉,
then there exists a transition t(qi, ~α) = qi+1, with ~α = 〈α1, . . . , αn〉, such that ~mi+1 = ~mi +∑n

j=1 c(αj , aj).

Given a team A, a move of A, denoted ~αA, is a vector of actions αa, for all a ∈ A, representing
the action performed by the agents of A. To represent the possible moves of the team A at any

location q, we extend the function ∆ with the function ∆̂A : Q→ 2Σ
|A|

representing the Cartesian
product of ∆(q, a), for all a ∈ A.

Definition 2 (strategy). A strategy FA for the team of agents A is a function which associates,
to each finite computation π = c1c2 . . . cs, with cs = 〈q, ~m〉, a move ~αA, such that ~αA ∈ ∆̂A(q). A
strategy is said to be memoryless if FA(π) = FA(π

′) for each pair of computations π, π′ such that

π = c1c2 . . . cs, π
′ = c′1c

′
2 . . . c

′
s′ , cs = 〈q, ~m〉, c′s = 〈q, ~m′〉.

In other words, a strategy FA determines the behavior of the agents in the team A. Anyway, for
each move ~αA (of the team A) and location q ∈ Q, depending on the move of the opponent, there
are several possibilities for the next location. The set including all such possibilities is called the set
of outcomes of the move ~αA (of the team A) at location q, denoted by out(q, ~αA). As a consequence,
given an initial location q1, a strategy FA corresponds to a tree of computations, called outcomes
of the strategy FA from the location q1 and denoted by out(q1, FA).

Finally, in order to prevent actions producing resources to cause a reimbursement of money
to the agent, we define cons : Σ × Ag → Z

r in such a way that cons(α, a) returns the vector
obtained from the vector c(α, a) by replacing the positive components with zeros and the negative
components with the corresponding absolute value.

Let π = c1c2 . . . ∈ out(q0, FA), where ci = 〈qi, ~mi〉 for all i, be a computation and let ~αi =
〈αi

a〉a∈Ag be the move performed by the agents at the configuration ci for all i.

Definition 3 (consistent computations). The computation π is ($, ~m1)-consistent for a strategy
FA if, for each i ≥ 0, ~0 ≤ ~mi ≤ ~m1, and a ∈ A

i∑

j=1

ρ(~mj , a, qj) · cons(α
j
a, a) ≤ $a.

The semantics of the logic can be defined as usual and we omit it here.

2.5 Model checking

The model checking problem consists in verifying whether a formula ϕ is satisfied in a location q
of a game structure G, with an initial resource availability ~m ∈ M.

The algorithm for model checking our logic is mostly based on the one proposed in [4] and used
in [3] for model checking, respectively, ATL and its resource-bounded extension RB-ATL. Roughly
speaking, it works by computing, for each sub-formula ψ of the formula ϕ to be model checked,
the set of states in which ψ holds. The main difficulties when dealing with bounds on resources
are the following. First, the set of sub-formulae must be replaced by an extended set of formulae
(see [3]), that includes, for each sub-formula of the form 〈〈A$〉〉ψ, all the formulae 〈〈A$

′

〉〉ψ for each
$′ < $. Second, the state does not correspond anymore to the vertices of the game structure, but to
configurations, that is, pairs 〈q, ~m〉 ∈ Q×M. Third, during the analysis of the computations over
the game structure, the algorithm must take into account the resource availability on the market
in order to guarantee that in each instant of the computation all the resources are still available, as
well as to be able to compute the current prices of resources, that depend also on their availability.
Finally, it must be ensured that, even if actions can produce resources, availability of each resource
may not be higher than the initial availability.

Thus, we now state the main result, without showing the proof in this preliminary version. Full
details of both the formalization and the algorithm will appear in a forthcoming paper.

Let M be the greater component appearing in the initial resource availability vector ~m.

Theorem 1. The model checking problem for PRB-ATL is decidable in time O(M r× |ϕ |r+1×|G |).

3 Discussion

A further line of research in which we intend to investigate is when, given a formula in our logic,
the coalitions are unknown, that is they are not specified and we may ask whether, for each nested
sub-formula, there exists a team and a money endowment such that the formula is satisfied. More
precisely, given a formula Ψ where 〈〈X$i

i 〉〉 are the team operators occurring in it, we want to
compute the coalitions Xi such that Ψ is satisfied with minimum expense in terms of both money
and resources. Let us notice that if the minimality condition is not requested, then the problem can
be trivially solved.

Another feature we are investigating is when each agent has a price. In this scenario, in which
agents are themselves resources to be acquired to perform the task, it makes sense to consider the
problem of deciding which team is able to perform the task at the minimum cost.

References

1. Thomas Ågotnes, Wiebe van der Hoek, and Michael Wooldridge. On the logic of coalitional games. In
AAMAS, pages 153–160, 2006.

2. Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib. A logic for coalitions with
bounded resources. In Proc. of the 21st International Joint Conference on Artificial Intelligence, IJCAI
’09, pages 659–664, 2009.

3. Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib. Resource-bounded alternating-
time temporal logic. In Proc. of the 9th International Conference on Autonomous Agents and Multiagent

Systems: Volume 1, AAMAS ’10, pages 481–488, 2010.
4. Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. Alternating-time temporal logic. Journal of

ACM, 49:672–713, September 2002.
5. Nils Bulling and Berndt Farwer. On the (un-)decidability of model checking resource-bounded agents.

In Proc. of the 19th European Conference on Artificial Intelligence, ECAI ’10, pages 567–572, 2010.

6. Valentin Goranko. Coalition games and alternating temporal logics. In Proc. of the 8th Conference on

Theoretical Aspects of Rationality and Knowledge, TARK ’01, pages 259–272, San Francisco, CA, USA,
2001. Morgan Kaufmann Publishers Inc.

7. Marc Pauly. A logical framework for coalitional effectivity in dynamic procedures. Bulletin of Economic

Research, 53(4):305–324, 2001.
8. Marc Pauly. A modal logic for coalitional power in games. Journal of Logic and Computation, 12(1):149–

166, 2002.

