
Università degli Studi di Roma �La Sapienza�Dottorato di Ri
er
a in Informati
aXIII Ci
lo � 2002� XIII-02-2
Transformation of Constraint Logi
 Programs forSoftware Spe
ialization and Veri�
ation

Fabio Fioravanti

Università degli Studi di Roma �La Sapienza�Dottorato di Ri
er
a in Informati
aXIII Ci
lo - 2002� XIII-02-2
Fabio Fioravanti

Transformation of Constraint Logi
 Programs forSoftware Spe
ialization and Veri�
ation
Thesis CommitteeProf. Benedetto Intrigila (Advisor)Prof. Eugenio OmodeoDr. Maurizio Proietti ReviewersProf. Sandro EtalleProf. Mi
hael Leus
hel

Author's address:Fabio FioravantiIstituto di Analisi dei Sistemi ed Informati
a �Antonio Ruberti�Consiglio Nazionale delle Ri
er
heViale Manzoni 30, I-00185 Roma, Italye-mail: fioravanti�iasi.rm.
nr.itwww: http://www.iasi.rm.
nr.it/�fioravan

iAbstra
tIn this thesis we will develop a methodology for transforming
onstraint logi
programs and we will demonstrate its e�e
tiveness by using it for (i) the spe
ial-ization of a program to the
ontext of use and (ii) the veri�
ation of temporalproperties of in�nite state
on
urrent systems.We will introdu
e new transformation rules whi
h allow us to perform pro-gram optimizations whi
h
annot be done by using the transformation rulesalready presented in the literature, and highly parameterized strategies whi
hguide the appli
ation of the transformation rules. We will show the semanti

orre
tness of the transformation rules and the termination of the strategies.

iiA
knowledgementsMany people
ontributed, in di�erent ways, to the writing of this thesis.Firstly, I would like to thank Maurizio Proietti for his invaluable help andguidan
e through many passages along the way to this thesis. His patien
eand generosity allowed me to grow as a resear
her, and his persistent faith inmy abilities helped me to over
ome my doubts. It is not ex
essive to say thatthe present thesis would not have been possible without his support.I want to express my sin
ere gratitude to Alberto Pettorossi for his friendlyadvi
e on many matters over the years. Alberto has always been en
ouragingand he provided me with new resear
h ideas and relevant referen
es.I am very grateful to my reviewers, Sandro Etalle and Mi
hael Leus
hel,for their helpful
omments on a draft of this thesis.I want to thank Mi
hael Leus
hel for his invitation to visit the Departmentof Ele
troni
s and Computer S
ien
e of the University of Southampton. It wasa very stimulating and rewarding experien
e.Thanks also to the
oordinator of the do
toral
ourse, Prof. Rossella Pe-tres
hi, and to a
olleague of mine, Irene Fino

hi, for their help in doingbureau
rati
 stu�.During my do
toral studies I have got the opportunity to meet several per-sons who provided me with useful advi
e. The following is a non-exhaustivelist: Mi
hael Butler, Giorgio Delzanno, Stefan Gruner, Benedetto Intrigila,Paola Inverardi, Enri
o Nardelli, Ulri
h Ultes-Nits
he, Guido Proietti, Gio-vanni Rinaldi, Natarajan Shankar, Enri
o Tron
i, Moshe Vardi and MarisaVenturini Zilli.I a
knowledge �nan
ial support from the following institutions and orga-nizations: IASI-CNR, the University of Rome �La Sapienza�, the University ofSouthampton, the CP2001 Do
toral Programme and the Asso
iation for Logi
Programming.On a personal level, I am indebted to my girlfriend, Lavinia, for her supportand understanding. Her love keeps me up and brings joy in my life.Finally, I want to express my deepest gratitude to my family for
ontinuoussupport over the years.This thesis is dedi
ated to my family and to the memory of my grandpar-ents.

Contents
1 Introdu
tion 11.1 Program Transformation . 11.2 Constraint Logi
 Programming 21.3 Program Spe
ialization . 21.4 Veri�
ation of Con
urrent Systems 41.5 Overview of the Thesis . 62 Contextual Spe
ialization of Constraint Logi
 Programs 92.1 Constraint Logi
 Programming 102.1.1 Syntax of Constraint Logi
 Programs 112.1.2 Semanti
s of Constraint Logi
 Programs 132.2 Rules for Transforming Constraint Logi
 Programs 162.3 Corre
tness of the Transformation Rules 172.4 Well-Quasi Orders and Clause Generalization 182.5 An Automated Strategy for Contextual Spe
ialization 202.5.1 The Unfold-Repla
e Pro
edure 222.5.2 The De�ne-Fold Pro
edure 232.5.3 The Contextual Spe
ialization Strategy 252.6 Corre
tness of the Strategy . 262.7 Termination of the Strategy . 272.8 An Extended Example . 292.9 Experimental Results . 332.10 Related Work . 343 Spe
ialization of General Constraint Logi
 Programs 373.1 Constraint Logi
 Programming with Negation 383.2 Rules for Transforming General Constraint Logi
 Programs . . 393.3 Corre
tness of the Transformation Rules 423.4 An Automated Strategy for Contextual Spe
ialization of Gen-eral Constraint Logi
 Programs 563.5 Corre
tness of the Strategy . 60iii

iv CONTENTS3.6 Termination of the Strategy . 613.7 Related Work . 614 Verifying CTL Properties of In�nite State Systems 634.1 A Preliminary Example . 664.2 The Computational Tree Logi
 694.3 Expressing CTL Properties by Lo
ally Strati�ed CLP 704.4 The Veri�
ation Strategy . 784.4.1 The Generalization Fun
tion 804.4.2 The Veri�
ation Strategy 814.4.3 An Example of Appli
ation of the Veri�
ation Strategy 864.5 Examples of Proto
ol Veri�
ation via Spe
ialization 894.5.1 The Bakery Proto
ol . 904.5.2 The Ti
ket Proto
ol . 914.5.3 The Bounded Bu�er Proto
ol 924.6 Extending the Veri�
ation Method 934.7 Related Work . 955 Systems with an Arbitrary Number of In�nite State Pro
esses 995.1 Introdu
tion . 995.2 System and Property Spe
i�
ation using Weak Monadi
 Se
ondOrder Theories and CLP . 1025.2.1 Constraint Logi
 Programs over WSkS 1035.2.2 System and Property Spe
i�
ation Using CLP(WSkS) . 1045.3 An Example of System and Property Spe
i�
ation: The N -Pro
ess Bakery Proto
ol . 1065.4 A Strategy for Veri�
ation . 1085.5 Veri�
ation of the N -Pro
ess Bakery Proto
ol via Program Trans-formation . 1105.6 Related Work . 113Bibliography 117A The MAP Transformation System 125A.1 The Transformation Engine . 125A.2 The Graphi
al User Interfa
e 128B Ben
hmark Programs 131B.1 The CLP Program Mmod . 131B.2 The CLP Program SumMat
h 131B.3 The CLP Program Cryptosum 133B.4 The CLP Program for the 2-Pro
ess Bakery Proto
ol 135

Chapter 1Introdu
tionIn this thesis we will develop a methodology for transforming
onstraint logi
programs. We will fo
us on the following two appli
ations: (i) the spe
ializa-tion of a program to the
ontext of use and (ii) the veri�
ation of temporalproperties of in�nite state
on
urrent systems.1.1 Program TransformationWe
onsider the program transformation methodology based on rules andstrategies as des
ribed in [13, 60, 80℄. The pro
ess of deriving programs bytransformation
an be formalized as the
onstru
tion of a sequen
e P0; : : : ; Pnof programs where, for k = 0; : : : ; n � 1, program Pk+1 is obtained from pro-gram Pk by applying a semanti
s preserving transformation rule. Thus, if theinitial program P0 is
orre
t w.r.t. a given spe
i�
ation, then also the �nalprogram Pn is
orre
t w.r.t. the same spe
i�
ation.The transformation is e�e
tive if the �nal program is more e�
ient than theinitial program. However, the undis
iplined appli
ation of the transformationrules gives no warranty about performan
e improvements, hen
e transforma-tion rules have to be applied a

ording to suitable transformation strategies.Strategies guide the appli
ation of the transformation rules with the goal ofredu
ing nondeterminism and avoiding redundant
omputations su
h as mul-tiple visits of data stru
tures. By a
hieving these goals, program e�
ien
y isimproved.The advantage of the approa
h based on rules and strategies
onsists in thefa
t that it allows us to separate the issue of deriving a
orre
t program fromthat of deriving an e�
ient program.The program transformation methodol-ogy has been developed in a number of di�erent language paradigms, su
has, fun
tional programming [13℄, logi
 programming [80℄ and
onstraint logi
programming [9, 25, 51℄. 1

2 CHAPTER 1. INTRODUCTION1.2 Constraint Logi
 ProgrammingWe will be
on
erned with the development of automati
 te
hniques for thetransformation of programs written in a
onstraint logi
 language.Constraint Logi
 Programming [38℄ extends the usual logi
 programmingframework [49℄ by allowing
onstraints over a generi
 domain D. It de�nesa
lass CLP(D) of
onstraint logi
 programming (CLP, for short) languageswhi
h is parameterized w.r.t. the
onstraint domain D, that is, the mathemat-i
al stru
ture over whi
h
omputation is performed. The advantage of su
han extension is twofold. From a theoreti
al point of view, the use of CLPgeneralizes several extensions of the logi
 programming paradigm in a uniformframework. From a pra
ti
al point of view, the CLP framework allows us to usee�
ient algorithms spe
i�
ally developed for the
onstraint domain D under
onsideration (e.g., Fourier's variable elimination method for linear inequalitiesover the reals).In the �rst part of this thesis we will apply the transformation of
onstraintlogi
 programs to program spe
ialization. The se
ond part will be devoted tothe veri�
ation of in�nite state
on
urrent systems.1.3 Program Spe
ializationProgram spe
ialization is a powerful methodology for software engineering and,in parti
ular, for program reuse. Program spe
ialization
onsists in a sour
e-to-sour
e program transformation whose goal is to adapt a generi
 programto the spe
i�

ontext where it has to be used. This adaptation pro
ess maybe done via automati
 or semiautomati
 te
hniques. One su
h te
hnique ispartial evaluation [40℄. As illustrated in Figure 1.3.1, program spe
ializationtakes as input a program P and part of its input data and produ
es as outputa residual program Q su
h that running Q on the remaining part of the inputdata produ
es the same result as running P on all its input data.Via program spe
ialization one
an perform many sophisti
ated programoptimizations by taking advantage of the
ontexts where programs are used.In parti
ular, it is possible to avoid run-time
omputations whi
h depend onthe known part of the input. Thus, program spe
ialization is a very e�e
tivete
hnique for program reuse. Indeed, it allows the programmer to write asingle parameterized general program, whi
h is usually easy to understand andto maintain, instead of writing many di�erent programs sharing many similar
omputations, and ea
h tailored to a di�erent use. The task of generatinge�
ient programs from the general one, whi
h is often not so e�
ient, is leftto the program spe
ialization pro
ess.

1.3. PROGRAM SPECIALIZATION 3
specialized

program
Q

dynamic input

initial
program

P

output

dynamic input

static input

program
specialization

Figure 1.3.1: Program Spe
ializationProgram spe
ialization has been proposed and studied for various program-ming languages in
luding imperative programming languages like C [3℄ andFortran [8℄, as well as de
larative programming languages like fun
tional pro-gramming [40℄, logi
 programming [32, 43, 50, 60℄,
onstraint logi
 program-ming [84℄ and fun
tional logi
 programming [2℄ languages. Su

essful appli-
ations of program spe
ialization in
lude ray tra
ing, Fast Fourier Transform,program
ompilation and
ompiler generation.In this thesis we will propose a te
hnique for spe
ializing
onstraint logi
programs,
alled
ontextual spe
ialization. Our te
hniques follows the programtransformation approa
h based on rules and strategies. We will present a setof transformation rules and fully automati
 strategies for the spe
ialization of
onstraint logi
 programs over a generi

onstraint domain D. In parti
ular,we will adapt some of the unfold/fold rules
onsidered in [9, 25, 51℄ and wewill introdu
e new transformation rules whi
h allow us: (i) to perform programoptimizations whi
h
annot be done by using the transformation rules alreadypresented in the literature, and (ii) to spe
ialize
onstraint logi
 programs withlo
ally strati�ed negation (see Se
tion 3.1) w.r.t. the properties of the inputdata. Our automati
 strategies for
ontextual spe
ialization of CLP(D) pro-grams generalize the strategies for the partial evaluation of logi
 programspresented in [35, 64, 72℄ and they use
on
epts borrowed from the �elds of
onstraint programming, partial evaluation, rewrite systems, and abstra
t in-terpretation. In parti
ular, our strategies are parameterized with respe
t to: (i)suitable solvers for simplifying
onstraints [38℄, (ii) well-quasi orders [21, 44℄for ensuring the termination of the unfolding pro
ess and for a
tivating the
lause generalization pro
ess, and (iii) widening operators [17℄ for ensuring thetermination of that generalization pro
ess.

4 CHAPTER 1. INTRODUCTIONWe will show: (1) the
orre
tness of our transformation rules w.r.t. theleast D-model in the
ase of de�nite CLP programs [39℄, (2) the
orre
tnessof our transformation rules w.r.t. the perfe
t model in the
ase of programswith lo
ally strati�ed negation [6, 65℄, and (3) the termination of our programspe
ialization strategies.1.4 Veri�
ation of Con
urrent SystemsWe will also study how to apply the te
hniques for transforming
onstraintlogi
 programs to the automati
 veri�
ation of temporal properties of �nite orin�nite state
on
urrent systems.A
on
urrent system
an be informally de�ned as a set of
omponents,
alled pro
esses, whi
h run in parallel and
ommuni
ate with ea
h other. Ea
hpro
ess exe
utes a sequen
e of statements. At any given instant of time, everypro
ess is in a state des
ribing all its observable properties. Depending on thetype of parallel
omposition of pro
esses, we distinguish between asyn
hronoussystems, in whi
h exa
tly one pro
ess makes a step at ea
h instant of time,and syn
hronous systems, in whi
h all pro
esses make a step at ea
h instantof time. Communi
ation
an be a
hieved by using message passing or sharedvariables. When message passing is used, one pro
ess sends a message whi
his re
eived by another pro
ess. When shared variables are used, one pro
essmodi�es the value of a variable whi
h
an be read by another pro
ess.In order to give a formalization of the notion of
on
urrent system weneed to des
ribe both its stati
 and dynami
 aspe
ts. The stati
 aspe
ts are
aptured through the notion of state, whi
h is a des
ription of the
on
urrentsystem at a given instant of time. The dynami
 aspe
ts are
aptured by usingthe notion of transition whi
h des
ribes how the
on
urrent system evolves intime by spe
ifying its state before and after a
hange o

urs.This motivates the
hoi
e of a formalism based on state transition systemsfor spe
ifying the behaviour of
on
urrent systems. A state transition system
onsists of a set S, whi
h represents the set of states of the system, equippedwith a binary relation R over S, whi
h represents the transitions that thesystem is allowed to make.The goal of automated veri�
ation of
on
urrent systems is the design andthe implementation of logi
al frameworks whi
h allow one: (i) to formallyspe
ify these systems, and (ii) to prove their properties in an automati
 way.These logi
al frameworks require formalisms both for the des
ription of thesystems and the des
ription of their properties.We will be interested in verifying properties of the evolution in time of
on-
urrent systems. In order to express these properties, we will adopt a spe
i�
temporal logi
,
alled Computational Tree Logi
 [14℄. The Computational Tree

1.4. VERIFICATION OF CONCURRENT SYSTEMS 5Logi
 (CTL, for short) does not
onsider a time variable expli
itly, but it ispowerful enough to express interesting properties su
h as safety properties (ofthe form `the system will never rea
h an unwanted state') and liveness prop-erties (of the form `a pro
ess (whi
h rea
hes a suitable state) will eventuallyrea
h a good state').We will present a method whi
h uses the spe
ialization of
onstraint logi
programs for verifying CTL properties of �nite or in�nite state
on
urrent sys-tems. Our veri�
ation method
an be applied to a large
lass of
on
urrentsystems [76℄ and it
onsists of two steps. Given a
on
urrent system S, we
onstru
t a lo
ally strati�ed
onstraint logi
 program P su
h that a CTL for-mula ' is true in a state s of S i� an atom of the form sat(s; ') holds in theperfe
t model semanti
s of P . Then, we
he
k whether or not, for a given states0, sat(s0; ') is in the perfe
t model of P , by spe
ializing P w.r.t. the atomsat(s0; ').The motivation for developing an approa
h based on program transforma-tion of
onstraint logi
 programs to the veri�
ation of properties of in�nitestate systems is twofold. From a theoreti
al point of view,
onstraints pro-vide a very
ompa
t symboli
 representation of in�nite sets of states. From amore pragmati
 point of view, this approa
h allows us to apply our veri�
ationmethod by using existing te
hniques and tools developed for transforming CLPprograms.Our veri�
ation method is in
omplete but this limitation
annot be over-
ome be
ause the problem of verifying properties of in�nite state pro
esses isunde
idable and not semide
idable. However, we will show that a our veri-�
ation method is able to verify several interesting properties of well-known
on
urrent systems. We will show the
orre
tness of our veri�
ation methodand we will also see (i) how it
an be extended to a larger
lass of
on
urrentsystems by restri
ting the properties whi
h
an be veri�ed to a proper subsetof CTL formulas, and (ii) how it
an be applied for exploring in a ba
kwardway the state spa
e of a
on
urrent system.We will also present some results on the veri�
ation of properties of
on
ur-rent systems whi
h arise from the parallel
omposition of an arbitrary numberof in�nite state pro
esses. This
lass is stri
tly larger than the
lass of pa-rameterized systems whi
h arise from the parallel
omposition of an arbitrarynumber of �nite state pro
esses. Proofs of properties for this larger
lasshave been presented, among others, in [56, 63, 77℄. However, in
ontrast to[56, 63, 77℄ in our approa
h the parameter N representing the number of pro-
esses is invisible, no expli
it indu
tion on N is performed, and no abstra
tionof the set of pro
esses is needed.

6 CHAPTER 1. INTRODUCTION1.5 Overview of the ThesisThe thesis is organized as follows.� In Chapter 2 we develop a methodology for spe
ializing de�nite
on-straint logi
 programs, that is, CLP programs without negated atoms intheir bodies. We start by providing a gentle introdu
tion to the syntaxand the semanti
s of
onstraint logi
 programs. We introdu
e a set oftransformation rules and we show their
orre
tness w.r.t. the least D-model semanti
s. We de�ne an automati
, parameterized strategy forspe
ializing de�nite CLP programs and we show its
orre
tness and itstermination. The strategy is illustrated through an extended example ofprogram spe
ialization. The
hapter ends with the presentation of someexperimental results and a
omparison of our methodology with relatedapproa
hes presented in the literature.� In Chapter 3 we extend the methodology presented in Chapter 2 for spe-
ializing general
onstraint logi
 programs with lo
ally strati�ed nega-tion. We extend the syntax of
onstraint logi
 programs and we
onsiderthe perfe
t model semanti
s. We introdu
e new transformation rules andan automati
 strategy whi
h are tailored to general CLP programs. Weshow that the rules and the strategy preserve the perfe
t model semanti
sand that the strategy terminates. At the end of the
hapter we
ompareour work to related work on transformation of general (
onstraint) logi
programs.� In Chapter 4 we de�ne a method for verifying CTL properties of
on-
urrent systems whi
h uses CLP program transformation. We start bypresenting the syntax and the semanti
s of Computational Tree Logi
.We de�ne a
lass of
on
urrent systems and we illustrate our En
odingAlgorithm for
onstru
ting a lo
ally strati�ed
onstraint logi
 programwhose perfe
t model spe
i�es the truth of CTL formulas in a
on
urrentsystem. Then, we show how to
he
k whether or not a
on
urrent systemsatis�es a CTL formula by applying a transformation strategy tailoredto veri�
ation. Our method is illustrated by applying it to the veri�
a-tion of mutual ex
lusion and starvation freedom properties of the bakeryproto
ol [42℄, the ti
ket proto
ol [4℄ and the bounded bu�er proto
ol[12℄. We show how to extend our veri�
ation method to a larger
lass of
on
urrent systems and how it
an be applied for performing ba
kwardsveri�
ation of safety properties. The
hapter ends with a
omparison ofour veri�
ation method with related approa
hes to veri�
ation based on(
onstraint) logi
 programming.

1.5. OVERVIEW OF THE THESIS 7� In Chapter 5 we improve on the method presented in Chapter 4 and weshow how to verify properties of
on
urrent systems with an arbitrarynumber of in�nite state pro
esses. First we introdu
e
onstraint logi
programs where the
onstraint theory is the weak monadi
 se
ond orderlogi
 of k su

essors,
alled CLP(WSkS) programs. Then we show howto use CLP(WSkS) programs to express safety properties of
on
urrentsystems. By transforming CLP(WSkS) programs we prove the mutualex
lusion property for the N -pro
ess bakery proto
ol. We
on
lude the
hapter by
omparing our approa
h with related work on the veri�
ationof
on
urrent systems with an arbitrary number of pro
esses.� In Appendix A we des
ribe some issues related to the design, imple-mentation and use of the MAP transformation system, whi
h has beenused to experimentally evaluate the proposed methodologies. AppendixB
ontains the sour
e
ode for some programs mentioned in this thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2Contextual Spe
ialization ofConstraint Logi
 ProgramsIn this
hapter we address the problem of automating some te
hniques for the
ontextual spe
ialization of
onstraint logi
 programs over a generi

onstraintdomain D [38℄.Contextual spe
ialization is de�ned as follows. Given a CLP(D) programP and a
onstrained atom
;A derive a program Ps and an atom As su
h that,for every valuation � we have that: (Contextual Spe
ialization)if D j= �(
) then �(A) 2 lm(P;D) i� �(As) 2 lm(Ps;D)where lm(P;D) denotes the least D-model of P [39℄.Contextual spe
ialization is more general than the partial evaluation ofCLP(D) programs based on Lloyd and Shepherdson's approa
h [48, 50, 84℄.Indeed, partial evaluation is de�ned as follows. Given a CLP(D) program Pand a
onstrained atom
;A derive a program Ppe and an atom Ape su
h that,for every valuation � we have that: (Partial Evaluation)D j= �(
) and �(A) 2 lm(P;D) i� �(Ape) 2 lm(Ppe;D)Now we present a very simple example whi
h illustrates the di�eren
e between
ontextual spe
ialization of CLP programs and partial evaluation. More sig-ni�
ant examples and experimental results will be dis
ussed in Se
tions 2.8and 2.9. Let us
onsider the following CLP(R) program P over the domain Rof real numbers:p(X) X�0; q(X) (Program P)where q is a predi
ate whi
h does not depend on p. By
ontextual spe
ializationof P w.r.t. the
onstrained atom X�3; p(X) we derive the program Ps:ps(X) q(X) (Program Ps)9

10 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPtogether with the atom ps(X).Instead, by partial evaluation of program P w.r.t. the same
onstrained atomX�3; p(X) we derive the program Ppe:ppe(X) X�3; q(X) (Program Ppe)together with the atom ppe(X).Thus, the partially evaluated program Ppe is less e�
ient than the program Psderived by
ontextual spe
ialization, be
ause Ppe redundantly
he
ks whetheror not the
onstraint X�3 holds.We perform program spe
ialization by applying a program transformationmethod based on the rules + strategies approa
h [13, 60, 80℄.The pro
ess of spe
ializing a given program P whereby deriving programPs,
an be formalized as the
onstru
tion of a sequen
e P0; : : : ; Pn of pro-grams,
alled a transformation sequen
e, where P0 = P; Pn = Ps and, fork = 0; : : : ; n�1, program Pk+1 is obtained from program Pk by applying oneof the following transformation rules:
onstrained atomi
 de�nition, unfolding,
onstrained atomi
 folding,
lause removal, and
ontextual
onstraint repla
e-ment. We will also apply the
onstraint repla
ement rule (see rule R5r) whi
h isan instan
e of the
ontextual
onstraint repla
ement rule (see rule R5). Theserules are illustrated below in Se
tion 2.2.The transformation sequen
e is automati
ally generated by applying (aninstan
e of) a highly parameterized strategy whi
h generalizes the strategiespresented in [35, 64, 72℄ for the partial evaluation of de�nite logi
 programs.In Se
tion 2.4 we address various issues
on
erning the full automation ofour strategies, whi
h are des
ribed in Se
tion 2.5. In parti
ular, we
onsiderthe problems of: (i) when and how to unfold, (ii) when and how to generalize,and (iii) when and how to apply the
ontextual
onstraint repla
ement rule.Our automati
 strategy for
ontextual spe
ialization of CLP(D) programs isbased on
on
epts borrowed from the �elds of
onstraint programming, par-tial evaluation, and abstra
t interpretation [17℄. In parti
ular, we
onsider:(i) suitable solvers for simplifying
onstraints [38℄, (ii) well-quasi orders forensuring the termination of the unfolding pro
ess and for a
tivating the
lausegeneralization pro
ess [44, 46, 79℄, and (iii) widening operators [17℄ for ensuringthe termination of that generalization pro
ess.We now introdu
e some preliminaries on the syntax and the semanti
s of
onstraint logi
 programs.2.1 Constraint Logi
 ProgrammingThe
lass CLP(D) of
onstraint logi
 programming languages is a general-ization of the logi
 programming paradigm, and of several of its extensions,

2.1. CONSTRAINT LOGIC PROGRAMMING 11whi
h
ombines the de
larativeness of logi
 programming with the e�
ien
yof domain spe
i�
 algorithms.Let us begin by presenting some preliminary notions on
onstraint logi
programming and notational
onventions whi
h will hopefully be used
onsis-tently in the rest of this thesis. For notions not de�ned here the reader mayrefer to [5, 38, 49℄. An elementary presentation of �rst order logi
 is given in[57℄.2.1.1 Syntax of Constraint Logi
 ProgramsWe
onsider a �rst order language L whi
h is generated by an alphabet
on-sisting of:� an in�nite set Vars of variables,� a set � of fun
tion symbols,� a set �
 of
onstraint predi
ate symbols,� an in�nite set �u of user de�ned predi
ate symbols,where Vars,�, �
 and �u are pairwise disjoint sets.Every fun
tion and predi
ate symbol has an asso
iated arity, a naturalnumber indi
ating how many arguments it takes. A symbol with asso
iatedarity 0 is
alled a nullary symbol. A nullary fun
tion symbol is
alled a
on-stant. A nullary predi
ate symbol is
alled a proposition. A symbol withasso
iated arity n is said to be n-ary.Variables are denoted by upper
ase Latin letters X;Y; : : :, possibly withsubs
ripts. When no
onfusion arises, we will feel free to use upper
ase Latinletters X;Y; : : : to denote sets or sequen
es of variables.A term of L is either a variable or an expression of the form f(t1; : : : ; tn),where f is a fun
tion symbol in � and t1; : : : ; tn are terms. Terms are denotedby lower
ase Latin letters t; u; : : :. An atomi
 formula is an expression of theform p(t1; : : : ; tn) where p is a symbol in �
 [�u and and t1; : : : ; tn are terms.A formula of L is either an atomi
 formula or a formula
onstru
ted, as usual,from formulas by means of
onne
tives (:, ^, _,!, ,$) and quanti�ers (9,8). Given a term or a formula e, the set of variables o

urring in e is denotedby vars(e). Similar notation will be used for denoting the set of variableso

urring in a set of terms or formulas. Given a formula ', the set of thefree variables in ' is denoted by FV ('). A term or a formula is ground i� it
ontains no variable. Given a set X = fX1; : : : ;Xng of n variables, by 8X 'we denote the formula 8X1 : : : Xn '. By 8(') we denote the universal
losure

12 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPof ', that is, the formula 8X ', where FV (') = X. Analogously, by 9(')we denote the existential
losure of '. By '(X1; : : : ;Xn) we denote a formulawhose free variables are among X1; : : : ;Xn.Similarly, we will write the formula p(t1; : : : ; tm) also as p(t), where t de-notes the sequen
e t1; : : : ; tm of terms.We assume that the set �
 of
onstraint predi
ate symbols
ontains theequality symbol `='. Elements of �
 are denoted by lower
ase Latin letters
; d; e; : : :. A primitive
onstraint is an atomi
 formula of the form
(t1; : : : ; tm)where
 is a predi
ate symbol in �
 and t1; : : : ; tm are terms. The set C of
onstraints is the smallest set of formulas of L whi
h
ontains all primitive
onstraints and it is
losed w.r.t.
onjun
tion and existential quanti�
ation. Abasi

onstraint is either a primitive
onstraint or an existentially quanti�ed
onstraint. A
onstraint is denoted by
(t1; : : : ; tm), or
(X1; : : : ;Xm) or
(X).When we do not want to spe
ify the variables o

urring in a
onstraint we writeit as
.User de�ned predi
ate symbols are denoted by lower
ase Latin lettersp; q; : : :. An atom is an atomi
 formula of the form p(t1; : : : ; tm) where p isa predi
ate symbol in �u and t1; : : : ; tm are terms. Atoms are denoted byupper
ase Latin letters H;A;B; : : :, possibly with subs
ripts. A goal is a(possibly empty)
onjun
tion of atoms. Goals are denoted by G, possibly withsubs
ripts.Given two atoms p(t1; : : : ; tn) and p(u1; : : : ; un), we denote by p(t1; : : : ; tn)= p(u1; : : : ; un) the
onjun
tion of the
onstraints: t1 = u1; : : : ; tn = un. Wesay that a term t is free for a variable X in a formula ' i� by substituting t forall free o

urren
es of X in ', we do not introdu
e new o

urren
es of boundvariables. A formula is an instan
e of a formula ' i� is obtained from 'by applying a substitution fX1=t1; : : : ;Xn=tng su
h that, for i = 1; : : : ; n, theterm ti is free for Xi in '.A
onstrained atom is the
onjun
tion of a
onstraint and an atom. A
onstrained goal is the
onjun
tion of a
onstraint and a goal, and it is denotedby K, possibly with subs
ripts. The empty
onjun
tion of
onstraints or atomsis identi�ed with true.A de�nite
lause, or
lause,
 is a formula of the form H
;G, where:(i) H is an atom,
alled the head of
 and denoted hd(
), and (ii)
;G is a
onstrained goal,
alled the body of
 and denoted bd(
). Clauses of the formH
, where
 is a
onstraint, are
alled
onstrained fa
ts. Clauses of theform H true are
alled fa
ts, and they are also written as H . A
lauseis
onstraint-free i� no
onstraints o

ur in its body. Clauses are denoted bylower
ase Greek letters
; Æ; : : :A de�nite
onstraint logi
 program, or
onstraint logi
 program, or program,is a �nite set of
lauses. Programs are denoted by the letters P;Q; : : :, possibly

2.1. CONSTRAINT LOGIC PROGRAMMING 13with subs
ripts.Given a user de�ned predi
ate symbol p and a program P , the de�nitionof p in P , denoted Def (p; P), is the set of
lauses
 in P su
h that p is thepredi
ate symbol of hd(
). We say that the atom p(t1; : : : ; tn) is failed in aprogram P i� Def (p; P) = ;. We say that the atom p(t1; : : : ; tn) is valid in aprogram P i� the fa
t p(X1; : : : ;Xn) belongs to P .The set of useless predi
ates of a program P is the maximal set U of pred-i
ate symbols o

urring in P su
h that the predi
ate p is in U i� every
lause
 in Def (p; P) is of the form H
;G1; q(: : :); G2 for some q is in U . Forinstan
e, in the following program:p q; rq pr p and q are useless predi
ates, while r is not useless. A
lause
 is useless i�the predi
ate of hd(
) is useless.A variable renaming is a bije
tive mapping from Vars to Vars. The appli-
ation of a variable renaming � to a synta
ti
 expression ' returns the synta
ti
expression �('),
alled a variant of ', obtained by repla
ing ea
h variable Xin ' by the variable �(X). A
lause
 is said to be renamed apart i� all its(bound or free) variables do not o

ur elsewhere.Given the
lause
 of the form: H K1;K2, where K1 and K2 are
on-strained goals, the set of the linking variables of K1 in
 is the set FV (K1) \FV (H;K2). Similarly, we de�ne the set of the linking variables of a
onstraintor a
onstraint atom in a
lause.We will feel free to apply to
lauses the following transformations whi
h,as the reader may verify, preserve program semanti
s (see Se
tions 2.1.2 and3.1):(1) appli
ation of variable renaming,(2) reordering of the
onstraints and the literals in the body (we will usuallymove all
onstraints to the left and all literals to the right), and(3) repla
ement of a
lause of the form H X= t;
; G, where X 62 vars(t),by the
lause (H
;G)fX=tg, and vi
e versa.2.1.2 Semanti
s of Constraint Logi
 ProgramsThe semanti
s of
onstraint logi
 programs is based on the notion of
onstraintdomain.For the given set � of fun
tion symbols and set �
 of predi
ate symbols, a
onstraint domain D,
onsists of two elements:� a non-empty set D, whi
h is
alled
arrier, and

14 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLP� a pre-interpretation whi
h assigns (i) a relation over Dn (that is, a subsetofDn) to ea
h n-ary
onstraint predi
ate symbol in�
, and (ii) a fun
tionfD from Dn to D to ea
h n-ary fun
tion symbol f in �.In parti
ular, the pre-interpretation assigns the whole
arrier D to true, theempty set to false, and the identity over D to the binary equality symbol '='.We assume that D is a set of ground terms. This is not restri
tive be
ausewe may enlarge the language L by making every element of D to be an elementof the set Fun
t of fun
tion symbols.Sometimes, for reasons of simpli
ity, we will identify the
onstraint domainD with its
arrier D.Given a formula ' where all predi
ate symbols belong to �
, we
onsiderthe satisfa
tion relation D j= ' whi
h is de�ned as usually done in the �rstorder predi
ate
al
ulus.A valuation is a fun
tion �: Vars ! D. We extend the domain of �to terms,
onstraints and atoms. Given a term t, we indu
tively de�ne theterm �(t) as follows: (i) if t is a variable X then �(t) = �(X), and (ii) if t isf(t1; : : : ; tn) then �(t) = fD(�(t1); : : : ; �(tn)). Given a
onstraint
, �(
) is the
onstraint obtained by repla
ing ea
h free variable X 2 FV (
) by the groundterm �(X). Noti
e that �(
) is a
losed formula. Given an atom A of the formp(t1; : : : ; tn), then �(A) is the ground atom p(�(t1); : : : ; �(tn)).A formula F� is a ground instan
e of a formula F if there exists a valuation� su
h that F� = �(F) and FV (F�) = ;.We de�ne ground (P) as the following set of ground
lauses:ground (P) = f�(H) �(A1); : : : ; �(Am) j � is a valuation,(H
;A1; : : : ; Am) 2 P , and D j= �(
)gGiven a
onstraint domain D, a D-interpretation I assigns a relation over Dnto ea
h n-ary user de�ned predi
ate symbol in �u, that is, I is a subset of theset BD de�ned as follows:BD = {p(d1; : : : ; dn) | p is a predi
ate symbol in �u and (d1; : : : ; dn) 2 Dn}Given a D-interpretation I and a
onstraint-free, ground
lause
: H A1; : : : ; Am, we say that
 is true in I, written I j=
 i� one of the followingholds: (i) H 2 I, or (ii) there exists i 2 f1; : : : ;mg su
h that Ai 62 I.AD-interpretationM is aD-model of a (�nite or in�nite) set S of
onstraint-free, ground
lauses i� for ea
h
lause
 in S, we have that M j=
. M is aD-model of a CLP program P i� M is a D-model of ground (P).If we
onsider the following partial order � between D-models, we have thefollowing result (see, for instan
e, Corollary 4.1 of [39℄).Theorem 1. Every CLP(D) program has a least D-model.

2.1. CONSTRAINT LOGIC PROGRAMMING 15This is a generalization of an analogous result whi
h holds for the leastHerbrand model of logi
 programs. The least D-model of a CLP(D) programP is denoted by lm(P;D).Let P be a CLP(D) program and I � BD. The immediate
onsequen
eoperator TP is de�ned as follows.TP (I) = fp(d) 2 BD j for some ground instan
e p(d)
;A1; : : : ; Anof a
lause in P we haveD j=
 and Ai 2 I for all i = 1; : : : ngTP is monotoni
 and
ontinuous w.r.t. set in
lusion, and thus there exists theleast �xpoint of TP , denoted lfp(TP). We have the following �xpoint
har-a
terization of the least D-model of a CLP(D) program P (see, for instan
e,[39℄).Theorem 2. Let P be a CLP(D) program. Then, lm(P;D) = lfp(TP) =TP "!.In this thesis we do not spe
ify any parti
ular method for solving
onstraintsin C. We only assume that there exists a
omputable total fun
tion solve:C � P�n(Vars) ! C, where P�n(Vars) is the set of all �nite subsets of Vars .The fun
tion solve is assumed to be sound w.r.t.
onstraint equivalen
e, that is,for every
onstraint
1 and every �nite set X of variables, if solve(
1;X) =
2then D j= 8X((9Y
1)$
2) where Y = FV (
1)�X and FV (
2) � FV (9Y
1).In words, solve(
1;X) is a
onstraint
2 whi
h is equivalent to the existentialquanti�
ation of
1 w.r.t. all variables not in X.We also require that solve is
omplete w.r.t. satis�ability in the sense that,for any
onstraint
 su
h that Y =FV (
):(i) solve(
; ;) = true if
 is satis�able, that is, D j= 9Y
, and(ii) solve(
; ;) = false if
 is unsatis�able, that is, D 6j= 9Y
.In (i) and (ii) `if'
an be repla
ed by `i�' be
ause solve is sound w.r.t.
onstraintequivalen
e. The soundness and the totality of the solve fun
tion are ne
essaryto guarantee the
orre
tness and the termination, respe
tively, of the programtransformation strategies presented in this thesis, (see, for example, Se
tions2.5 and 3.4). The assumption that the solve fun
tion is
omplete w.r.t. sat-is�ability guarantees that
onstraint satis�ability tests, whi
h are required byour te
hnique, are de
idable and they
an indeed be performed by applyingthe solve fun
tion.Finally, we assume that, for any
onstraints
1 and
2, D j= 8(
1 !
2) isde
idable.

16 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLP2.2 Rules for Transforming Constraint Logi
 Pro-gramsIn this se
tion we des
ribe the transformation rules whi
h we use for spe
ial-izing CLP(D) programs. Some of the following rules are slight modi�
ationsof the unfold/fold rules
onsidered in [9, 25, 51℄ and they are designed forperforming
ontextual spe
ialization.R1. Constrained Atomi
 De�nition. By
onstrained atomi
 de�nition (orde�nition, for short), we introdu
e the new
lauseÆ : newp(X)
;Awhi
h is said to be a de�nition, where: (i) newp is a predi
ate symbol noto

urring in P0; : : : ; Pk, (ii) X is a sequen
e of distin
t variables o

urring inthe
onstrained atom
;A, and (iii) the predi
ate symbol of A o

urs in P0.From program Pk we derive the new program Pk+1 whi
h is Pk [fÆg.For i � 0, Defsi is the set of de�nitions introdu
ed during the transformationsequen
e P0; : : : ; Pi. In parti
ular, Defs0 = ;.R2. Unfolding. Let
 : H
;GL; A;GR be a renamed apart
lause of Pkand let fAj
j ; Gj j j = 1; : : : ;mg be the set of all
lauses in Pk su
h thatthe atoms A and Aj have the same predi
ate symbol. For j = 1; : : : ;m; let us
onsider the
lause
j : H
; A=Aj;
j ; GL; Gj ; GRwhere A=Aj stands for the
onjun
tion of the equalities between the
orre-sponding arguments. Then, by unfolding
lause
 w.r.t. atom A, from programPk we derive the new program Pk+1 whi
h is (Pk � f
g) [f
j j j = 1; : : : ;mg.R3. Constrained Atomi
 Folding. Let
 : A
;GL; B;GR be a
lauseof Pk. Let Æ : newp(X) d;B be a variant of a
lause in Defsk. Suppose that:(i) D j= 8Y (
 ! d), where Y = FV (
; d), and (ii) no variable in FV (Æ)�Xo

urs in FV (A;
;GL; GR). By folding
lause
 w.r.t. atom B using Æ, wederive the new
lause
f : A
;GL;newp(X); GRand from program Pk we derive the new program Pk+1 whi
h is (Pk � f
g) [f
fg.In this rule R3
ondition (i) may be repla
ed by the following weaker, butmore
omplex
ondition: (i*) D j= 8Y (
 ! 9Z d), where Z = FV (d) � (X [vars(B)) and Y = FV (
; d) � Z. However, by a suitable appli
ation of the
onstraint repla
ement rule R5r below, from
lause Æ we
an derive a
lause �of the form: newp(X) (9Z d); B su
h that
ondition (i*) holds for
 and Æi�
ondition (i) holds for
 and �.

2.3. CORRECTNESS OF THE TRANSFORMATION RULES 17R4f. Clause Removal: Unsatis�able Body. Let
 : A
;G be a
lauseof Pk. If the
onstraint
 is unsatis�able, that is, solve(
; ;) = false, then fromprogram Pk we derive the new program Pk+1 whi
h is Pk � f
g.R4s. Clause Removal: Subsumed Clause. Let
 : p(X)
;G with(
;G) 6= true, be a
lause of Pk. If Pk
ontains a fa
t � of the form p(Y) then from program Pk we derive the new program Pk+1 whi
h is Pk � f
g.R4u. Clause Removal: Useless Clauses. Let � be the set of useless
lauses in Pk. Then, by removing useless
lauses from program Pk we derivethe new program Pk+1 whi
h is Pk � �.R5. Contextual Constraint Repla
ement. Let C be a set of
onstrainedatoms. Let
 be a renamed apart
lause in Pk of the form: p(U)
1; G.Suppose that for some
onstraint
2, we have that for every
onstrained atom
; p(V) in C, D j= 8X ((
; U =V) ! (9Y
1 $ 9Z
2))where: (i) Y = FV (
1)�vars(U;G), (ii) Z = FV (
2)�vars(U;G), and (iii)X = FV (
; U = V;
1;
2)� (Y [Z). Then, we derive program Pk+1 fromprogram Pk by repla
ing
lause
 by the
lause: p(U)
2; G. In this
ase wesay that Pk+1 has been derived from Pk by
ontextual
onstraint repla
ementw.r.t. C.The following rule is an instan
e of rule R5 for C = ftrue ; p(U)g.R5r. Constraint Repla
ement. Let
 : A
1; G be a renamed apart
lause of Pk. Assume that D j= 8X(9Y
1 $ 9Z
2) where: (i) Y = FV (
1)�vars(A;G), (ii) Z = FV (
2)�vars(A;G), and (iii) X = FV (
1;
2)�(Y [Z).Then from program Pk we derive the new program Pk+1 whi
h is (Pk�f
g)[fA
2; Gg.In the
ontextual spe
ialization strategy of Se
tion 2.5, we will make use ofthe above rule R5r for repla
ing a
lause
 of the form A
1; G by the
lauseA solve(
1;X); G, where X is the set of the linking variables of
1 in
.2.3 Corre
tness of the Transformation RulesIn this se
tion we enun
iate the
orre
tness w.r.t. the least D-model of thetransformation rules for de�nite
onstraint logi
 programs presented in Se
tion2.2.Theorem 2.3.1. [Corre
tness of the Transformation Rules℄ Let P0; : : : ; Pnbe a transformation sequen
e. Let us assume that during the
onstru
tion ofP0; : : : ; Pn

18 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLP(i) ea
h
lause introdu
ed by the
onstrained atomi
 de�nition rule and usedfor
onstrained atomi
 folding, is unfolded w.r.t. the atom in its body, and(ii) the
ontextual
onstraint repla
ement rule R5 is only applied in its restri
tedform R5r.Then,lm(P0 [Defsn;D) = lm(Pn;D)where Defsn denotes the set of de�nitions introdu
ed during the
onstru
tionof P0; : : : ; Pn.Proof. It follows from the
orre
tness of the transformation rules for general
onstraint logi
 programs (see Theorem 3.3.10 in Se
tion 3.3).In order to enun
iate the theorem on the
orre
tness of the
ontextual
on-straint repla
ement rule R5 w.r.t. the least D-model we introdu
e the followingnotion of
all patterns of a
lause or set of
lauses.De�nition 2.3.2. [Call Patterns℄ Given a
lause
 of the form p(X) d;A1; : : : ; Ak, with k > 0, the set of
all patterns of
, whi
h is denoted byCP(
), is the set of triples hsolve(d; Y); A; Y i su
h that: (i) A is Aj for somej = 1; : : : ; k, and (ii) Y denotes the linking variables of Aj in
. The triplehsolve(d; Y); A; Y i is said to be the
all pattern of
 for A.The set of
all patterns of a set � of
lauses, denoted by CP(�), is the unionof the sets of
all patterns of the
lauses in �, that is, CP(�) = S
2�CP(
).Call patterns will be used in our
ontextual spe
ialization strategy below(see Se
tion 2.5) for introdu
ing new de�nitions and for applying the
ontextual
onstraint repla
ement rule R5.Theorem 2.3.3. [Corre
tness of the Contextual Constraint Repla
ement Rule℄Let P0; : : : ; Pn be a transformation sequen
e su
h that, for all i = 0; : : : ; n �1, program Pi+1 is derived from Pi by applying the
ontextual
onstraint re-pla
ement rule R5 w.r.t. a given set C of
onstrained atoms su
h that C �f(
;A) j h
;A;Xi 2 CP(P0)g.Then, for all
onstrained atoms
;A 2 C and for every valuation � we havethat:if D j= �(
) then �(A) 2 lm(P0;D) i� �(A) 2 lm(Pn;D)Proof. It follows from the
orre
tness of the
ontextual
onstraint repla
ementrule for general
onstraint logi
 programs (see Theorem 3.3.14 in Se
tion 3.3).2.4 Well-Quasi Orders and Clause GeneralizationIn this se
tion we introdu
e the notions of: (i) well-quasi orders over
on-strained goals, and (ii)
lause generalization, whi
h will be useful for ensuring

2.4. WELL-QUASI ORDERS AND CLAUSE GENERALIZATION 19the termination of our program spe
ialization strategy of Se
tion 2.5. Thesenotions are extensions to the
ase of CLP(D) programs of similar notions
on-sidered in the
ase of partial evaluation of fun
tional and logi
 programs (see,for instan
e, [44, 46, 79℄).Let N denote the set of natural numbers.De�nition 2.4.1. [Well-quasi order ℄ A well-quasi order (wqo, for short) overthe set of
onstrained goals is a re�exive, transitive, binary relation � su
hthat for every in�nite sequen
e fKi j i 2 Ng of
onstrained goals there existtwo natural numbers i and j su
h that i < j and Ki � Kj [21℄. Given two
onstrained goals K1 and K2, if K1 � K2 we say that K1 is embedded in K2.Various examples of wqo's that are used for ensuring the termination of the un-folding pro
ess during the partial evaluation of logi
 and fun
tional programs,
an be found in [44, 79℄. For our spe
ialization example of Se
tion 2.8 we willuse the simple wqo �L de�ned as follows.Example 2.4.2. Given two
onstrained goalsK1 and K2, we have that K1 �LK2 i� the leftmost atom (in the textual order) in K1 and the leftmost atom(in the textual order) in K2 have the same predi
ate symbol.De�nition 2.4.3. [Constraint Latti
e and Widening ℄ Given the set C of
on-straints over D, we
onsider the partial order hC;vi su
h that for any two
onstraints
1 and
2 in C,
1 v
2 i� D j= 8X(
1 !
2) where X = FV (
1;
2).We assume that hC;vi is a latti
e, where: (i) the least element is false, (ii) thegreatest element is true, (iii) the least upper bound of two
onstraints
1 and
2 is denoted by
1 t
2, and (iv) the greatest lower bound of two
onstraints
1 and
2 is their
onjun
tion
1;
2.A widening operator (see also [17℄) is a binary operator r between
on-straints su
h that:(W1) (
1 t
2) v (
1r
2), and(W2) for every in�nite sequen
e f
i j i 2Ng of
onstraints, the in�nite sequen
efdi j i 2 Ng of
onstraints where d0 =
0 and, for any i 2 N, di+1 = dir
i+1,stabilizes, that is, 9h2N 8k� h D j= 8X(dh $ dk) where X = FV (dh; dk).Noti
e that, in general, r is not
ommutative.We now introdu
e the notion of
lause generalization, whi
h is based uponthe widening operator r. It will be used in our strategy for
ontextual spe-
ialization to be presented in Se
tion 2.5, for deriving from two given atomi
de�nitions a new, generalized atomi
 de�nition.De�nition 2.4.4. [Clause Generalization℄ Given a
lause � of the formnew1(U)
1; q(X), and a
lause � of the form new2(V)
2; q(X), whereea
h variable in (U;FV (
1); V; FV (
2)) is in X, we de�ne the generalization of

20 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLP� w.r.t. �, denoted by gen(�; �), to be the
lause: genp(W)
1r
2; q(X),where genp is a new predi
ate symbol and W is the sequen
e of the distin
tvariables o

urring in (U; V).Example 2.4.5. [Rlin: Linear equations and inequations over the reals℄ Letus
onsider the
onstraint domain Rlin of
onjun
tions of linear equations (=)and inequations (<;�) over real numbers. In this domain we may repla
eany existentially quanti�ed
onstraint by an equivalent
onstraint without o
-
urren
es of 9. Thus, without loss of generality, we may assume that every
onstraint is a
onjun
tion of primitive
onstraints of the form t1 op t2, whereop 2 f=; <;�g. However, in the examples below we may o

asionally writet1� t2 as t2� t1, and t1<t2 as t2>t1.Rlin is a latti
e whose least upper bound operation is de�ned by the
onvexhull
onstru
tion. Let us now introdu
e a widening operator for Rlin whi
h wewill use in our program spe
ialization example of Se
tion 2.8.Given a
onstraint
, let ineq(
) be the
onstraint obtained by repla
ingevery equation t1= t2 in
 by the
onjun
tion of the two inequations t1� t2; t2�t1. Assume that ineq(
) is the
onjun
tion of primitive
onstraints
1; : : : ;
n.For any
onstraint d, we de�ne the widening
rd to be the
onjun
tion of all
i's, with 0 � i � n, su
h that d v
i.This widening operator satis�es Condition W1 be
ause, by
onstru
tion,
 v
rd and d v
rd, that is,
rd is an upper bound of
; d. Thus, we havethat: (
 t d) v (
rd). Also Condition W2 holds for r, be
ause for every
onstraint
 and d the number of primitive
onstraints in ineq(
) is not smallerthan the number of primitive
onstraints in ineq(
rd).Here is an example of
lause generalization. Given the following two
lauses:�. mmod s(I; J;M) I=0; J�0; mmod (I; J;M)�. newp(I; J;M) I=1; J >0; mmod (I; J;M)gen(�; �) is genp(I; J;M) I � 0; J � 0; mmod (I; J;M), be
ause we havethat: (i) ineq(I=0; J � 0) = (I� 0; I� 0; J � 0) and (ii) (ineq(I=0; J � 0))r (I=1; J >0) = (I�0; J�0) be
ause it is not the
ase that (I=1; J >0) v(I�0).2.5 An Automated Strategy for Contextual Spe
ial-izationWe now des
ribe the
ontextual spe
ialization strategy for deriving e�
ientCLP(D) programs by spe
ialization. This strategy is a generalization of thestrategies for the partial evaluation of de�nite logi
 programs presented in[35, 64, 72℄.Our strategy is parameterized by: (i) the fun
tion solve whi
h is used forthe appli
ation of the
onstraint repla
ement rule, (ii) an unfolding fun
tion

2.5. AN AUTOMATED STRATEGY FOR SPECIALIZATION 21Unfold for guiding the unfolding pro
ess, (iii) a well-quasi order �u over
on-strained goals whi
h tells us when to terminate the unfolding pro
ess, (iv) a
lause generalization fun
tion gen, with its asso
iated widening operator r,and (v) a well-quasi order �g over
onstrained atoms whi
h tells us when toa
tivate the
lause generalization pro
ess. On
e the
hoi
e of these parametershas been made, our strategy
an be applied in a fully automati
 way.The
ontextual spe
ialization strategy is divided into three phases.Phase A. Phase A
onsists of the iteration of two pro
edures,
alled Unfold-Repla
e and De�ne-Fold, respe
tively. During the Unfold-Repla
e pro
edurewe unfold the program to be spe
ialized so to expose some initial portions ofits
omputation, and we simplify the derived
lauses by repla
ing ine�
ient
onstraints by some more e�
ient ones using the given fun
tion solve. Thetermination of this pro
edure is ensured by the use of the well-quasi order �u.We then apply the De�ne-Fold pro
edure and we fold the simpli�ed
lauses byusing already available de�nitions and, possibly, some new de�nitions. PhaseA is terminated when no new de�nitions need to be introdu
ed for performingthe folding steps. The termination of Phase A is ensured by the properties ofthe generalization fun
tion and well-quasi order �g whi
h guarantee that theset of generated de�nitions is �nite.Phase B. During Phase B, we apply the
ontextual
onstraint repla
ement ruleand from ea
h
lause de�ning a predi
ate, say p, we remove the
onstraintswhi
h are known to hold when the
lause is used. This information
an beobtained by
omputing the least upper bound of the set of
onstraints whi
ho

ur in the
lauses
ontaining a
all of p.Phase C. The goal of Phase C is to simplify the
urrent program as follows:(i) by unfolding a
lause w.r.t. valid and failed atoms, we remove atoms fromits body or we remove the
lause itself, (ii) we remove useless and subsumed
lauses, and (iii) by applying the
onstraint repla
ement rule, we repla
e a
onstrained fa
t of the form H
 by the fa
t H thereby inferring thevalidity of some atoms in the program.For the formal des
ription of our
ontextual spe
ialization strategy we needto introdu
e the following data stru
tures. We introdu
e a tree Defstree,
alledde�nition tree, whose nodes are the
lauses introdu
ed by the de�nition ruleduring program spe
ialization. Moreover, for ea
h
lause Æ in Defstree weintrodu
e a tree Utree(Æ),
alled unfolding tree. The root of Utree(Æ) is Æitself, and the nodes of Utree(Æ) are the
lauses derived from Æ by applyingthe unfolding and
onstraint repla
ement rules. The usual relation of an
estorbetween nodes in a tree gives us the relation of an
estor between
lauses inDefstree and also between
lauses in Utree(Æ).

22 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLP2.5.1 The Unfold-Repla
e Pro
edureLet us �rst introdu
e some notions whi
h will be useful in the de�nition of theUnfold-Repla
e pro
edure. Let P be a CLP program and � be a set of
lauses.(a) A
lause of the form H
;A1; : : : ; An has a non-failing body i�
 issatis�able, and for i = 1; : : : ; n, Ai is not failed;(b) an unfolding fun
tion is a partial fun
tion Unfold , whi
h takes a
lause �and an unfolding tree T of whi
h � is a leaf, and returns the set Unfold(�; T)of
lauses obtained by unfolding the
lause � in P w.r.t. an atom A in its body.We assume that the unfolding fun
tion Unfold is asso
iated with the wqo �u.Unfold (�; T) is de�ned i� (i) � is a leaf of T , (ii) the body of � is non-failingand it
ontains at least one atom, and (iii) there exists no an
estor � of � in Tsu
h that bd(�) �u bd(�). Noti
e that if T
onsists of the root
lause � only,and � has non-failing body, then Unfold(�; T) is de�ned;(
) Repla
e(�) denotes the set of
lauses �0 obtained by applying the
onstraintrepla
ement rule to ea
h
lause
 in � as follows:If
 is of the form H
;G then the
lause H solve(
;X); G is in �0, whereX is the set of the linking variables of
 in
.The Unfold-Repla
e pro
edure whi
h we now des
ribe, takes as input a setNewDefs of de�nition
lauses and, by using the Unfold and Repla
e fun
tionsde�ned above,
onstru
ts a forest UForest of unfolding trees, one for ea
hde�nition in NewDefs. The Unfold-Repla
e pro
edure is parametri
 w.r.t. the
hoi
e of the unfolding fun
tion Unfold and its asso
iated well-quasi order �uon
onstrained goals.The Pro
edure Unfold-Repla
e(NewDefs ;UForest).Input : a set NewDefs of de�nition
lauses.Output : a forest UForest of unfolding trees.for ea
h
lause Æ 2 NewDefs doLet Utree(Æ) be the root
lause Æ;while Unfold(�;Utree(Æ)) is de�ned for some leaf
lause � of Utree(Æ) do�1 := Unfold(�;Utree(Æ));�2 := Repla
e(�1);Expand Utree(Æ) by making every
lause in �2 a son of �end-whileend-forUForest := fUtree(Æ) j Æ 2 NewDefsg tuNoti
e that, by the properties of the unfolding fun
tion Unfold, for ea
h
lause Æin NewDefs with non-failing body, the tree Utree(Æ) is
onstru
ted by applyingthe unfolding rule at least on
e.

2.5. AN AUTOMATED STRATEGY FOR SPECIALIZATION 232.5.2 The De�ne-Fold Pro
edureThe De�ne-Fold pro
edure takes as input a forest UForest of unfolding trees,
onstru
ted by the Unfold-Repla
e pro
edure, and a de�nition tree Defstreeand it produ
es as output: (i) a possibly empty set NewDefs of new de�nition
lauses, and (ii) a set FoldedCls of
lauses derived from the leaves of UForestwhi
h have non-failing bodies, by a (possibly empty) sequen
e of appli
ationsof the
onstrained atomi
 folding rule. The de�nition
lauses in NewDefs, to-gether with those in Defstree , make it possible to fold ea
h leaf of UForest withnon-failing body w.r.t. ea
h atom o

urring in that same leaf. The de�nition
lauses in NewDefs are added to the tree Defstree as new leaves.We now introdu
e the notion of folding equivalen
e between de�nition
lauses. This notion is used to avoid the introdu
tion of unne
essary newde�nition
lauses.De�nition 2.5.1. Given two
lauses, Æ1 of the form H1
1; A1 and Æ2 ofthe form H2
2; A2, we say that Æ1 and Æ2 are folding equivalent i� thereexists a variable renaming � su
h that (i) A1� = A2, (ii) D j= 8X(
1� $
2)where X = FV (
1�;
2), and (iii) vars(H1�) = vars(H2).For example, the
lauses new1(X;Y) X >Y; p(Y) and new2(V;U) V < U; p(V) are folding equivalent. We have that, if Æ1 and Æ2 are foldingequivalent
lauses, then a
lause
an be folded using Æ1 i� it
an be foldedusing Æ2.Noti
e that as
onsequen
e of the de�nitions of the widening operator andthe generalization fun
tion given in Se
tion 2.4, we have the following property,whi
h will be useful for proving the termination of the
ontextual spe
ializationstrategy.Property FE: For any
lause
0 and in�nite sequen
e fÆi j i 2 Ng of
lauses,if f
i j i 2 Ng is the in�nite sequen
e of
lauses su
h that, for all i 2 N,
i+1 = gen(
i; Æi), then there exists an index h su
h that 8k � h, the
lauses
h and
k are folding equivalent.We now introdu
e a de�nition fun
tion De�ne, whi
h takes as input ade�nition tree Defstree, a leaf
lause Æ of Defstree, and a
all pattern h
;A; Y iof a leaf
lause � of Utree(Æ), and produ
es as output a
lause to be used forfolding � w.r.t. A. De�ne is parametri
 w.r.t. the
hoi
es of a wqo �g and a
lause generalization fun
tion gen.

24 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPThe De�nition Fun
tion De�ne(Defstree; Æ; h
;A; Y i).Let � be the
lause: newp(Y)
;A, where newp is a new predi
ate symbol.if � is folding equivalent to a
lause # in Defstreethen return #else Let � be the path from the root of Defstree to
lause Æif in � there exists a
lause of the form H d;B su
h that(1) (d;B) �g (
; A) and (2) A and B have the same predi
atethen let � be the last
lause in � with properties (1) and (2)if gen(�; �) is folding equivalent to a
lause # in Defstreethen return #else return gen(�; �) (Case G)else return � (Case F). tuNow we are ready to present the De�ne-Fold pro
edure.The Pro
edure De�ne-Fold(UForest ;Defstree;NewDefs;FoldedCls).Input : a forest UForest of unfolding trees and a de�nition tree Defstree. Ea
hroot of the trees in UForest is a leaf
lause of Defstree.Output : a set NewDefs of new de�nition
lauses and a set FoldedCls of derived
lauses.NewDefs := ;; FoldedCls := ;;for ea
h unfolding tree Utree(Æ) in UForest dofor ea
h leaf
lause � of Utree(Æ) with non-failing body doLet � be of the form A0 d;A1; : : : ; Ak, with k � 0.if k = 0 then FoldedCls := FoldedCls [f�gelse begin
1 := �;for i = 1; : : : ; k doLet
pi be the
all pattern of
i for Ai and let � be the
lauseDe�ne(Defstree; Æ;
p i).if � is not in Defstree thenbegin expand Defstree by making � a son of Æ;NewDefs := NewDefs [f�g end ;Fold
i w.r.t. Ai by using � thereby deriving
lause
i+1;end-for ;FoldedCls := FoldedCls [f
k+1gendend-forend-for tu

2.5. AN AUTOMATED STRATEGY FOR SPECIALIZATION 25Noti
e that the
lauses whose body
onsists of a satis�able
onstraint only,are not folded, and they are added to FoldedCls . Moreover the
lauses withfailing body are not folded, and they are not added to the set FoldedCls .This treatment of the
lauses with failing body
an be viewed as an impli
itappli
ation of the
lause removal rule R4f.2.5.3 The Contextual Spe
ialization StrategyWe now present our strategy for
ontextual spe
ialization of CLP(D) programs.It
onsists of two phases. During Phase A we apply the unfolding,
onstraintrepla
ement,
onstrained atomi
 de�nition, and
onstrained atomi
 foldingrules, a

ording to the Unfold-Repla
e and De�ne-Fold pro
edures. DuringPhase B we eliminate redundant
onstraints by a suitable appli
ation of the
ontextual
onstraint repla
ement rule. During Phase C we apply the rule forremoving subsumed
lauses, the unfolding rule w.r.t. valid and failed atomsand the rule for removing useless
lauses.Noti
e that the
ondition FV (
) � X on the input to the
ontextual spe-
ialization strategy below, is not a
tually a restri
tion, be
ause our
onstraintsare
losed w.r.t. existential quanti�
ation.Contextual Spe
ialization StrategyInput : (i) A CLP(D) program P and(ii) a
onstrained atom
; p(X) su
h that FV (
) � X.Output : A CLP(D) program Ps and an atom ps(X).Phase A. By the de�nition rule introdu
e a
lause Æ0 of the form ps(X)
; p(X). Let Defstree
onsist of
lause Æ0 only.Ps := ;; NewDefs := fÆ0g;while NewDefs 6= ; doUnfold-Repla
e(NewDefs ;UForest);De�ne-Fold(UForest ;Defstree ;NewDefs;FoldedCls);Ps := Ps [FoldedClsend-whilePhase B. [Contextual Constraint Repla
ement ℄Let Ps be a program of the form f
1; : : : ;
pg andlet C be the set f(solve(
;X); ps(X))g [f(d;A) j hd;A; Y i 2 CP(Ps)g of
on-strained atoms.for i = 1; : : : ; p doLet
i be a
lause of the form q(X) e1; : : : ; en; Gwhere e1; : : : ; en are basi

onstraints with free variables in X [vars(G);Let Cq be the set f(d1; q(X)); : : : ; (dk; q(X))g of all renamed
onstrained atoms d; q(X) in C;

26 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPLet f be the
onjun
tion of all ej 's su
h thatD j= 8 (dr ! ej) does not hold;Apply the
ontextual
onstraint repla
ement rule w.r.t. Cqthereby repla
ing
i by the
lause q(X) f;G;endforNoti
e that the use of the
ontextual
onstraint repla
ement rule is justi�edby the fa
t that, for all i = 1; : : : ; k, D j= 8X (di ! (9Z e $ 9Z f)), whereZ = vars(G).For reasons of performan
e, we may repla
e Condition (iib) above by thefollowing
ondition:(iib*) m v ej , where m denotes the least upper bound d1 t : : : t dkwhi
h, in general, is stronger than Condition (iib).Phase C. During this phase we apply the following rules: (i) unfolding, (ii)removal of useless and subsumed
lauses, and (iii)
onstraint repla
ement. Thealgorithm for Phase C is as follows.repeatP 0 := Ps;Apply to Ps, as long as possible, the rule for removing subsumed
lauses;Apply to Ps, as long as possible, the unfolding rulew.r.t. valid and failed atoms in the
urrent program;for all
lauses in Ps of the form H
 doif D j= 8(9Y
) where Y = FV (
) � vars(H)then apply the
onstraint repla
ement rule R5rand repla
e H
 by the fa
t H end-foruntil P 0 = PsRemove the useless
lauses from Ps; tu2.6 Corre
tness of the StrategyTheorem 2.6.1. [Corre
tness of the Contextual Spe
ialization Strategy℄ Let Pbe a CLP(D) program and
; p(X) be a
onstrained atom with FV (
) � X. LetPs and ps(X) be the CLP(D) program and the atom obtained by the
ontextualspe
ialization strategy. Then, for every valuation � we have that:if D j= �(
) then �(p(X)) 2 lm(P;D) i� �(ps(X)) 2 lm(Ps;D)Proof. During the appli
ation of the
ontextual spe
ialization strategy, foldingis applied only to
lauses whi
h have been derived by one or more appli
ationsof the unfolding rule, followed by appli
ations of the
onstraint repla
ement

2.7. TERMINATION OF THE STRATEGY 27rule. Thus, the thesis follows from the
orre
tness of the
ontextual spe
ial-ization strategy for general
onstraint logi
 programs (see Se
tion 3.5).2.7 Termination of the StrategyWe now present the proof of termination of the strategy of Se
tion 2.5.De�nition 2.7.1. The widening operator r agrees with the wqo � i� forevery atom q(X) and
onstraints
 and d, we have that
rd; q(X) �
; q(X).We have that any widening operator r agrees with the wqo �L de�ned inExample 2.4.2.Theorem 2.7.2. [Termination of the Contextual Spe
ialization Strategy℄ LetP be a CLP(D) program, and
; p(X) be a
onstrained atom with FV (
) � X.If the widening operator r used for
lause generalization agrees with the well-quasi order �g, then the
ontextual spe
ialization strategy terminates.Proof. Let us begin by showing the termination of the Unfold-Repla
e pro
e-dure. It follows from the properties of the wqo �u and the hypothesis that forany leaf
lause � of an unfolding tree T , if there exists an an
estor � of � su
hthat bd(�) �u bd(�), then Unfold (�; T) is not de�ned.Also the De�ne-Fold pro
edure and Phase B of the
ontextual spe
ializa-tion strategy trivially terminate be
ause of the absen
e of while-loop state-ments in their de�nitions.Phase C terminates be
ause during the repeat-loop either (i) we remove
lauses by applying the rule for removing subsumed
lauses or the unfoldingrule w.r.t. a failed atom, or (ii) by applying the unfolding rule w.r.t. a validatom or the
onstraint repla
ement rule, we repla
e a
lause by another
lausewhose body is stri
tly smaller.To prove the termination of the
ontextual spe
ialization strategy we haveto show that the set NewDefs of new de�nitions introdu
ed by the De�ne-Foldpro
edure will eventually be empty, that is, Defstree is a �nite tree.Every node of Defstree has �nite bran
hing. Indeed, (i) ea
h
lause Æo

urring in Defstree has a number of sons whi
h is not greater than thenumber of atoms in the bodies of the leaf
lauses of Utree(Æ) to be folded, and(ii) for all Æ, the unfolding tree Utree(Æ)
onstru
ted by the Unfold-Repla
epro
edure is �nite.We now show that every path starting from the root of Defstree is �nite.Consider a generi
 path � of Defstree, of the form Æ0 : : : Æk : : :, where Æ0 is theroot
lause of Defstree. We
an partition the
lauses of � into two sets: theset GenDefs of
lauses whi
h have been introdu
ed as generalizations of oneof its an
estors in � (see Case (G) of the de�nition fun
tion De�ne) and the

28 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPset FreshDefs of all other
lauses in � (see Case (F) of the de�nition fun
tionDe�ne). In parti
ular, Æ0 2 FreshDefs .Let us introdu
e the following binary relation �gp over
onstrained atoms:(
;A) �gp (d;B) i� (1) (
;A) �g (d;B) and (2) A and B have the samepredi
ate symbol. We have that �gp is a wqo, be
ause �g is a wqo and the setof predi
ate symbols is �nite (re
all that the predi
ate symbols o

urring inthe bodies of the de�nitions also o

ur in the initial program). We also havethat gen agrees with �gp be
ause gen agrees with �g.We will show that for any path �, we
an
onstru
t a tree T (�) whosenodes are the
lauses of �, su
h that:(Property F*) for any h > 0, a
lause Æh is the left son of a
lause Æj i�Æh 2 FreshDefs and Æj is the last
lause in Æ0 : : : Æh�1 whi
h is in FreshDefs .Thus, bd(Æi) 6�gp bd(Æh) for all i = 0; : : : ; h� 1.(Property G*) for any h > 0, a
lause Æh is the right son of a
lause Æj i�Æh 2 GenDefs and Æh has been introdu
ed as a generalization of Æj , that is,Æh = gen(Æj ; �) for some
lause � (whi
h does not belong to the set Defstree,and thus, it is not in �). Thus, (i) Æj is the last
lause in Æ0 : : : Æh�1 su
h thatbd(Æj) �gp bd(�), (ii) bd(Æh) �gp bd(Æj), be
ause gen agrees with �gp, and (iii)there is no
lause in Æ0 : : : Æh�1 whi
h is folding equivalent to Æh.We will show that for any path � we
an
onstru
t the tree T (�) by provingthat, for all �nite pre�xes Æ0 : : : Æk of �, there exists T (Æ0 : : : Æk) satisfyingProperty F* and Property G* above. The proof pro
eeds by indu
tion on k.The base
ase (k = 0) is trivial. For the indu
tive step, let us assume thatProperty F* and Property G* hold for T (Æ0 : : : Æk) and let us show them forT (Æ0 : : : Æk+1).(Case F) Let Æk+1 2 FreshDefs and (A) let Æj be the last
lause in Æ0 : : : Æk su
hthat Æj 2 FreshDefs . Let T (Æ0 : : : Æk+1) be the tree obtained from T (Æ0 : : : Æk)by adding Æk+1 as left son of Æj . Property F* holds for T (Æ0 : : : Æk+1): (if part)by
onstru
tion; (only if part) Æk+1 is the only left son of Æj in T (Æ0 : : : Æk+1).Indeed, if there exists a left son Æh of Æj , then by indu
tive hypothesis Æh 2FreshDefs and j < h � k, whi
h
ontradi
ts the assumption (A). The valid-ity of Property G* for T (Æ0 : : : Æk+1) follows immediately from the validity ofProperty G* for T (Æ0 : : : Æk).(Case G) Let Æk+1 2 GenDefs , that is, Æk+1 = gen(Æj ; �) for some
lause �,where: (B) Æj is the last
lause in Æ0 : : : Æk su
h that bd(Æj) �gp bd(�). LetT (Æ0 : : : Æk+1) be the tree obtained from T (Æ0 : : : Æk) by adding Æk+1 as right sonof Æj . The validity of Property F* for T (Æ0 : : : Æk+1) follows immediately fromthe validity of Property F* for T (Æ0 : : : Æk). Property G* holds for T (Æ0 : : : Æk+1)be
ause: (if part) by
onstru
tion; (only if part) Æk+1 is the only right son of Æjin T (Æ0 : : : Æk+1). Indeed, if there exists a right son Æh of Æj in T (Æ0 : : : Æk), thenby indu
tive hypothesis j < h and bd(Æh) �gp bd(Æj). Thus, by transitivity of

2.8. AN EXTENDED EXAMPLE 29�gp we have bd(Æh) �gp bd(�) and j < h, whi
h
ontradi
ts the assumption(B).We now show that a generi
 path � of Defstree is �nite by showing thatT (�) is �nite, that is (a) T (�) is �nitely bran
hing, and (b) ea
h path in T (�)is �nite.(a) By Properties F* and G*, we have that ea
h node of T (�) has at most twosons and thus T (�) has �nite bran
hing.(b) Consider a path � from the root of T (�) of the form: Æ0
1 : : :
k : : : Let
h be a
lause in � su
h that
h 2 GenDefs. If su
h a
h does not exist thenall
lauses in � belong to FreshDefs , and thus, for all distin
t i; j � 0 we have
j 6�gp
i. In this
ase �
annot be in�nite be
ause �gp is a wqo. If su
h a
hdoes exist, then by Properties F* and G* the su�x of � of the form:
h
h+1 : : :is su
h that for all i � h,
i+1 = gen(
i; �i). By Point (iii) of Property G* wehave that: for all i � h and for all j < i,
lause
j is not folding equivalentto
i. The path
h
h+1 : : : is �nite be
ause, by Property FE of Se
tion 2.5, ifit were in�nite, then there exist two folding equivalent
lauses
s and
t, withh � s < t. Thus, � is �nite.2.8 An Extended ExampleLet us
onsider the following CLP(Rlin) program Mmod :1. mmod (I; J;M) I�J; M=02. mmod (I; J;M) I <J; I1 = I+1; mod (I; L); mmod (I1; J;M1);M =M1+L3. mod (X;M) X�0; M=X4. mod (X;M) X<0; M=�XMmod(I; J;M) holds if and only if M= jIj+ jI+1j+ � � �+ jI+kj and k is thelargest integer su
h that I+k is smaller than J (re
all that I, J , and M arereal numbers). Let us assume that we want to spe
ialize the program Mmodw.r.t. the
onstrained atom I=0; J�0; mmod (I; J;M).Re
all that in Rlin the least upper bound operation t is de�ned by the
onvex hull
onstru
tion (see Se
tion 2.4). In this example we instantiateour
ontextual spe
ialization strategy as follows. (i) The fun
tion solve is thesimpli�er of
onjun
tions of linear equations and inequations over the realsimplemented in Holzbaur's
lp(q,r) solver [36℄, (ii) Unfold(
;Utree(Æ)) returnsthe set of
lauses obtained by unfolding
lause
 w.r.t. the leftmost (in thetextual order) atom A in its body, (iii) the well-quasi order �u is the relation�L over
onstrained goals (see Se
tion 2.4), (iv) the fun
tion gen for
lausegeneralization is the one introdu
ed in Example 1 (see Se
tion 2.4), and (v)the wqo �g is the restri
tion of �L to
onstrained atoms.We apply the
ontextual spe
ialization strategy as follows.

30 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPPhase A. We start o� from the tree Defstree whi
h
onsists of the root
lause5 only, where:5. mmod s(I; J;M) I=0; J�0; mmod (I; J;M)We apply the Unfold-Repla
e pro
edure as follows. The input for the pro
edure
onsists of the set NewDefs = f
lause 5g. Let Utree(
lause 5)
onsist of theroot
lause 5. The only atom in the body of
lause 5 is mmod (I; J;M), andUnfold (
lause 5;Utree(
lause 5)) is the set f
lause 6;
lause 7g where:6. mmod s(I; J;M) I=0; J�0; I�J; M=07. mmod s(I; J;M) I=0; J�0; I <J; I1= I+1; mod (I; L);mmod (I1; J;M1); M =M1+LWe apply the
onstraint repla
ement rule using solve, thereby obtaining Re-pla
e(f
lause 6;
lause 7g) = f
lause 8;
lause 9g where:8. mmod s(I; J;M) I=0; J=0; M=09. mmod s(I; J;M) I=0; J >0; I1=1; mod (I; L); mmod (I1; J;M1);M =M1+LNow we expand Utree(
lause 5) by making
lauses 8 and 9 sons of
lause 5.Unfold (
lause 8;Utree(
lause 5)) is not de�ned, be
ause the body of
lause 8
ontains no atom, and thus,
lause 8 is not unfolded.The
onstru
tion of Utree(
lause 5) pro
eeds by �rst unfolding
lause 9 w.r.t.mod (I; L) and then applying the
onstraint repla
ement rule. We get thefollowing
lauses:10. mmod s(I; J;M) false; mmod (I1; J;M1); M =M1+L10.1 mmod s(I; J;M) I=0; J >0; I1=1; mmod (I1; J;M)We expand Utree(
lause 5) by making
lauses 10 and 10.1 sons of
lause 9.There is no leaf
lause � ofUtree(
lause 5) su
h that Unfold(�;Utree(
lause 5))is de�ned. Indeed: (a)
lause 10.1 is the only leaf of Utree(
lause 5) whose bodyis non-failing and
ontains at least one atom, and (b)
lause 5 is an an
estorof
lause 10.1 su
h that bd(
lause 5) �L bd(
lause 10:1). Thus, the Unfold-Repla
e pro
edure terminates with output UForest = fUtree(
lause 5)g. Theleaves of Utree(
lause 5) are the
lauses 8, 10, and 10.1.We now apply the De�ne-Fold pro
edure as follows. The input for the pro-
edure
onsists of the forest fUtree(
lause 5)g and the de�nition tree Defstreemade out of the root
lause 5 only. The leaves of Utree(
lause 5) with non-failing body are
lause 8 and
lause 10.1.The body of
lause 8
ontains no atom, and so we add
lause 8 to FoldedCls.The body of
lause 10.1
ontains one atom, and the only
all pattern of
lause10.1 is h
;A; Y i, where
 is (J > 0; I1 = 1), A is mmod (I1; J;M), and Y isfI1; J;Mg.We now
ompute De�ne(Defstree;
lause 5; h
;A; Y i). We
onsider the follow-ing
lause:

2.8. AN EXTENDED EXAMPLE 31�. newp(I1; J;M) J >0; I1=1; mmod (I1; J;M)Sin
e there is no
lause in Defstree whi
h is folding equivalent to
lause �and bd(
lause 5) �L bd(�), we
ompute
lause gen(
lause 5; �), whi
h is (seeExample 1 at the end of Se
tion 2.4):11. genp(I1; J;M) I1�0; J�0; mmod (I1; J;M)Sin
e there is no
lause in Defstree whi
h is folding equivalent to
lause 11 weare in Case (G). We expand Defstree by making
lause 11 a son of
lause 5and we add
lause 11 to the set NewDefs. Then we fold
lause 10.1 by usingthe de�nition
lause 11 and we get:12. mmod s(I; J;M) I=0; J >0; I1=1; genp(I1; J;M)The De�ne-Fold pro
edure terminates with output FoldedCls = {
lause 8,
lause 12} and NewDefs = f
lause 11g. Sin
e NewDefs is non-empty, we
on-tinue the exe
ution of the while-loop of the
ontextual spe
ialization strategy.We apply the Unfold-Repla
e pro
edure as follows. The input for the pro
edure
onsists of the set NewDefs = f
lause 11g. At the beginning, Utree(
lause 11)
onsists of the root
lause 11. The only atom in the body of
lause 11 ismmod(I1; J;M), and Unfold(
lause 11;Utree(
lause 11)) is the set f
lause 13;
lause 14g where:13. genp(I1; J;M) I1�0; J�0; I1�J; M=014. genp(I1; J;M) I1�0; J�0; I1< J; I2=I1+1; mod (I1; L);mmod (I2; J;M2); M=M2+LWe apply the
onstraint repla
ement rule using the solve fun
tion, and we getRepla
e({
lause 13,
lause 14}) = {
lause 15,
lause 15.1} where:15. genp(I1; J;M) I1�J; J�0; M=015.1 genp(I1; J;M) I1�0; I1< J; I2=I1+1; mod (I1; L);mmod (I2; J;M2); M=M2+LNow we expand Utree(
lause 11)) by making
lauses 15 and 15.1 sons of
lause11. Unfold(
lause 15, Utree(
lause 11)) is not de�ned, be
ause the body of
lause 15
ontains no atom.The
onstru
tion of Utree(
lause 11) pro
eeds by �rst unfolding
lause 15.1w.r.t. mod (I1; L) and then applying the
onstraint repla
ement rule. We get,as the reader may verify, the following
lauses:16 genp(I1; J;M) false ; mmod (I2; J;M2)16.1 genp(I1; J;M) I1�0; I1< J; I2=I1+1;mmod (I2; J;M2); M=M2+I1We expand Utree(
lause 11) by making
lauses 16 and 16.1 sons of
lause 15.1.There is no leaf
lause � of the unfolding tree Utree(
lause 11) su
h thatUnfold(�;Utree(
lause 11)) is de�ned. Indeed: (a)
lause 16.1 is the onlyleaf of Utree(
lause 11) whose body is non-failing and it
ontains at least oneatom, and (b)
lause 11 is an an
estor of
lause 16.1 su
h that bd(
lause 11) �L

32 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPbd(
lause 16:1). Thus, the Unfold-Repla
e pro
edure terminates with outputUForest = fUtree(
lause 11)g.We now apply the De�ne-Fold pro
edure as follows. The input for the pro
e-dure
onsists of the forest fUtree(
lause 11)g and the de�nition tree Defstreemade out of the root
lause 5 and its son
lause 11. The leaf
lauses ofUtree(
lause 11) with non-failing body are
lause 15 and
lause 16.1.The body of
lause 15
ontains no atom, and so we add
lause 15 to FoldedCls.The body of
lause 16.1
ontains one atom and h
0; A0; Y 0i is the only
allpattern of
lause 16.1 where
0 is (I2�1; J > I2�1), A0 is mmod (I2; J;M2),and Y 0 is fI2; J;M2g.We now
ompute De�ne(Defstree ;
lause 11; h
0; A0; Y 0i). Let us
onsider the
lause:�1. newq(I2; J;M2) I2�1; J > I2�1; mmod (I2; J;M2)Sin
e there is no
lause in Defstree whi
h is folding equivalent to �1 andbd(
lause 11) �L bd(�1), we
ompute
lause gen(
lause 11; �1), whi
h is
lause11 itself. Then we fold
lause 16.1 by using the de�nition
lause 11 and weget:17. genp(I1; J;M) I1�0; I1< J; I2=I1+1;genp(I2; J;M2); M=M2+I1The De�ne-Fold pro
edure terminates with output FoldedCls = f
lause 15;
lause 17g and NewDefs = ;.Sin
e during the last appli
ation of the De�ne-Fold pro
edure we did notintrodu
e any new de�nition, the while-loop of the
ontextual spe
ializationstrategy terminates and we get program Ps made out of
lauses 8, 12, 15, and17.Phase B. By
omputing the
all patterns of Ps and performing a variablerenaming we get:C = f(I=0; J�0; mmod s(I; J;M));(I=1; J >0; genp(I; J;M));(I�1; J >I�1; genp(I; J;M))gWe then pro
ess
lauses 8, 12, 15, and 17 as indi
ated in the
ontextual spe-
ialization strategy where we use Condition (iib*) instead of Condition (iib).We
ompute the least upper bounds:for mmod s: m1 = (I=0; J�0) and for genp: m2 = (I�1; J >I�1).For
lause 8, sin
e m1 v I=0, we get:8.
 mmod s(I; J;M) J=0; M=0For
lause 12, sin
e m1 v I=0, we get:12.
 mmod s(I; J;M) J >0; I1 =1; genp(I1; J;M)For
lause 15, sin
e m2 v J�0, after a variable renaming, we get:

2.9. EXPERIMENTAL RESULTS 3315.
 genp(I; J;M) I�J; M=0For
lause 17, sin
e m2 v I�0, after a variable renaming, we get:17.
 genp(I; J;M) I <J; I2=I+1; genp(I2; J;M2); M=M2+IThe output of Phase B is the program
onsisting of
lauses 8.
, 12.
, 15.
, and17.
.Phase C. The
urrent program
ontains no fa
ts and no valid or failed atoms.Thus, Phase C leaves the program un
hanged.The �nal program Ps we have derived,
onsists of
lauses 8.
, 12.
, 15.
,and 17.
.2.9 Experimental ResultsThe following table shows the speedups a
hieved by applying our
onstraintspe
ialization strategy to some CLP programs. The speedups after Phase Aand after Phase C are both
omputed w.r.t. the initial program. The Dynami
Input Size denotes the size of the
onstrained goal whi
h is supplied to thespe
ialized program. The experimental results were obtained by using SICStusProlog 3.8.5 [37℄ and the
lp(q,r) solver [36℄.Program Dynami
 Input Speedup SpeedupSize after Phase A after Phase CMmod jJ j = 250 3.26 3.78Mmod jJ j = 25000 345 388Summat
h (y) jSj = 500 451 915Summat
h (y) jSj = 1000 881 1788Summat
h (yy) jSj = 500 818 2159Summat
h (yy) jSj = 1000 1594 4225Cryptosum � 1.27 1.27� Mmod is the program des
ribed in Se
tion 2.8 whi
h de�nes the predi
atemmod(I,J,M). It has been spe
ialized w.r.t. I=0; J�0.� Summat
h is a program whi
h de�nes a predi
ate summat
h(P,S) whi
hholds i� there exists a substring G of S su
h that: (i) G and P havethe same length, and (ii) the sum of the elements of G is equal to thesum of the elements of P. It has been spe
ialized w.r.t. (y) a list P of3 nonnegative integers whose sum is at most 5, and (yy) a list P of 10nonnegative integers whose sum is at most 5.� Cryptosum is a program whi
h solves a
ryptoarithmeti
 puzzle overthree lists L1, L2, and L3 of digits, su
h that L1+L2=L3. It has beenspe
ialized w.r.t. SEND+MORE=MONEY.

34 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPThe spe
ialized programs were derived automati
ally by using the MAP trans-formation system, whi
h provides support both for intera
tive derivations andfor automati
 spe
ializations based on the parameterized strategy presented inSe
tion 2.5. The MAP system is des
ribed in Appendix A. The sour
e
odefor the examples
an be found in Appendix B.2.10 Related WorkThere are various methods for spe
ializing programs w.r.t. properties of theirinput data [10, 16, 53, 61, 66℄. Contextual spe
ialization
an be viewed as oneof these methods. In this
hapter we have presented a set of transformationrules and an automated strategy for the
ontextual spe
ialization of
onstraintlogi
 programs over a domain D.For our spe
ialization strategy we have assumed the existen
e of a solverwhi
h simpli�es
onstraints in a given domain D. We abstra
tly represent thatsolver as a
omputable total fun
tion solve and we do not make any assumptionon how this fun
tion is
omputed. The motivation for this
hoi
e
omes fromthe observation that most of the available
onstraint solvers are based on theso
alled bla
k box approa
h and they provide the user with very limited waysof intera
tion. In parti
ular, in the bla
k box approa
h, it is not possible to
ontrol the
onstraint solving pro
ess.For this reason the e�
ien
y improvements whi
h
an be a
hieved by ourprogram spe
ialization strategy are limited to the way the
onstraints are gen-erated and intera
t with ea
h other. Indeed, at spe
ialization time we maysimplify
onstraints by dis
overing in
onsisten
ies, exploiting entailment, andapplying the fun
tion solve. These opportunities for
onstraint simpli�
ationare triggered by appli
ations of the unfolding rule and are realized by the
on-straint repla
ement rule. The unfolding rule, in fa
t, may gather in a single
lause
onstraints whi
h
ome from di�erent
lauses.However, our spe
ialization strategy
annot improve the e�
ien
y of the
onstraint solving algorithms. To over
ome this limitation we
ould extendour method to programs based on glass box solvers, for example by usingConstraint Handling Rules [31℄, a high-level language designed for the purposeof building appli
ation-spe
i�

onstraint solvers.In our spe
ialization strategy we have also assumed the existen
e of: (i)a fun
tion Unfold and a well-quasi order �u between
onstrained goals forguiding the unfolding pro
ess, (ii) a
lause generalization fun
tion gen param-eterized by a widening operator r, and (iii) a well-quasi order �g between
onstrained atoms, whi
h a
tivates the
lause generalization pro
ess duringprogram spe
ialization. We have shown that our spe
ialization strategy pre-serves the least D-model and it terminates.

2.10. RELATED WORK 35The hypothesis that the fun
tion solve is
omplete w.r.t. satis�ability,makes our approa
h di�erent from the one in [10℄, where program spe
ial-ization is based on some unde
idable properties and thus, it
annot be easilyautomated.Partial evaluation of logi
 programs [50℄, also
alled partial dedu
tion, is thete
hnique for program spe
ialization whi
h is most related to ours. However,we would like to mention the following di�eren
es whi
h make our
ontextualspe
ialization te
hnique a proper extension of the traditional te
hniques forpartial evaluation.(1) The most apparent di�eren
e is that traditional te
hniques for partial eval-uation do not handle
onstraints, so that our optimizations
on
erning
on-straint solving
annot be performed.(2) Partial evaluation may require post pro
essing methods, like RedundantArgument Filtering [19℄, to minimize the number of variables o

urring in
lauses, whereas we use the folding rule during program spe
ialization to avoidredundant o

urren
es of variables.(3) The use of our
ontextual
onstraint repla
ement rule R5 allows us toperform optimizations whi
h
annot be performed by applying the te
hniquesfor partial evaluation of logi
 programs presented in [48, 84℄. Indeed, our
ontextual
onstraint repla
ement rule takes into a

ount, for simplifying the
lauses of a predi
ate, say p, the set of
onstraints whi
h o

ur in the
lauses
ontaining a
all of p. Nor
an
ontextual
onstraint repla
ement be performedby using the transformation rules presented in [9, 25, 51℄.(4) What it is usually done by automati
 partial evaluation te
hniques (see,for instan
e, [46℄) basi
ally
orresponds with Phase A of our
ontextual spe-
ialization strategy. Similarly to partial evaluation, in that phase we addresslo
al
ontrol and global
ontrol issues. In our approa
h lo
al
ontrol refers tothe termination of the Unfold-Repla
e pro
edure, while global
ontrol refersto the termination of Phase A of the
ontextual spe
ialization strategy as awhole. In parti
ular, global
ontrol refers to the poli
y of introdu
ing new
onstrained atoms whi
h generalize old
onstrained atoms. For these
ontrolissues we extend to the
ase of
onstrained logi
 programs the well-quasi orderte
hniques used for proving termination in the �eld of rewriting systems [21℄.These te
hniques were also used for partial evaluation [44, 46℄. With regardto these
ontrol issues the main di�eren
e between partial evaluation and ourapproa
h is that generalization used in partial evaluation
an be seen as aparti
ular instan
e of our generalization by taking both the least upper boundoperator and the widening operator to be the most spe
i�
 generalization over�nite terms.Among the many te
hniques for simplifying and manipulating
onstraintsto get more e�
ient spe
ialized programs, here we want to mention the follow-ing methods whi
h are related to ours.

36 CHAPTER 2. CONTEXTUAL SPECIALIZATION OF CLPIn [66℄ the authors propose a method based on abstra
t interpretation, forthe implementation of multiple spe
ialization of logi
 programs. Parti
ularemphasis is given to program parallelization. Similarly to their work, ourspe
ialization strategy may produ
e several spe
ialized versions of the samepredi
ate by introdu
ing di�erent de�nitions
orresponding to di�erent
allpatterns.In [53℄ the authors present a methodology for
ompiling CLP(D) lan-guages so that the workload of the
onstraint solver is redu
ed. However,their methodology may generate non-monotoni
 CLP(D) programs, whose ex-e
ution requires the ability of removing
onstraints from the
onstraint store.In
ontrast, in our approa
h we generate monotoni
 CLP(D) programs whi
hat runtime do not remove
onstraints from the store. However, we require thesolver to test for the satis�ability and entailment of
onstraints, and to
om-pute the existential
losure of
onstraints w.r.t. given sets of variables. These
apabilities are indeed provided by most
onstraint solvers.Finally, our work is related to the approa
h presented in [16℄ for a stri
t�rst-order fun
tional language. As in that paper, we too spe
ify the
ontext ofuse w.r.t. whi
h the programs should be spe
ialized, by providing a propertywhi
h may
over an in�nite set of queries.

Chapter 3Spe
ialization of GeneralConstraint Logi
 ProgramsIn this
hapter we extend the framework presented in Chapter 2 so as to per-form spe
ialization of
onstraint logi
 programs with negation. This extensionwill also be used for the veri�
ation of temporal properties of
on
urrent sys-tems as des
ribed in Chapter 4.We will
onsider the
lass of lo
ally strati�ed
onstraint logi
 programs.This
lass is interesting be
ause it is expressive enough to
ontain many ofthe
onstraint logi
 programs whi
h are used in pra
ti
e. Moreover, all majorapproa
hes to the semanti
s of negation
oin
ide for lo
ally strati�ed CLPprograms. In parti
ular, given a lo
ally strati�ed
onstraint logi
 program P ,the unique perfe
t model [65℄ of P is equal to the unique stable model [34℄of P and to the well-founded model [83℄ of P . The perfe
t model of a lo
allystrati�ed
onstraint logi
 program is
onstru
ted in a way whi
h is very similarto the
ase of lo
ally strati�ed logi
 programs and most approa
hes for dealingwith negation
an be extended from logi
 programming to
onstraint logi
programming.Contextual spe
ialization for general
onstraint logi
 programs is de�nedas follows. Given a lo
ally strati�ed CLP(D) program P and a
onstrainedatom
;A derive a lo
ally strati�ed program Ps and an atom As su
h that, forevery valuation � we have that: (Contextual Spe
ialization)if D j= �(
) then �(A) 2M(P) i� �(As) 2M(Ps)where M(P) denotes the perfe
t model of P .We now introdu
e some basi
 notions and notational
onventions on
on-straint logi
 programs with negation. This is an extension of the materialpresented in 2.1. For notions on logi
 programming with negation whi
h arenot de�ned here the reader may refer to [6℄.37

38 CHAPTER 3. SPECIALIZATION OF GENERAL CLP3.1 Constraint Logi
 Programming with NegationA negated atom is a formula of the form :A where A is an atom. A literalis either an atom A, also
alled positive literal, or a negated atom :A, also
alled negative literal. Literals are denoted by L, possibly with subs
ripts. A
onstrained literal is the
onjun
tion of a
onstraint and a literal. A goal is a(possibly empty)
onjun
tion of literals, and it is denoted by G, possibly withsubs
ripts. Clauses are of the form H
; L1; : : : ; Ln. A general
onstraintlogi
 program, simply
alled program in the following
hapters, is a �nite setof
lauses.We now extend the domain of a valuation � to negative literals as follows:if L is the negated atom :A, then �(L) is the ground literal :�(A). Given aprogram P , we de�ne ground(P) as the following set of ground
lauses:ground(P) = f�(H) �(L1); : : : ; �(Lm) j � is a valuation,(H
; L1; : : : ; Lm) 2 P , and D j= �(
)gGiven a D-interpretation I and a
onstraint-free, ground
lause
 of the formH L1; : : : ; Lm, we say that
 is true in I, written I j=
 i� one of thefollowing holds: (i) H 2 I, or (ii) there exists i 2 f1; : : : ;mg su
h that Li is anatom and Li 62 I, or (iii) there exists i 2 f1; : : : ;mg su
h that Li is a negatedatom :Ai and Ai 2 I.Now we introdu
e the notions of lo
al strati�
ation and perfe
t model for
onstraint logi
 programs. These notions are an extension of the similar notionsfor logi
 programs [6, 65℄ and are parametri
 w.r.t. the interpretation of the
onstraints [38, 39℄.A lo
al strati�
ation is a fun
tion �: BD ! W , where W is the set of
ountable ordinals. If A 2 BD and �(A) = � we say that the stratum of Ais �, or A is in stratum �. A
lause Æ in P is lo
ally strati�ed w.r.t. a lo
alstrati�
ation � i� for all
lauses of the form A L1; : : : ; Lm in ground (fÆg) wehave that for all i = 1; : : : ;m, if Li is an atom B then �(A) � �(B), otherwise,if Li is a negated atom :B, then �(A) > �(B). Given a lo
al strati�
ation�, we say that program P is lo
ally strati�ed w.r.t. � i� every
lause of P islo
ally strati�ed w.r.t. �. A program P is lo
ally strati�ed i� there exists alo
al strati�
ation � su
h that P is lo
ally strati�ed w.r.t. �. We denote by P�the set of
lauses in ground(P) whose head is in stratum �.A level mapping is a fun
tion from the set of predi
ate symbols to the�nite ordinals. Given a level mapping �, we extend it to literals as follows:if L is an atom p(: : :) then �(L) = �(p), and if L is a negated atom :p(: : :)then �(L) = �(p). A
lause
 of the form H
; L1; : : : ; Lm is strati�edw.r.t. a level mapping � i� for all i = 1; : : : ;m, if Li is a positive literal then�(H) � �(Li) and, if Li is a negative literal then �(H) > �(Li). A programP is strati�ed i� there exists a level mapping � su
h that every
lause of P

3.1. RULES FOR TRANSFORMING GENERAL CLP 39is strati�ed w.r.t. �. If a program P is strati�ed w.r.t. �, then there exists a�nite sequen
e S1; : : : ; Sk of programs,
alled a strati�
ation of P , su
h that (i)P = S1[: : :[Sk, and (ii) for any two
lauses � and � in P , �(hd(�)) < �(hd(�))i� there exist i, j su
h that: (a) i < j, (b) � 2 Si, and (
) � 2 Sj. S1; : : : ; Skare
alled the strata of P . Note that, as a
onsequen
e of the de�nition, thestrata of a program are pairwise disjoint and if a program is strati�ed then itis lo
ally strati�ed.Similarly to the
ase of logi
 programs [6, 65℄, we de�ne the perfe
t modelM(P) of a lo
ally strati�ed
onstraint logi
 program P as the D-interpretationS�2W M�, where for every ordinal � inW , the setM� is
onstru
ted as follows:(1) M0 is the empty set,(2) if � > 0, M� is the least D-model of the set of de�nite,
onstraint-free,ground
lauses derived from P� as follows: (i) every literal :A o

urring inthe body of a
lause in P� is deleted i� A is in stratum � , with � < �, andA 62M� , and (ii) every
lause
 in P� is deleted i� there exists a literal :A inbd(
) su
h that A is in stratum � , with � < �, and A 2M� .Noti
e that the
onstru
tion of the perfe
t model of a program presentedabove is di�erent from the
onstru
tion of the perfe
t model presented in [65℄.However, as the reader may verify, in the
ase of lo
ally strati�ed programsthe two
onstru
tions yield the same model.Similarly to the
ase of logi
 programs [6, 65℄, we have the following result.Theorem 3. Every lo
ally strati�ed
onstraint logi
 program has a uniqueperfe
t model.As already mentioned, a program P with lo
ally strati�ed negation has aunique perfe
t model M(P) whi
h
oin
ides with its unique stable model, andits total well-founded model.3.2 Rules for Transforming General Constraint Logi
ProgramsThe following rules are an extension of the rules presented in Se
tion 2.2 forde�nite CLP programs to the
ase of CLP programs with lo
ally strati�ednegation. We want to point out that some of the rules presented here arein fa
t identi
al to rules presented in Se
tion 2.2, ex
ept for the fa
t thatthey refer to general programs instead of de�nite programs. In parti
ular, the
onstrained atomi
 de�nition rule R1, the positive unfolding rule R2p, Case(P) of the
onstrained atomi
 folding rule R3, the
lause removal rules R4f,R4s and R4u, and the
onstraint repla
ement rule R5r presented in this se
tionare identi
al to rules R1, R2, R3, R4f, R4s, R4u and R5r, respe
tively, whi
h

40 CHAPTER 3. SPECIALIZATION OF GENERAL CLPhave been presented in Se
tion 2.2. We reprodu
e them below for the reader's
onvenien
e. The negative unfolding rule R2n, Case (N) of the
onstrainedatomi
 folding rule R3 and the
ontextual
onstraint repla
ement rule R5n areproper extensions of the rules for de�nite programs to general programs.R1. Constrained Atomi
 De�nition. By
onstrained atomi
 de�nition (orde�nition, for short), we introdu
e the new
lauseÆ : newp(X)
;Awhi
h is said to be a de�nition, where: (i) newp is a predi
ate symbol noto

urring in P0; : : : ; Pk, (ii) X is a sequen
e of distin
t variables o

urring inthe
onstrained atom
;A, and (iii) the predi
ate symbol of A o

urs in P0.From program Pk we derive the new program Pk+1 whi
h is Pk [fÆg.For i � 0, Defsi is the set of de�nitions introdu
ed during the transformationsequen
e P0; : : : ; Pi. In parti
ular, Defs0 = ;.R2p. Positive Unfolding. Let
 : H
;GL; A;GR be a renamed apart
lause of Pk and let fAj
j ; Gj j j = 1; : : : ;mg be the set of all
lausesin Pk su
h that the atoms A and Aj have the same predi
ate symbol. Forj = 1; : : : ;m; let us
onsider the
lause
j : H
; A=Aj;
j ; GL; Gj ; GRwhere A=Aj stands for the
onjun
tion of the equalities between the
orre-sponding arguments. Then, by unfolding
lause
 w.r.t. atom A, from programPk we derive the new program Pk+1 whi
h is (Pk � f
g) [f
j j j = 1; : : : ;mg.R2n. Negative Unfolding. Let
 : H
;GL;:A;GR be a renamed apart
lause of Pk. The negative unfolding rule
an be applied in the following two
ases.(Case F) If A is failed in program Pk then let
1 be the
lause H
;GL; GR.By unfolding
lause
 w.r.t. the negated atom :A, from program Pk we derivethe new program Pk+1 whi
h is (Pk � f
g) [f
1g.(Case V) If A is valid in program Pk then, by unfolding
lause
 w.r.t. thenegated atom :A, from program Pk we derive the new program Pk+1 whi
h isPk � f
g.R3. Constrained Atomi
 Folding. Let
 : A
;GL; L;GR be a
lauseof Pk where literal L is either the atom B or the negated atom :B. LetÆ : newp(X) d;B be a variant of a
lause in Defsk. For the appli
ation ofthe
onstrained atomi
 folding rule we
an distinguish the following two
aseswhi
h depend on the form of the literal L.(Case P) Literal L is the atom B .Suppose that: (i) D j= 8Y (
 ! d), where Y = FV (
; d), and (ii) no variablein FV (Æ)�X o

urs in FV (A;
;GL; GR). Then, by folding
lause
 w.r.t. Lusing Æ, we derive the new
lause

3.2. RULES FOR TRANSFORMING GENERAL CLP 41
f : A
;GL;newp(X); GR(Case N) Literal L is the negated atom :B.Suppose that: (i) D j= 8Y (
 ! d), where Y = FV (
; d), and (ii) for ea
hvariable Z in FV (Æ)�X there exists t 2 D su
h that D j= 8W (d ! Z = t),where W = FV (d). Then, by folding
lause
 w.r.t. L using Æ, we derive thenew
lause
f : A
;GL;:newp(X); GRIn both
ases, from program Pk we derive the new program Pk+1 whi
h is(Pk � f
g) [f
fg.In the following, we will also refer to Case (P) and Case (N) of rule R3 asrule R3p and rule R3n, respe
tively.R4f. Clause Removal: Unsatis�able Body. Let
 : A
;G be a
lauseof Pk. If the
onstraint
 is unsatis�able, that is, solve(
; ;) = false, then fromprogram Pk we derive the new program Pk+1 whi
h is Pk � f
g.R4s. Clause Removal: Subsumed Clause. Let
 : p(X)
;G with(
;G) 6= true, be a
lause of Pk. If Pk
ontains a fa
t � of the form p(Y) then from program Pk we derive the new program Pk+1 whi
h is Pk � f
g.R4u. Clause Removal: Useless Clauses. Let � be the set of useless
lauses in Pk. Then, by removing useless
lauses from program Pk we derivethe new program Pk+1 whi
h is Pk � �.R5n. Contextual Constraint Repla
ement. Let C be a set of
onstrainedatoms. Let
 be a renamed apart
lause in Pk of the form: p(U)
1; G.Suppose that for some
onstraint
2, and for every
onstrained atom
; p(V)in C, we have thatD j= 8X ((
; U =V) ! (9Y
1 $ 9Z
2))where: (i) Y = FV (
1)�vars(U;G), (ii) Z = FV (
2)�vars(U;G), and (iii)X = FV (
; U = V;
1;
2)� (Y [Z). Then, we derive program Pk+1 fromprogram Pk by repla
ing
lause
 by the
lause: p(U)
2; G. In this
ase wesay that Pk+1 has been derived from Pk by
ontextual
onstraint repla
ementw.r.t. C.The following rule is an instan
e of rule R5n for C = ftrue ; p(U)g.R5r. Constraint Repla
ement. Let
 : A
1; G be a renamed apart
lause of Pk. Assume that D j= 8X(9Y
1 $ 9Z
2) where: (i) Y = FV (
1)�vars(A;G), (ii) Z = FV (
2)�vars(A;G), and (iii) X = FV (
1;
2)�(Y [Z).Then from program Pk we derive the new program Pk+1 whi
h is (Pk�f
g)[fA
2; Gg.

42 CHAPTER 3. SPECIALIZATION OF GENERAL CLP3.3 Corre
tness of the Transformation RulesIn this se
tion we study the
orre
tness w.r.t. the perfe
t model of the trans-formation rules for general
onstraint logi
 programs presented in Se
tion 3.2.We show that for any transformation sequen
e P0; : : : ; Pn where (i) ea
hde�nition
lause is unfolded w.r.t. the atom in its body and (ii) the
ontextual
onstraint repla
ement rule R5n is only applied in its restri
ted form R5r, wehave that the perfe
t model is preserved, in the sense that, M(P0 [Defsn) =: : : = M(Pn) where Defsn denotes the set of de�nition
lauses introdu
edduring the
onstru
tion of the transformation sequen
e.Without loss of generality, we may assume that the transformation sequen
eis of the form P0; : : : ; P0 [Defsn; : : : ; Pj ; : : : ; Pn where (i) Defsn is the set ofde�nition
lauses introdu
ed during the
onstru
tion of the transformationsequen
e, (ii) Pj is derived from P0 [Defsn by unfolding ea
h
lause in Defsnw.r.t. the atom in its body, and (iii) for all i = j; : : : ; n � 1, program Pi+1is not derived from program Pi by an appli
ation of the
onstrained atomi
de�nition rule.We now introdu
e some preliminary de�nitions whi
h will be used in theproofs.De�nition 3.3.1. A proof tree for a ground atom A in a CLP program P isa �nite tree T su
h that: (i) the root of T is A, (ii) every internal node B ofT is a ground atom (iii) every leaf node of T is either the symbol true or anegated ground atom :B su
h that there is no proof tree for B in P , (iv) if aninternal node B of T has
hildren L1; : : : ; Lk then B L1; : : : ; Lk is a
lausein ground (P).The size of a proof tree T is the number size(T) of internal nodes of T .The weight of a ground atom A is�(A) = minfsize(T) jT is a proof tree for A in PjgA proof tree T is weight-
onsistent i� for all ground atoms A and B, if B is a
hild of A in T then �(B) < �(A).The proof of
orre
tness pro
eeds as follows:1. We show that the transformation rules preserve lo
al strati�
ation. Re-
all that the perfe
t model is de�ned for lo
ally strati�ed programs.2. We
onsider the transformation sequen
e Pj ; : : : ; Pn and we show thatfor all i = j; : : : ; n and for every ground atom A there exists a proof treefor A in Pi i� there exists a proof tree for A in P0 [Defsn.

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 433. We establish a
orresponden
e between proof trees in program P and theperfe
t model of P .Theorem 3.3.2. [Preservation of Lo
al Strati�
ation℄. Let P0 be a lo
allystrati�ed program and let Pj; : : : ; Pn be a transformation sequen
e whi
h is ob-tained by applying the transformation rules of Se
tion 3.2 with the
onditionthat the
ontextual
onstraint repla
ement rule R5n is only applied in its re-stri
ted form R5r. Then, there exists a fun
tion stratum su
h that for alli = 0; : : : ; n program Pi is lo
ally strati�ed w.r.t. stratum.Proof. Let P0 be lo
ally strati�ed w.r.t. the fun
tion stratum 0. Consider thefun
tion stratum whi
h is de�ned as follows. Let A be a ground atom in thebase BD of P0 [Defsn.if the predi
ate symbol of A o

urs in P0 then stratum(A) = stratum 0(A)else if there exists a
lause Æ in ground (Defsn) su
h that A = hd(Æ)then stratum(A) = maxfstratum 0(B) jB 2 bd(Æ)g.The proof pro
eeds by indu
tion on i.Base
ase (i = 0). Trivial.Indu
tion step. We assume that for all j � i, Pj is lo
ally strati�ed w.r.t. stra-tum and we show that Pi+1 is lo
ally strati�ed w.r.t. the same fun
tion. We
onsider a
lause
� 2 ground (f
g) where
 2 Pi+1, and � is a valuation su
hthat
� = �(
). We pro
eed by
ases.Case 1. Clause
 is inherited from Pi. Trivial.Case 2. Clause
 is obtained by
onstrained atomi
 de�nition (rule R1).Straightforward from the de�nition of the fun
tion stratum.Case 3. Clause
 is obtained by positive unfolding (rule R2p). We assume,with no loss of generality, that there exist (renamed apart)
lauses � and � inPi of the formH
;GL; A;GR and B d;G, respe
tively. Let
lause
 be ofthe form H
; d;A = B;GL; G;GR. Sin
e
� 2 ground (Pi+1) we have thatD j= �(
^d^A = B) and thus, �� 2 ground (Pi) and �� 2 ground (Pi). By in-du
tion hypothesis we have that �� and �� are lo
ally strati�ed w.r.t. stratum.Thus,
lause
� is lo
ally strati�ed w.r.t. stratum be
ause stratum(�(A)) =stratum(�(B)).Case 4. Clause
 is obtained by negative unfolding (rule R2n - Case F). Let� be the
lause in Pi whi
h has been repla
ed by
lause
. Let
� be of theform H GL; GR. Thus, there exists a
lause � in ground (f�g) of the formH GL;:B;GR. By indu
tion hypothesis we have that � is lo
ally strati�edw.r.t. stratum. Thus, so is
� .Case 5. Clause
 is obtained by folding (rule R3n). Let
 be obtained byfolding a
lause � in Pi of the form H
;GL; L;GR by using a (variant ofa) de�nition
lause Æ 2 Defsn of the form newp(X) d;B.

44 CHAPTER 3. SPECIALIZATION OF GENERAL CLP(Case P) Literal L is the atom B and
lause
 is of the form H
;GL;newp(X); GR.Thus,
� is of the form H 0 G0L;newp(t); G0R. By the
onditions onthe appli
ability of
ase P of rule R3n we have: (i) D j= 8Y (
 ! d), whereY = FV (
; d), and (ii) no variable in FV (Æ)�X o

urs in FV (H;
;GL; GR).Condition (i) ensures that there exists a
lause newp(t) B0 in ground (fÆg)su
h that stratum(newp(t)) = stratum(B0). By Condition (ii) we have thatin � there is no
onstraint on vars(B)�X, and thus
lause H 0 G0L; B0; G0Ris in ground (Pi). Thus, by indu
tion hypothesis we have that stratum(H 0) �stratum(B0) = stratum(newp(t)).(Case N) Literal L is the negated atom :B and
lause
 is of the form H
;GL;:newp(X); GR.By the
onditions on the appli
ability of
ase N of rule R3n we have: (i)D j= 8Y (
! d), where Y = FV (
; d), and (ii) for ea
h variable Z in FV (Æ)�Xthere exists s 2 D su
h that D j= 8W (d ! Z = s), where W = FV (d).Condition (i) ensures that there exists a
lause newp(t) B0 in ground (fÆg)su
h that stratum(newp(t)) = stratum(B0). By Conditions (i) and (ii) wehave that for ea
h variable Z in FV (Æ)�X there exists s 2 D su
h thatD j= 8Y (
 ! Z = s) where Y = FV (
). Thus,
lause H 0 G0L;:B0; G0Ris in ground (Pi) and by indu
tion hypothesis we have that stratum(H 0) >stratum(B0) = stratum(newp(t)).Case 6. Clause
 is obtained by
onstraint repla
ement (rule R5r) from
lause� in Pi. In this
ase the thesis follows from the indu
tive hypothesis be
auseground (f
g) = ground (f�g).Proposition 3.3.3. Let P0 be a lo
ally strati�ed CLP program and let P0 [Defsn; : : : ; Pj be a transformation sequen
e whi
h is obtained by unfolding ea
h
lause in Defsn w.r.t. the atom in its body. Then, for any ground atom H wehave that: there exists a proof tree for H in P0 [Defsn i� there exists a prooftree for H in Pj.Proof. Let stratum be a strati�
ation fun
tion for P0 [Defsn. By Theorem3.3.2, all programs in the transformation sequen
e P0[Defsn; : : : ; Pj are lo
allystrati�ed w.r.t. stratum.In the proof of soundness (respe
tively,
ompleteness), given a proof tree Tfor H in Pj (respe
tively, in P0 [Defsn) we
onstru
t a proof tree T 0 for H inP0[Defsn (respe
tively, in Pj) by well-founded indu
tion on the lexi
ographi
produ
t of the well-founded order over stratum and the well-founded order oversize.Let
� 2 ground (f
g) be the ground
lause of the form H L1; : : : ; Lkused at the root of T , where
 is a
lause in Pj (respe
tively, in P0 [Defsn)and � is a valuation su
h that
� = �(
). The indu
tive hypotheses are:

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 45(IHstratum) For all ground atoms A, if stratum(A) < stratum(H) then A hasa proof tree in Pj i� A has a proof tree in P0 [Defsn.(IHsize) For all ground atoms A, if stratum(A) � stratum(H) and A has aproof tree TA in Pj (respe
tively, in P0 [Defsn) su
h that size(TA) < size(T),then A has a proof tree T 0A in P0 [Defsn (respe
tively, in Pj).We have the following property whi
h holds for all nodes L of T .(Property 1). If L is an atom then let TL be the subtree of T rooted at L.We have that TL is a proof tree for L in Pj (respe
tively, in P0 [Defsn) andsize(TL) < size(T). Thus, by hypothesis (IHsize) we have that there exists aproof tree for L in P0 [Defsn (respe
tively, in Pj).Otherwise, let L be a negated atom :B. Sin
e T is a proof tree for H in Pj(respe
tively, in P0 [Defsn) we have that there is no proof tree for B in Pj(respe
tively, in P0 [Defsn). Moreover, sin
e program Pj (respe
tively, P0 [Defsn) is lo
ally strati�ed w.r.t. stratum we have stratum(B) < stratum(H).Thus, we
an apply hypothesis (IHstratum) and we have that there is no prooftree for B in P0 [Defsn (respe
tively, in Pj).Now we prove separately the soundness and
ompleteness part.(Soundness) For any ground atom H, if there exists a proof tree for H in Pjthen there exists a proof tree for H in P0 [Defsn. We pro
eed by
ases.Case 1. Clause
 2 P0 [Defsn. We
onstru
t T 0 as follows: we use
� at theroot, and for all h = 1; : : : ; k su
h that Lh is an atom A we use T 0A as subtreeof T 0 at A. By Property (1) we have that T 0 is a proof tree for H in P0[Defsn.Case 2. Clause
 is obtained by positive unfolding (rule R2p). Thus, thereexist: a (renamed apart)
lause � in Defsn of the form H
;A and a(renamed apart)
lause � in P0 of the form B d;G su
h that (i) A and B havethe same predi
ate symbol, and (ii)
lause
 is of the form H
; d;A = B;G.Sin
e
� 2 ground(f
g) we have that D j= �(
 ^ d ^ A = B) and thus,�� 2 ground (P0 [Defsn) and �� 2 ground (P0 [Defsn).We
onstru
t T 0 as follows: we use �� at the root, then we use �� at A. Theleaves of the
urrent proof tree are L1; : : : ; Lk. We
omplete the
onstru
tionof T 0 by using T 0A as a subtree of T 0 at Lh, for all h = 1; : : : ; k su
h that Lh isan atom A. By Property (1) we have that T 0 is a proof tree for H in P0[Defsn.(Completeness) For any ground atom H, if there exists a proof tree for H inP0 [Defsn then there exists a proof tree for H in Pj . We pro
eed by
ases.Case 1. Clause
 2 Pj . We
onstru
t T 0 as follows: we use
� at the root, andfor all h = 1; : : : ; k su
h that Lh is an atom A, we use T 0A as a subtree of T 0 atA. By Property (1) we have that T 0 is a proof tree for H in Pj .Case 2. Clause
 2 Defsn is removed by positive unfolding (rule R2p). Let
be of the form H 0
;A0. Let R = fAk
k; Gk j k = 1; : : : ;mg be the setof all
lauses in P0 su
h that A0 and Aj have the same predi
ate symbol. We
onsider two
ases.

46 CHAPTER 3. SPECIALIZATION OF GENERAL CLP(R is empty) Sin
e there is no
lause of the form A0 G0 in ground (P0[Defsn),there is no proof tree in P0 [Defsn whi
h uses
� .(R is non-empty) Let
� be of the form H A and let A G be the
lausein ground(f
hg) whi
h is used at A in T , where
h 2 R. Thus, there exists a
lause
0h in Pj of the form H 0
;
h; A0 = Ah; Gh. For all atoms B in G,we have that stratum(B) � stratum(H) and there exists a proof tree TB forB in P0 [Defsn su
h that size(TB) < size(T). Thus, by hypothesis (IHsize)we have that there exists a proof tree T 0B for B in Pj . We
onstru
t T 0 asfollows: we use H G in ground (f
hg) at the root, and we use T 0B as asubtree at B, for all atoms B in G. For all negated atoms :B in G we havethat: (i) there is no proof tree for B in P0[Defsn be
ause T is a proof tree, and(ii)stratum(B) < stratum(H) be
ause program P0 [Defsn is lo
ally strati�edw.r.t. stratum. Thus, by hypothesis (IHstratum) we have that there is no prooftree for B in Pj. Thus, T 0 is a proof tree for H in Pj .Lemma 3.3.4. If there exists a proof tree for H in Pj then there exists aweight-
onsistent proof tree for H in Pj.Proof. Let T be a proof tree for H in Pj of minimal size. Thus, for all atomsA in T , size(TA) = �(A), where TA denotes the subtree of T rooted at A.Thus, for all atoms A and B in T su
h that B is a
hild of A we have �(B) =size(TB) < size(TA) = �(A), that is, T is weight-
onsistent.Proposition 3.3.5. Let P0 be a lo
ally strati�ed CLP program and let Pj ;: : :;Pnbe a transformation sequen
e whi
h is obtained by applying the transformationrules of Se
tion 3.2 with the
onditions that the
onstrained atomi
 de�nitionrule is not applied and the
ontextual
onstraint repla
ement rule R5n is onlyapplied in its restri
ted form R5r. Then, for any ground atom H we have that:for all i = j; : : : ; n,(Soundness) if there exists a proof tree for H in Pi then there exists a prooftree for H in Pj, and(Completeness) if there exists a proof tree for H in Pj then there exists aweight-
onsistent proof tree for H in Pi.Proof. Let stratum be a strati�
ation fun
tion for P0 and for all the programsin the transformation sequen
e P0[Defsn; : : : ; Pj ; : : : ; Pn. The proof pro
eedsby indu
tion on i.Base
ase (i = j). Trivial.Indu
tion step. The indu
tive hypothesis is the following:(IHsoundness) if there exists a proof tree for H in Pi then there exists a prooftree for H in Pj , and(IH
ompleteness1) if there exists a proof tree for H in Pj then there exists aweight-
onsistent proof tree for H in Pi.

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 47By using Lemma 3.3.4 above, we have that (IH
ompleteness1) is equivalentto:(IH
ompleteness) if there exists a weight-
onsistent proof tree for H in Pj thenthere exists a weight-
onsistent proof tree for H in Pi.(Soundness) Given a proof tree T for H in Pi+1 we
onstru
t a proof treeT 0 for H in Pi by well-founded indu
tion on the lexi
ographi
 produ
t of thewell-founded order over stratum and the well-founded order over size.Let
� 2 ground(f
g) be the ground
lause of the form H L1; : : : ; Lkused at the root of T , where
 is a
lause in Pi+1 and � is a valuation su
hthat
� = �(
). The indu
tive hypotheses are:(IHstratum) For all ground atoms A if stratum(A) < stratum(H) then A hasa proof tree in Pi i� A has a proof tree in Pi+1.(IHsize) For all ground atoms A, if stratum(A) � stratum(H) and A has aproof tree TA in Pi su
h that size(TA) < size(T), then A has a proof tree T 0Ain Pi+1.We pro
eed by
ases.Case 1. Clause
 2 Pi. We begin the
onstru
tion of T 0 by using
� at the root.For all h = 1; : : : ; k su
h that Lh is an atom A we have that size(TA) < size(T).By hypothesis (IHsize) there exists a proof tree T 0A for A in Pi whi
h we useas subtree of T 0 at A. For all h = 1; : : : ; k su
h that Lh is a negated atom:B we have that stratum(B) < stratum(H), be
ause program Pi+1 is lo
allystrati�ed w.r.t. stratum, and there is no proof tree for B in Pi+1 be
ause T isa proof tree. By hypothesis (IHstratum) we have that there is no proof treefor B in Pi. Thus, T 0 is a weight-
onsistent proof tree for H in Pi.Case 2. Clause
 is obtained by positive unfolding (rule R2p). Thus, thereexist (renamed apart)
lauses � and � in Pi of the form H
;GL; A;GRand B d;G, respe
tively, su
h that
lause
 is of the form H
; d;A =B;GL; G;GR. Sin
e
� 2 ground (f
g) we have that D j= �(
 ^ d ^ A = B)and thus, �� 2 ground (Pi) and �� 2 ground (Pi).We
onstru
t T 0 as follows: we use �� at the root, then we use �� at �(A)(whi
h is equal to �(B)). The leaves of the
urrent proof tree are L1; : : : ; Lk.For all h = 1; : : : ; k su
h that Lh is an atom C and TC is the subtree of Trooted at C, we have that stratum(C) � stratum(H) and size(TC) < size(T).By hypothesis (IHsize) there exists a proof tree T 0C for C in Pi whi
h we useas a subtree of T 0 at C. For all h = 1; : : : ; k su
h that Lh is a negated atom:C, we have that stratum(C) < stratum(H), be
ause program Pi+1 is lo
allystrati�ed w.r.t. stratum, and there is no proof tree for C in Pi+1 be
ause T isa proof tree. By hypothesis (IHstratum) we have that there is no proof treefor C in Pi. Thus, T 0 is a proof tree for H in Pi.Case 3. Clause
 is obtained by negative unfolding (rule R2n - Case F). Let
lause
 be of the formH 0
; L01; : : : ; L0k. Thus, there exists a
lause � in Pi of

48 CHAPTER 3. SPECIALIZATION OF GENERAL CLPthe form H 0
; L01; : : : ; L0f ;:C 0; L0f+1; : : : ; L0k su
h that there is no
lause inPi de�ning the predi
ate whi
h o

urs in C 0. We begin the
onstru
tion of T 0 byusing a ground instan
e of �� of the form H L1; : : : ; Lf ;:C;Lf+1; : : : ; Lk atthe root. For all h = 1; : : : ; k su
h that Lh is an atom A and TA is the subtree ofT rooted at A, we have that stratum(A) � stratum(H) and size(TA) < size(T).By hypothesis (IHsize) there exists a proof tree T 0A for A in Pi whi
h we useas a subtree of T 0 at A. For all h = 1; : : : ; k su
h that Lh is a negated atom:B, we have that stratum(B) < stratum(H), be
ause program Pi+1 is lo
allystrati�ed w.r.t. stratum, and there is no proof tree for B in Pi+1 be
ause T is aproof tree. By hypothesis (IHstratum) we have that there is no proof tree forB in Pi. Moreover, sin
e no
lause in Pi de�nes the predi
ate of C, we havethat there is no proof tree for C in Pi and stratum(C) < stratum(H) be
auseprogram Pi+1 is lo
ally strati�ed w.r.t. stratum. By hypothesis (IHstratum)there is no proof tree for C in Pi, and thus, T 0 is a proof tree for H in Pi.Case 4. Clause
 is obtained by folding (rule R3n). Let
 be obtained byfolding a
lause � in Pi of the form H 0
; L01; : : : ; L0f�1; L0; L0f+1; : : : ; L0k byusing a (variant of a) de�nition
lause Æ 2 Defsn of the form A0 d;B0.(Case P) Literal L0 is the atom B0 and
lause
 is of the form H 0
; L01; : : : ; L0f�1; A0; L0f+1; : : : ; L0k.Let
� be of the form H L1; : : : ; Lf�1; A; Lf+1; : : : ; Lk. By hypothesis(IHsize) there exists a proof tree for A in Pi. Thus, by hypothesis (IHsound-ness) there exists a proof tree for A in Pj . By Proposition 3.3.3, there existsa proof tree for A in P0 [Defsn whi
h uses a
lause A B in ground (fÆg)at the root. Thus, by Proposition 3.3.3, there exists a proof tree for B inPj . By hypothesis (IH
ompleteness) there exists a proof tree T 0B for B in Pi.By the
onditions on the appli
ability of rule R3n, there exist a
lause �� inground (f�g) of the form H L1; : : : ; Lf�1; B; Lf+1; : : : ; Lk and a valuation� su
h that �� = �(�(�)). We begin the
onstru
tion of T 0 by using �� at theroot. For all h = 1; : : : ; f � 1; f + 1; : : : ; k su
h that Lh is an atom C and TCis the subtree of T rooted at C, we have that stratum(C) � stratum(H) andsize(TC) < size(T). By hypothesis (IHsize) there exists a proof tree T 0C for Cin Pi whi
h we use as a subtree of T 0 at C. We
omplete the
onstru
tion of T 0by using T 0B as a subtree at B. For all h = 1; : : : ; f � 1; f + 1; : : : ; k su
h thatLh is a negated atom :C we have that stratum(C) < stratum(H), be
auseprogram Pi+1 is lo
ally strati�ed w.r.t. stratum, and there is no proof tree forC in Pi+1 be
ause T is a proof tree. By hypothesis (IHstratum) we have thatthere is no proof tree for C in Pi. Thus, T 0 is a proof tree for H in Pi.(Case N) Literal L0 is the negated atom :B0 and
lause
 is of the formH 0
; L01; : : : ; L0f�1;:A0; L0f+1; : : : ; L0k.Let
� be of the form H L1; : : : ; Lf�1;:A;Lf+1; : : : ; Lk. Sin
e programPi+1 is lo
ally strati�ed w.r.t. stratum, we have that stratum(A) < stratum(H)

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 49and there is no proof tree for A in Pi+1 be
ause T is a proof tree. Thus, byhypothesis (IHstratum) there exists no proof tree for A in Pi. By hypothesis(IH
ompleteness) there exists no proof tree for A in Pj . By Proposition 3.3.3,there exists no proof tree for A in P0 [Defsn. Thus, for all
lauses A Din ground (fÆg) we have that there is no proof tree for D in P0 [Defsn. ByProposition 3.3.3, for all
lauses A D in ground (fÆg) there exists no prooftree for D in Pj and, by hypothesis (IHsoundness), there exists no proof treefor D in Pi. By the
onditions on the appli
ability of rule R3n, there exist a
lause �� in ground (f�g) of the form H L1; : : : ; Lf�1;:B;Lf+1; : : : ; Lk anda valuation � su
h that �� = �(�(�)). We begin the
onstru
tion of T 0 by using�� at the root. For all h = 1; : : : ; f � 1; f +1; : : : ; k su
h that Lh is an atom Cand TC is the subtree of T rooted at C, we have that stratum(C) � stratum(H)and size(TC) < size(T). By hypothesis (IHsize) there exists a proof tree T 0C forC in Pi whi
h we use as a subtree of T 0 at C. For all h = 1; : : : ; f�1; f+1; : : : ; ksu
h that Lh is a negated atom :C we have that stratum(C) < stratum(H),be
ause program Pi+1 is lo
ally strati�ed w.r.t. stratum, and there is no prooftree for C in Pi+1, be
ause T is a proof tree. By hypothesis (IHstratum) wehave that there is no proof tree for C in Pi. Moreover, by the
onditionson the appli
ability of rule R3n, for every
lause in ground(f�g) of the formH L1; : : : ; Lf�1;:B;Lf+1; : : : ; Lk we have that A B is in ground (fÆg),and thus, there exists no proof tree for B in Pi. Thus, T 0 is a proof tree for Hin Pi.Case 5. Clause
 is obtained by
onstraint repla
ement (rule R5r). Let �be the
lause in Pi whi
h has been repla
ed by
. By the
ondition on theappli
ability of rule R5r we have that ground (f
g) = ground(f�g). We beginthe
onstru
tion of T 0 by using
� at the root. For all h = 1; : : : ; f � 1; f +1; : : : ; k su
h that Lh is an atom C and TC is the subtree of T rooted at C, wehave that stratum(C) � stratum(H) and size(TC) < size(T). By hypothesis(IHsize) there exists a proof tree T 0C for C in Pi whi
h we use as a subtree ofT 0 at C. For all h = 1; : : : ; f � 1; f + 1; : : : ; k su
h that Lh is a negated atom:C, we have that stratum(C) < stratum(H), be
ause program Pi+1 is lo
allystrati�ed w.r.t. stratum, and there is no proof tree for C in Pi+1, be
ause T isa proof tree. By hypothesis (IHstratum) we have that there is no proof treefor C in Pi. Thus, T 0 is a proof tree for H in Pi.(Completeness) Given a weight-
onsistent proof tree T forH in Pi we
onstru
ta weight-
onsistent proof tree T 0 for H in Pi+1 by well-founded indu
tion onthe lexi
ographi
 produ
t of the well-founded order over stratum and the well-founded order over size.Let
� 2 ground(f
g) be the ground
lause of the form H L1; : : : ; Lkused at the root of T , where
 is a
lause in Pi and � is a valuation su
h that
� = �(
). The indu
tive hypotheses are:

50 CHAPTER 3. SPECIALIZATION OF GENERAL CLP(IHstratum) For all ground atoms A if stratum(A) < stratum(H) then A hasa proof tree in Pi i� A has a proof tree in Pi+1.(IHweight) For all ground atoms A su
h that stratum(A) � stratum(H) and�(A) < �(H), if A has a weight-
onsistent proof tree TA in Pi then A has aweight-
onsistent proof tree T 0A in Pi+1.We pro
eed by
ases.Case 1. Clause
 2 Pi+1. We begin the
onstru
tion of T 0 by using
� atthe root. For all h = 1; : : : ; k su
h that Lh is an atom A, we have thatstratum(A) � stratum(H), be
ause Pi is lo
ally strati�ed w.r.t. stratum, and�(A) < �(H), be
ause T is weight-
onsistent. By hypothesis (IHweight) thereexists a weight-
onsistent proof tree T 0A for A in Pi+1 whi
h we use as subtreeof T 0 at A. For all h = 1; : : : ; k su
h that Lh is a negated atom :B, wehave that stratum(B) < stratum(H), be
ause program Pi is lo
ally strati�edw.r.t. stratum, and there is no proof tree for B in Pi, be
ause T is a proof tree.By hypothesis (IHstratum) we have that there is no proof tree for B in Pi+1.Thus, T 0 is a weight-
onsistent proof tree for H in Pi+1.Case 2. Clause
 is removed by positive unfolding (rule R2p). Let
 be a
lause of the form H 0
; L01; : : : ; L0f�1; p(X); L0f+1; : : : ; L0k su
h that there isno
lause in Pi whose head has the predi
ate symbol p. Sin
e there is no
lauseof the form p(t) G in ground (Pi), there is no proof tree in Pi whi
h uses
� .Case 3. Clause
 is removed by negative unfolding (rule R2n - Case V). Let
lause
 be of the form H 0
;GL;:p(Y); GR. By the
onditions on Case Vof the negative unfolding rule, there exists a
lause p(X) in Pi. Thus, everyground instan
e of p(X) has a proof tree in Pi. Thus, there is no proof tree inPi whi
h uses
� .Case 4. Clause
 is removed by folding (rule R3n). Let
 be a
lause of theform H 0
; L01; : : : ; L0f�1; L0; L0f+1; : : : ; L0k and let � be the
lause in Pi whi
his obtained by folding
 w.r.t. L0, by using a (variant of a) de�nition
lauseÆ 2 Defsn of the form A0 d;B0.(Case P) Literal L0 is the atom B0 and
lause � is of the form H 0
; L01; : : : ; L0f�1; A0; L0f+1; : : : ; L0k.Let
� be of the form H L1; : : : ; Lf�1; B; Lf+1; : : : ; Lk. By hypothe-sis (IHsoundness), there exists a proof tree for B in Pj . Let T 00B be a prooftree for B in Pj of minimal size. Let A be an atom su
h that A B is a
lause in ground (fÆg). By
onstru
tion of Pj , we have that the tree whi
h isobtained from T 00B by repla
ing the root B by A is a proof tree for A in Pj .Thus, we have that �(A) � �(B) and, by Lemma 3.3.4, there exists a weight-
onsistent proof tree for A in Pj . By hypothesis (IH
ompleteness), there existsa weight-
onsistent proof tree for A in Pi. Sin
e T is weight-
onsistent, wehave �(A) � �(B) < �(H). Moreover, stratum(A) � stratum(H), be
ausePi+1 is lo
ally strati�ed w.r.t. stratum. By hypothesis (IHweight), there exists

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 51a weight-
onsistent proof tree T 0A for A in Pi+1. By the
onditions on theappli
ability of rule R3n, there exist a
lause �� in ground (f�g) of the formH L1; : : : ; Lf�1; A; Lf+1; : : : ; Lk and a valuation � su
h that �� = �(�(�)).We use �� at the root of T 0. For all h = 1; : : : ; f � 1; f +1; : : : ; k su
h that Lhis an atom C, we have that stratum(C) � stratum(H), be
ause Pi is lo
allystrati�ed w.r.t. stratum, and �(C) < �(H), be
ause T is weight-
onsistent. Byhypothesis (IHweight), there exists a weight-
onsistent proof tree T 0C for C inPi+1 whi
h we use as subtree of T 0 at C. We
omplete the
onstru
tion of T 0by using T 0A as subtree at A. For all h = 1; : : : ; f � 1; f + 1; : : : ; k su
h thatLh is a negated atom :C, we have that stratum(C) < stratum(H), be
auseprogram Pi is lo
ally strati�ed w.r.t. stratum, and there is no proof tree forC in Pi, be
ause T is a proof tree. By hypothesis (IHstratum) we have thatthere is no proof tree for C in Pi+1. Thus, T 0 is a weight-
onsistent proof treefor H in Pi+1.(Case N) Literal L0 is the negated atom :B0 and
lause � is of the formH 0
; L01; : : : ; L0f�1;:A0; L0f+1; : : : ; L0k.Let
� be of the form H L1; : : : ; Lf�1;:B;Lf+1; : : : ; Lk. Sin
e T is aproof tree, there is no proof tree for B in Pi. Thus, by hypothesis (IH
omplete-ness), there exists no proof tree for B in Pj and, by Proposition 3.3.3, thereexists no proof tree for B in P0[Defsn. By the
onditions on the appli
abilityof rule R3n, there exist a valuation � su
h that �� = �(�(�)) is a
lause of theform H L1; : : : ; Lf�1;:A;Lf+1; : : : ; Lk and a
lause A B in ground (fÆg)su
h that there exists no proof tree for A in P0 [Defsn. By Proposition3.3.3, there exists no proof tree for A in Pj and, by hypothesis (IHsoundness),there exists no proof tree for A in Pi. Sin
e program Pi+1 is lo
ally strati�edw.r.t. stratum, we have that stratum(A) < stratum(H). Thus, by hypothesis(IHstratum) there exists no proof tree for A in Pi+1. We begin the
onstru
tionof T 0 by using �� at the root. For all h = 1; : : : ; f � 1; f + 1; : : : ; k su
h thatLh is an atom C we have that stratum(C) � stratum(H), be
ause Pi is lo
allystrati�ed w.r.t. stratum, and �(C) < �(H), be
ause T is weight-
onsistent. Byhypothesis (IHweight) there exists a weight-
onsistent proof tree T 0C for C inPi whi
h we use as subtree of T 0 at C. For all h = 1; : : : ; f � 1; f + 1; : : : ; ksu
h that Lh is a negated atom :C, we have that stratum(C) < stratum(H),be
ause program Pi is lo
ally strati�ed w.r.t. stratum, and there is no prooftree for C in Pi, be
ause T is a proof tree. By hypothesis (IHstratum) we havethat there is no proof tree for C in Pi+1. Thus, T 0 is a weight-
onsistent prooftree for H in Pi+1.Case 5. Clause
 is removed by removal of
lause with unsatis�able body (ruleR4f). By the
ondition on rule R4f we have that ground(f
g) = ;. Thus, thereis no
� .Case 6. Clause
 is removed by removal of subsumed
lause (rule R4s). Let

52 CHAPTER 3. SPECIALIZATION OF GENERAL CLPbe of the form H
;G. By the
ondition on rule R4s there exists a
lause �of the form p(X) in Pi+1 where p is the predi
ate symbol of H. Thus, thereexists H in ground (f�g) whi
h we use to
onstru
t the weight-
onsistentproof tree T 0 for H in Pi+1.Case 7. Clause
 is removed by removal of useless
lauses (rule R4u). If p isa useless predi
ate of Pi and H is an atom with predi
ate p, then there is noproof tree for H in Pi. The proof pro
eeds by
ontradi
tion. We assume thatthere is a proof tree T for H in Pi. By the de�nition of useless predi
ate, ea
hnode in T has a son whi
h is a positive literal of the form q(: : :), where q is auseless predi
ate of Pi. Thus, there exists a leaf of the form q(: : :), and this
ontrasts with the hypothesis that T is a proof tree.Case 8. Clause
 is removed by
onstraint repla
ement (rule R5r). Let � bethe
lause in Pi+1 whi
h repla
es
. By the
ondition on rule R5r we havethat ground (f
g) = ground (f�g). We begin the
onstru
tion of T 0 by using
� at the root. For all h = 1; : : : ; k su
h that Lh is an atom C, we havethat stratum(C) � stratum(H), be
ause Pi is lo
ally strati�ed w.r.t. stratum,and �(C) < �(H), be
ause T is weight-
onsistent. By hypothesis (IHweight)there exists a weight-
onsistent proof tree T 0C for C in Pi whi
h we use assubtree of T 0 at C. For all h = 1; : : : ; k su
h that Lh is a negated atom :C wehave that stratum(C) < stratum(H), be
ause program Pi is lo
ally strati�edw.r.t. stratum, and there is no proof tree for C in Pi, be
ause T is a proof tree.By hypothesis (IHstratum) we have that there is no proof tree for C in Pi+1.Thus, T 0 is a weight-
onsistent proof tree for H in Pi+1.De�nition 3.3.6. [Depth of a Proof Tree℄ The depth of a proof tree T isdepth(T) = maxflength(�) j� is a path from the root of T to a leaf of Tg.Lemma 3.3.7. Let P be a de�nite
onstraint logi
 program. For all groundatoms A and for all k � 1, we haveA has a proof tree T in P su
h that depth(T) � k i� A 2 TP " k.Proof. By indu
tion on k.Base
ase (k = 1). There exists a proof tree T for A in P su
h that depth(T) =1 i� there exists a
lause of the form A in ground (P) i� A 2 TP " 1.Indu
tion step.(If part) Let
 be a
lause of the form A A1; : : : ; An in ground (P) su
hthat Ai 2 TP " (k � 1), for all i = 1; : : : ; n. Thus, by indu
tive hypothesis,there exists a proof tree Ti for Ai in P su
h that depth(Ti) � k � 1, for alli = 1; : : : ; n. We
onstru
t T by using
 at the root and by using Ti as asubtree of T at Ai. Thus, T is a proof tree for A in P and depth(T) � k.(Only if part) Let T be a proof tree for A in P su
h that depth(T) = k, andlet A A1; : : : ; An be the
lause in ground (P) used at the root of T . For all

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 53i = 1; : : : ; n, let Ti be the subtree of T rooted at Ai. Sin
e Ai is an atom, Tiis a proof tree for Ai in P and depth(Ti) � k � 1, we
an apply the indu
tivehypothesis and we have that Ai 2 TP " (k � 1), for all i = 1; : : : ; n. Thus,A 2 TP " k.Corollary 3.3.8. [Proof Trees and Least D-model℄ Let P be a de�nite
on-straint logi
 program. For all ground atoms A, we haveA has a proof tree in P i� A 2 lm(P;D)Proof. For all atoms A, we have A 2 lm(P;D) i� A 2 TP " ! i� there existsk � 1 su
h that A 2 TP " k. By using Lemma 3.3.7, A 2 lm(P;D) i� thereexists k � 1 su
h that A has a proof tree T in P and depth(T) � k i� A has aproof tree in P .Theorem 3.3.9. [Proof Trees and Perfe
t Model℄ Let P be a
onstraint logi
program whi
h is lo
ally strati�ed w.r.t. stratum. For all ground atoms A, wehaveA has a proof tree in P i� A 2M(P)Proof. Let stratum(A) = � and let T be a proof tree for A in P . Thus, byde�nition of perfe
t model, there exists a
lause
 2 ground(P) of the formA A1; : : : ; An;:B1; : : : ;:Bm, with m;n � 0, whi
h is used in T i� thereexists a ground
lause
0 2 P 0� of the form A A1; : : : ; An. The thesis followsfrom Corollary 3.3.8.Theorem 3.3.10. [Corre
tness of the Transformation Rules℄ Let P0; : : : ; Pnbe a transformation sequen
e. Let us assume that(i) P0 is lo
ally strati�ed, andduring the
onstru
tion of P0; : : : ; Pn(ii) ea
h
lause introdu
ed by the
onstrained atomi
 de�nition rule and usedfor
onstrained atomi
 folding, is unfolded w.r.t. the atom in its body,(iii) the
ontextual
onstraint repla
ement rule R5n is only applied in its re-stri
ted form R5r,Then, there exists a fun
tion stratum su
h that programs P0 and Pn are lo
allystrati�ed w.r.t. stratum andM(P0 [Defsn) =M(Pn)where Defsn denotes the set of de�nitions introdu
ed during the
onstru
tionof P0; : : : ; Pn.Proof. It follows from Theorem 3.3.2, Proposition 3.3.3, Proposition 3.3.5 andTheorem 3.3.9.

54 CHAPTER 3. SPECIALIZATION OF GENERAL CLPIn order to state the theorem on the
orre
tness of the
ontextual
onstraintrepla
ement rule R5n w.r.t. the perfe
t model we need to extend the de�nitionof
all patterns of a
lause presented in Se
tion 2.3 to general
onstraint logi
programs.De�nition 3.3.11. [General Call Patterns℄ Given a
lause
 of the formp(X) d; L1; : : : ; Lk, with k > 0, the set of general
all patterns of
, whi
his denoted by CP(
), is the set of triples hsolve(d; Y); A; Y i su
h that: either(i) Lj is the atom A, for some j = 1; : : : ; k, and Y denotes the linking vari-ables of A in
, or (ii) Lj is the negated atom :A, for some j = 1; : : : ; k, andY = vars(A). hsolve(d; Y); A; Y i is said to be the
all pattern of
 for Lj.General
all patterns will be used in our
ontextual spe
ialization strategybelow (see Se
tion 3.4) for introdu
ing new de�nitions and for applying the
ontextual
onstraint repla
ement rule R5n.Lemma 3.3.12. [CCR℄ Let P0; : : : ; Pn be a transformation sequen
e su
h that,for all i = 0; : : : ; n�1, program Pi+1 is derived from Pi by applying the
ontex-tual
onstraint repla
ement rule R5n w.r.t. a given set C of
onstrained atomssu
h that C � f(
;A) j h
;A;Xi 2 CP(P0)g.Then, for all
onstrained atoms
;A 2 C, for every valuation � and for every
lause
 su
h that hd(
) = �(A), we have that if D j= �(
) then, for all i,
 2 ground (P0) i�
 2 ground (Pi).Proof. By indu
tion on i.Base
ase (i = 0). Trivial.Indu
tion step. We pro
eed by
ases.Case 1.
 is a ground instan
e of a
lause whi
h is in Pi and in Pi+1.Trivial.Case 2.
 is a ground instan
e of a
lause whi
h is removed from Pi by
ontextual
onstraint repla
ement.Let
 2 ground (f�g) where � is a variant of a
lause in Pi of the formA d;G whi
h is repla
ed by a
lause � in Pi+1 of the form A d0; G. Fromthe
ondition on rule R5n we have that D j= 8X(
! (9W d$ 9W 0 d0) whereY = FV (A;G), W = FV (d)�Y andW 0 = FV (d0)�Y . Thus,
 2 ground (f�g)i�
 2 ground(f�g). The thesis follows by indu
tive hypothesis.Proposition 3.3.13. [CCR℄ Let P0; : : : ; Pn be a transformation sequen
e su
hthat, for all i = 0; : : : ; n� 1, program Pi+1 is derived from Pi by applying the
ontextual
onstraint repla
ement rule R5n w.r.t. a given set C of
onstrainedatoms su
h that C � f(
;A) j h
;A;Xi 2 CP(P0)g.Then, for all
onstrained atoms
;A 2 C, for every valuation � and for every
lause
 su
h that hd(
) = �(A), we have that if D j= �(
) then, for all i,T is a proof tree for �(A) in P0 i� T is a proof tree for �(A) in Pi

3.3. CORRECTNESS OF THE TRANSFORMATION RULES 55Proof. By indu
tion on i.Base
ase (i = 0). Trivial.Indu
tion step.(Soundness) We pro
eed by well-founded indu
tion on size(T). The indu
tivehypothesis is:(IHsize) for all
onstrained atoms d;B 2 C and for every valuation � we havethat if D j= �(d), T 0 is a proof tree for �(B) in Pi+1 and size(T 0) < size(T)then T 0 is a proof tree for �(B) in Pi.Let
 be the
lause used at the root of T . By Lemma 3.3.12 above,
 2ground(P0). Thus, for all atoms B0 in bd(
) we have that there exist a
allpattern d;B in C and a valuation � su
h that D j= �(d) and B0 = �(B),be
ause C
ontains all the
all patterns of P0. Let T 0 be the subtree of Trooted at B0. By hypothesis (IHsize), we have that T 0 is a proof tree for B0 inPi. Moreover, by Lemma 3.3.12, we have that
 2 ground(Pi). Thus, T is aproof tree for �(A) in Pi.(Completeness) We pro
eed by well-founded indu
tion on size(T). The indu
-tive hypothesis is:(IHsize) for all
onstrained atoms d;B 2 C and for every valuation � we havethat if D j= �(d), T 0 is a proof tree for �(B) in Pi and size(T 0) < size(T) thenT 0 is a proof tree for �(B) in Pi+1.Let
 be the
lause used at the root of T . By Lemma 3.3.12 above,
 2ground(P0). Thus, for all atoms B0 in bd(
) we have that there exist a
allpattern d;B in C and a valuation � su
h that D j= �(d) and B0 = �(B),be
ause C
ontains all the
all patterns of P0. Let T 0 be the subtree of Trooted at B0. By hypothesis (IHsize), we have that T 0 is a proof tree for B0 inPi+1. Moreover, by Lemma 3.3.12, we have that
 2 ground(Pi+1). Thus, Tis a proof tree for �(A) in Pi+1.Theorem 3.3.14. [Corre
tness of the Contextual Constraint Repla
ementRule R5n℄ Let P0; : : : ; Pn be a transformation sequen
e su
h that, for alli = 0; : : : ; n � 1, program Pi+1 is derived from Pi by applying the
ontextual
onstraint repla
ement rule R5n w.r.t. a given set C of
onstrained atoms su
hthat C � f(
;A) j h
;A;Xi 2 CP(P0)g. Assume that programs P0 and Pn arelo
ally strati�ed w.r.t. stratum.Then, for all
onstrained atoms
;A 2 C and for every valuation � we havethat:if D j= �(
) then �(A) 2M(P0) i� �(A) 2M(Pn)Proof. It follows from Proposition 3.3.13 and Theorem 3.3.9.Noti
e that if Pn is derived from P0 by appli
ations of the
ontextual
onstraintrepla
ement rule, then it may be the
ase that M(P0) 6= M(Pn), be
ause

56 CHAPTER 3. SPECIALIZATION OF GENERAL CLPTheorem 3.3.14 ensures the preservation of the perfe
t model only for atomswhose arguments satisfy the
onstraints spe
i�ed by C.Noti
e also that, the
ontextual
onstraint repla
ement rule may not pre-serve lo
al strati�
ation. For instan
e, let us
onsider the programP0: p false;:pWe have that ground(P0) = ;, and thus, P0 is lo
ally strati�ed w.r.t. everylo
al strati�
ation fun
tion. Now, by applying the
ontextual
onstraint re-pla
ement rule w.r.t. f(false ; p)g we get the programP1: p :pwhi
h is not lo
ally strati�ed.However, all appli
ations of the
ontextual
onstraint repla
ement rule pre-sented in this thesis, do preserve lo
al strati�
ation. This is due to the fa
t that,a

ording to the spe
ialization strategies presented in Se
tions 2.5.3, 3.4 and4.4, we apply the
ontextual
onstraint repla
ement rule to strati�ed programsonly, and the
ontextual
onstraint repla
ement rule preserves strati�
ation.Indeed, let us
onsider a
lause
1: H
1; G. If
1 is strati�ed w.r.t. a levelmapping �, then also the
lause H
2; G, derived by repla
ing
1 by
2 in
, is strati�ed w.r.t. � be
ause the user de�ned predi
ates o

urring in
1 and
2 are the same. Thus, we have the following straightforward
onsequen
e ofTheorem 3.3.14.Corollary 3.3.15. [Corre
tness of the Contextual Constraint Repla
ementRule for Strati�ed Programs℄ Let P0 be a strati�ed program and let P0; : : : ; Pnbe a transformation sequen
e where, for k = 0; : : : ; n� 1, program Pk+1 is de-rived from Pk by applying the
ontextual
onstraint repla
ement rule R5 w.r.t. aset C of
onstrained atoms su
h that C � f(
;A) j h
;A;Xi 2 CP(P0)g. Then(i) Pn is strati�ed and (ii) for all
onstrained atoms
;A 2 C and for everyvaluation �, we have that:if D j= �(
) then �(A) 2M(P0) i� �(A) 2M(Pn)3.4 An Automated Strategy for Contextual Spe
ial-ization of General Constraint Logi
 ProgramsWe now des
ribe a parameterized strategy for spe
ializing CLP(D) programswith lo
ally strati�ed negation. This strategy is a proper extension of thestrategy for the spe
ialization of de�nite
onstraint logi
 programs presentedin Se
tion 2.5.As in the de�nite
ase, the strategy for spe
ializing general
onstraint logi
programs is divided into three phases and is parameterized by: (i) the fun
tionsolve whi
h is used for the appli
ation of the
onstraint repla
ement rule, (ii)

3.4. A STRATEGY FOR SPECIALIZING GENERAL CLP 57an unfolding fun
tion Unfold for guiding the unfolding pro
ess, (iii) a well-quasi order �u over
onstrained goals whi
h tells us when to terminate theunfolding pro
ess, (iv) a
lause generalization fun
tion gen, with its asso
iatedwidening operator r, and (v) a well-quasi order �g over
onstrained atomswhi
h tells us when to a
tivate the
lause generalization pro
ess. On
e the
hoi
e of these parameters has been made, our strategy
an be applied in afully automati
 way.We introdu
e a tree Defstree,
alled de�nition tree, whose nodes are the
lauses introdu
ed by the de�nition rule during program spe
ialization. More-over, for ea
h
lause Æ in Defstree we introdu
e a tree Utree(Æ),
alled unfoldingtree. The root of Utree(Æ) is Æ itself, and the nodes of Utree(Æ) are the
lausesderived from Æ by applying the positive unfolding and
onstraint repla
ementrules.The strategy for spe
ializing general
onstraint logi
 programs
an be pre-sented in a way whi
h is very similar to the presentation of the
orrespondingstrategy for the de�nite
ase. We now dis
uss on the similarities and thedi�eren
es between the two strategies, in ea
h phase.Phase A. We
onsider a general CLP program P and a
onstrained atom
;A and we iterate the pro
edures Unfold-Repla
e and De�ne-Fold as we nowexplain.During the Unfold-Repla
e pro
edure we apply the positive unfolding rulea

ording to a given unfolding fun
tion, and we solve the
onstraints in thederived
lauses by using the given fun
tion solve. During this phase, we neverapply the negative unfolding rule.This pro
edure is very similar to the Unfold-Repla
e pro
edure presented inthe strategy for spe
ializing de�nite CLP programs. In fa
t, we
an even reusethe same pseudo-
ode of Se
tion 2.5.1 for (i) the Unfold-Repla
e pro
edureand (ii) the Unfold and Repla
e fun
tions by modifying the de�nition of
lausewith non-failing body as follows. A
lause of the form H
; L1; : : : ; Ln hasa non-failing body i�
 is satis�able, and for i = 1; : : : ; n, if Li is A thenA is not failed, otherwise, if Li is :A then A is not valid. Noti
e that theunfolding fun
tion is not de�ned on
lauses of the form H
;G where G isa
onjun
tion of negated atoms. The termination of this pro
edure is ensuredby the use of the well-quasi order �u.We then apply the De�ne-Fold pro
edure and we fold the
lauses we havederived during the Unfold-Repla
e pro
edure. For folding we make use ofalready available de�nitions and, possibly, some new de�nitions introdu
ed byusing the
lause generalization fun
tion.The de�nition to be used for folding is sele
ted a

ording to the de�nitionfun
tion De�ne of Se
tion 2.5.2 where we repla
e the notion of
all patternby the notion of general
all pattern presented in Se
tion 3.3. This is possible

58 CHAPTER 3. SPECIALIZATION OF GENERAL CLPbe
ause the general
all pattern of a
lause for a negated atom :A is a triple ofthe form h
;A; Y i, where A is an atom. Noti
e that (i) the
lauses introdu
edby the de�nition fun
tion are de�nite
lauses, and (ii) when applying the
on-strained atomi
 folding rule of Se
tion 3.2 w.r.t. a negated atom :A (see Case(N)), we introdu
e a new
lause where :A has been repla
ed by a negatedatom, and not by an atom, as illustrated by the following simple example.Example. Let
 be a
lause of the formq(X ;Y) X � 1; Y > X;:p(Y)and let Æ be a de�nition of the formnewp(Y) Y � 0; p(Y)then, by
onstrained atomi
 folding
 w.r.t. :p(Y) using Æ we derive a
lauseof the formq(X ;Y) X � 1; Y > X;:newp(Y)Case (N) of our
onstrained atomi
 folding rule is not an instan
e of the foldingrule presented in [74℄ for general logi
 programs, where negated atoms arerepla
ed by atoms. Indeed, an instan
e of that rule would introdu
e a de�nitionÆ0 of the formnewp2(Y) Y � 0;:p(Y)for folding
lause
 above w.r.t. :p(Y), thereby deriving a
lause of the formq(X ;Y) X � 1; Y > X;newp2(Y)Moreover, in order to unfold the literal :p(Y) in Æ0 we would need to introdu
ea negative unfolding rule with a mu
h weaker appli
ability
ondition. Re
allthat a negative unfolding rule was presented in Se
tion 3.2, but it
an only beapplied w.r.t. negated atoms of the form :A, where A is a valid atom.Thus, for De�ne-Fold pro
edure, we use the same pseudo-
ode of Se
tion2.5.2, ex
ept for some minor di�eren
es whi
h are highlighted below. (1) Thephrase `Let � be of the form A0 d;A1; : : : ; Ak' should be repla
ed by thephrase `Let � be of the form A0 d; L1; : : : ; Lk' be
ause, in general CLPprograms the body of a
lause
ontains literals, not only atoms. (2) Thephrase `Let
pi be the
all pattern of
i for Ai' should be repla
ed by thephrase `Let
pi be the general
all pattern of
i for Li'. (3) The phrase `Fold
i w.r.t. Ai' should be repla
ed by the phrase `Fold
i w.r.t. Li'.Phase A terminates with output program PA when no new de�nitions needto be introdu
ed for performing the folding steps. The termination of Phase Ais ensured by the properties of the generalization fun
tion and well-quasi order�g whi
h guarantee that the set of generated de�nitions is �nite.Phase B.We
onsider program PA and, by applying the
ontextual
onstraintrepla
ement rule, from ea
h
lause de�ning a predi
ate, say q, we remove the
onstraints whi
h hold before the exe
ution of the
lause. These
onstraints
an be determined by
omputing the least upper bound of the set of
onstraints

3.4. A STRATEGY FOR SPECIALIZING GENERAL CLP 59whi
h o

ur in the
lauses
ontaining a
all of q. The presentation of this phaseis almost identi
al to that of Se
tion 2.5.3 ex
ept for the fa
t that the notionof
all pattern has been repla
ed by the notion of general
all pattern.Phase C. If the output of Phase B is a program PB whi
h admits a �nite strat-i�
ation fS1; : : : ; Sng, then, during Phase C, we apply the following rules: (i)positive and negative unfolding, (ii) removal of useless and subsumed
lauses,and (iii)
onstraint repla
ement. This phase di�ers from Phase C of Se
tion2.5.3 in that we apply also the negative unfolding rule and we iterate over thestrata S1; : : : ; Sn of program PB .We now present our strategy for
ontextual spe
ialization of CLP(D) pro-grams.Contextual Spe
ialization StrategyInput : (i) A CLP(D) program P and(ii) a
onstrained atom
; p(X) su
h that FV (
) � X.Output : A CLP(D) program Ps and an atom ps(X).Phase A. By the de�nition rule introdu
e a
lause Æ0 of the form ps(X)
; p(X). Let Defstree
onsist of
lause Æ0 only.Ps := ;; NewDefs := fÆ0g;while NewDefs 6= ; doUnfold-Repla
e(NewDefs ;UForest);De�ne-Fold(UForest ;Defstree ;NewDefs;FoldedCls);Ps := Ps [FoldedClsend-whilePhase B. [Contextual Constraint Repla
ement ℄Let Ps be a program of the form f
1; : : : ;
pg andlet C be the set f(solve(
;X); ps(X))g [f(d;A) j hd;A; Y i 2 CP(Ps)g of
on-strained atoms.for i = 1; : : : ; p doLet
i be a
lause of the form q(X) e1; : : : ; en; Gwhere e1; : : : ; en are basi

onstraints with free variables in X [vars(G);Let Cq be the set f(d1; q(X)); : : : ; (dk; q(X))g of all renamed
onstrained atoms d; q(X) in C;Let f be the
onjun
tion of all ej 's su
h thatD j= 8 (dr ! ej) does not hold;Apply the
ontextual
onstraint repla
ement rule w.r.t. Cqthereby repla
ing
i by the
lause q(X) f;G;endforPhase C. This phase is performed only if the program PB admits a �nitestrati�
ation fS1; : : : ; Sng. In this
ase, by working bottom-up on the strata

60 CHAPTER 3. SPECIALIZATION OF GENERAL CLPS1; : : : ; Sn, we simplify the de�nition of every predi
ate p in PB , with the aimof deriving either the fa
t p(: : :) or the empty de�nition. During this phasewe apply the following rules: (i) positive and negative unfolding, (ii) removalof useless and subsumed
lauses, and (iii)
onstraint repla
ement.The algorithm for Phase C is as follows.Ps := ;for i := 1; : : : ; n dorepeatS0 := Si;Apply to Si, as long as possible, the rule for removing subsumed
lauses;Apply to Si, as long as possible, the negative unfolding rule andthe positive unfolding rule w.r.t. valid and failed atoms in S1 [: : : [Si;for all
lauses in Si of the form H
 doif D j= 8(9Y
) where Y = FV (
)� vars(H)then apply the
onstraint repla
ement rule R5rand repla
e H
 by the fa
t H end-foruntil S0 = SiRemove the useless
lauses from Si;Ps := Ps [Si;end-for tu3.5 Corre
tness of the StrategyTheorem 3.5.1. [Corre
tness of the Contextual Spe
ialization Strategy℄ LetP be a lo
ally strati�ed general CLP(D) program and
; p(X) be a
onstrainedatom with FV (
) � X. Let Ps and ps(X) be the general CLP(D) program andthe atom obtained by the
ontextual spe
ialization strategy. Let the output ofPhase B be a program PB.Then, if there exists a fun
tion stratum su
h that P and PB are lo
ally strati�edw.r.t. stratum, then program Ps is lo
ally strati�ed w.r.t. stratum and for everyvaluation � we have that:if D j= �(
) then �(p(X)) 2M(P) i� �(ps(X)) 2M(Ps)Proof. During the appli
ation of the
ontextual spe
ialization strategy, foldingis applied only to
lauses whi
h have been derived by one or more appli
ationsof the unfolding rule, followed by appli
ations of the
onstraint repla
ementrule. Thus, the thesis follows from Theorem 3.3.2, Theorem 3.3.10 and Theo-rem 3.3.14 (see Se
tion 3.3).

3.6. TERMINATION OF THE STRATEGY 613.6 Termination of the StrategyTheorem 3.6.1. [Termination of the Contextual Spe
ialization Strategy℄ LetP be a general CLP(D) program, and
; p(X) be a
onstrained atom withFV (
) � X. If the widening operator r used for
lause generalization agreeswith the well-quasi order �g, then the
ontextual spe
ialization strategy termi-nates.Proof. (Outline) It is similar to the proof of termination of the
ontextualspe
ialization strategy for de�nite
onstraint logi
 programs (see Theorem2.7.2).3.7 Related WorkTamaki and Sato's unfold/fold transformation rules [80℄ have been extendedto logi
 programs with negation by Seki [74℄. Seki's rules have been provedto preserve the perfe
t model of strati�ed programs [74℄ and the well-foundedmodel of general programs [73, 75℄. A set of unfold/fold transformation ruleswhi
h preserve the perfe
t model of
onstraint logi
 programs with strati�ednegation has been proposed by Maher in [51℄. Other work (see, for instan
e,[7, 33, 62, 68℄) presents variants of the transformation rules, whi
h preservevarious semanti
s of negation, in
luding the semanti
s based on the ClarkCompletion, the operational semanti
s based on SLDNF resolution, the per-fe
t model semanti
s, the stable model semanti
s, and the well-founded modelsemanti
s.The rules
onsidered in this
hapter are adaptations, tailored to the task ofprogram spe
ialization, of the transformation rules presented in the literature.However, some of our rules are not simply instan
es or
ombinations of alreadyknown transformation rules.Let us examine our rules in more detail. The positive unfolding rule (R2p),the rule for removal of
lauses with unsatis�able body (R4f), the rule for re-moval of subsumed
lauses (R4s), and the
onstraint repla
ement rule (R5r),are identi
al to rules proposed by Maher [51℄. The negative unfolding rule(R2n) is a parti
ular
ase of Seki's redu
tion rule [73℄. Case (P) of the rulefor
onstrained atomi
 folding (R3n) is an adaptation to the
ase of CLP pro-grams of Seki's folding rule [74℄, with the restri
tion that only one literal
anbe folded. The rule for removing useless
lauses (R4u) is a variant of the rulebearing the same name presented in [62℄. Finally, as already mentioned inprevious se
tions, the rules for folding negative literals (R3n, Case N) and for
ontextual
onstraint repla
ement (R5n) are novel and they
annot be regardedas instan
es of the folding and
onstraint repla
ement rules already
onsideredin the literature.

62 CHAPTER 3. SPECIALIZATION OF GENERAL CLPWe would like to stress the point that, to our knowledge, the
ontextualspe
ialization strategy presented in this
hapter is the �rst te
hnique expli
-itly designed for the spe
ialization of
onstraint logi
 programs with negation.Other program spe
ialization te
hniques, based upon Lloyd and Shepherdson'spartial evaluation approa
h [50℄, deal with general logi
 programs (see, for in-stan
e, [32, 46℄). Indeed, we have adapted from [46℄ the approa
h based onwell-quasi orders for
ontrolling unfolding and generalization. However, wewould also like to noti
e that our strategy is parti
ularly oriented to the treat-ment of programs with negation and
onstraints (see, in parti
ular, the useof the
onstrained folding and
ontextual
onstraint repla
ement rules), andthus, it is arguable that it will produ
e better results when spe
ializing su
hprograms.

Chapter 4Verifying CTL Properties ofIn�nite State SystemsModel
he
king is a highly su

essful te
hnique for the automati
 veri�
ationof properties of �nite state
on
urrent systems [14℄. In essen
e, it
onsists in:(i) modeling the
on
urrent system as a binary transition relation formalizedas a Kripke stru
ture over a �nite set of states, (ii) expressing the propertyto be veri�ed as a propositional temporal formula ', and (iii)
he
king thesatisfa
tion relation K; s j= ', where s is an initial state of the system, that is,
he
king that the formula ' holds in the state s of the stru
ture K.The relation K; s j= ' is de
idable for various
lasses of formulas and, inparti
ular, there are very e�
ient algorithms for the
ase of formulas of theComputation Tree Logi
 (CTL, for short). CTL is a very expressive bran
hingtime temporal logi
, where one may des
ribe, among others, the so-
alled safetyand liveness properties of
on
urrent systems. A safety property states that`something (bad) may never happen', while a liveness property states that`something (good) eventually happens'.One of the most
hallenging problems in the area of veri�
ation of
on-
urrent systems, is how to extend model
he
king to in�nite state
on
urrentsystems (see, for instan
e, [52℄). In this
ase, a
on
urrent system is mod-eled by an Kripke stru
ture whose transition relation is over an in�nite set ofstates. Several di�
ulties arise when
onsidering model
he
king of in�nitestate systems and, in parti
ular, in that
ase for most
lasses of formulas thesatisfa
tion relation K; s j= ' is unde
idable, and not even semide
idable.In re
ent work three main approa
hes have been followed for dealing withthis unde
idability limitation.The �rst approa
h
onsists in
onsidering de
idable sub
lasses of systemsand formulas (see, for instan
e, [1, 24, 54℄). By following this approa
h onemay provide fully automati
 te
hniques, whi
h however, are not appli
able63

64 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSoutside the restri
ted
lasses of systems and properties
onsidered.The se
ond approa
h
onsists in enhan
ing �nite state model
he
king withmore general dedu
tive te
hniques (see, for instan
e, [55, 77, 78℄). This ap-proa
h provides a great generality, but it needs some degree of human guid-an
e, and this guidan
e may be di�
ult to provide when dealing with largesystems.The third approa
h
onsists in designing methods based on abstra
tions,that is, mappings for redu
ing an in�nite state system (or a large �nite statesystem) to a �nite state one su
h that the properties of interest are preserved(see, for instan
e, [15, 18℄). The
hoi
e of the suitable abstra
tion is
ru
ialfor the su

ess of this kind of te
hniques. On
e the abstra
tion is given, thesete
hniques are fully automati
.We propose a veri�
ation method whi
h
ombines the generality of theapproa
hes based on dedu
tion with the me
hanizability of the approa
hesbased on abstra
tions. Our method is automati
, but in
omplete, and itsnovelty resides in the idea of using: (1)
onstraint logi
 programs for spe
ifying
on
urrent systems and their properties, and (2) program spe
ialization as aninferen
e me
hanism for
he
king the properties of interest.In our method, the transition relation whi
h models the system of interestis spe
i�ed by a �nite
olle
tion of
onstraints over the in�nite set of states. Forany state s and CTL formula ', the satisfa
tion relation K; s j= ' is en
odedas a CLP program PK whi
h de�nes a binary predi
ate sat(s; '). For en
odingnegated CTL formulas, the program PK uses lo
ally strati�ed negation. Thesemanti
s of PK is given by the perfe
t model M(PK) (see Se
tion 3.1), whi
his equal to the unique stable model and the two-valued, well-founded model[6℄. Thus, we may
he
k that K; s j= ' holds by
he
king that sat(s; ') belongsto M(PK).In order to
he
k whether or not sat(s; ') belongs to M(PK) for all initialstates s, we propose a method based on the spe
ialization of CLP programs.In the
ase of CLP, program spe
ialization
an be de�ned as follows. Weare given a program P and a goal of the form
(X); p(X), where
(X) is a
onstraint and p(X) is an atom de�ned by P . We introdu
e the
lause Æ:pspe
(X)
(X); p(X), where pspe
 is a new predi
ate, and we want to derivea new program Pspe
 su
h that, for all ground terms d, if the
onstraint
(d)holds then pspe
(d) 2M(P [fÆg) i� pspe
(d) 2M(Pspe
) (y)We also want that
he
king whether or not pspe
(d) 2 M(Pspe
) be more e�-
ient than
he
king whether or not pspe
(d) 2M(P [fÆg).Our veri�
ation method uses program spe
ialization as follows. We
on-sider the program PK and we introdu
e the
lause Æin of the form sat spe
(X) init(X); sat(X;'), where sat spe
 is a new predi
ate and init(X) is a
onstraint

65whi
h
hara
terizes the initial states of the system, that is, init(s) holds i� s isan initial state. By program spe
ialization, from PK [fÆing we want to derivea new program PK;spe
 whi
h
ontains the
lause �: sat spe
(X) . Indeed, bythe equivalen
e (y), if � 2 PK;spe
 then, for all initial states s, we have thatsat(s; ') 2M(PK) (see Se
tion 4.4).The spe
ialization te
hnique we use for program veri�
ation follows theapproa
h based on transformation rules and strategies des
ribed in Chapter3. We use the transformation rules of Se
tion 3.2, whi
h are variants of thefamiliar unfolding, folding,
lause deletion, and
onstraint repla
ement rules.In Se
tion 3.3 we showed that they preserve the perfe
t model semanti
s, andthus, they ensure that the equivalen
e (y) holds. We will also present a trans-formation strategy tailored to veri�
ation whi
h guides the appli
ation of thetransformation rules with the aim of deriving the
lause sat spe
(X) . Ourstrategy is fully automati
 and it always terminates. However, due to the abovementioned unde
idability limitation, our strategy is in
omplete, in the sensethat it may be the
ase that sat(s; ') 2 M(PK) for all initial states s, andyet, our strategy terminates with a program PK;spe
 whi
h does not
ontainthe
lause sat spe
(X) .In order to ensure termination, our strategy uses a generalization te
hniquewhi
h plays a role similar to that of abstra
tion in other veri�
ation methodssu
h as [15, 18℄. However, sin
e generalization is applied during, and not before,the veri�
ation pro
ess, generalization may be more �exible than abstra
tion.The
ontributions of this
hapter are the following ones. (i) We have shownthat the CTL properties of
on
urrent systems as de�ned in [76℄,
an be ex-pressed by using perfe
t models of lo
ally strati�ed CLP programs. (ii) Wehave proposed an automati
 strategy for program spe
ialization and, in parti
-ular, a te
hnique for generalization whi
h makes program spe
ialization alwaysterminating. (iii) Finally, we have demonstrated that our te
hnique is powerfulenough to automati
ally verify several in�nite state systems
onsidered in theliterature.The stru
ture of this
hapter is as follows. In Se
tion 4.1 we present anintrodu
tory example to illustrate the basi
 ideas of our veri�
ation method.In Se
tion 4.2 we re
all some preliminary notions
on
erning the CTL tempo-ral logi
. For notions
on
erning lo
ally strati�ed
onstraint logi
 programs,see Se
tion 3.1. In Se
tion 4.3 we
onsider a
lass of
on
urrent systems andwe show how CTL properties of systems in that
lass
an be en
oded by usinglo
ally strati�ed CLP programs. In Se
tion 4.4 we des
ribe our spe
ializationstrategy for veri�
ation, and we des
ribe the te
hnique for performing gen-eralizations and ensuring the termination of the strategy. In Se
tion 4.5 wereport on some experiments of automati
 proto
ol veri�
ation we have done byusing a prototype implementation of our method on the MAP transformation

66 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSsystem [26℄. In parti
ular, we have proved safety and liveness properties of theBakery proto
ol and the Ti
ket proto
ol for mutual ex
lusion. We have alsoproved a safety property of the Bounded Bu�er proto
ol for ensuring no loss ofmessages. Finally, in Se
tion 4.7 we
ompare our work with other veri�
ationte
hniques proposed in the literature. Among them we have given spe
ial at-tention to those te
hniques whi
h use logi
 programming,
onstraints, tabledresolution, program analysis, and program transformation [20, 30, 47, 67, 69℄.4.1 A Preliminary ExampleIn this se
tion we illustrate the basi
 ideas of our veri�
ation method by meansof a simple example. Let us
onsider a system Count
onsisting of an integer
ounter X whi
h is initialized to 1 and is in
remented by 1 at ea
h time unit.The state of the system is the value of the
ounter X. We want to prove thatstarting from the initial state it is impossible to rea
h a state where the valueof the
ounter is 0.Our veri�
ation method starts o� by: (i) expressing the property of interestas a CTL formula ', and (ii) providing a CLP program PCount for the binarypredi
ate sat su
h that ' holds in state X i� sat(X;') belongs to the perfe
tmodel of PCount . This
an be done by using the algorithm we will give inSe
tion 4.3. By doing so, we get for the system Count : (i) the CTL formula:EF null , where null is a property whi
h holds in a state X i� X = 0, and(ii) the following CLP program PCount :1. sat(X;null) X=02. sat(X;:') :sat(X;')3. sat(X;EF ') sat(X;')4. sat(X;EF ') Y =X+1; sat (Y;EF ')As indi
ated in Se
tion 4.2, :EF null expresses the fa
t that it is impossibleto rea
h a state where null holds, and this property
an be shown to hold inthe initial state where X=1, by proving that sat(1;:EF null) 2M(PCount).Before making that proof, let us noti
e that by using SLDNF-resolution,the program PCount does not terminate for the goal sat(1;:EF null), be
ause
lause 4 allows us to get an in�nitely failed SLDNF-tree
ontaining the follow-ing in�nite sequen
e of atoms:sat(1;EF null); sat(2;EF null); sat(3;EF null); : : :Also by using tabled resolution [71℄, program PCount fails to terminate be
ausein the above sequen
e no atom is an instan
e of a pre
eding one.Now we present the proof that sat(1;:EF null) 2 M(PCount) by usingour veri�
ation method based on program spe
ialization. We make use of thetransformation rules whi
h we introdu
ed in Se
tion 3.2. These transforma-tion rules are applied in an automati
 way following the veri�
ation strategy

4.1. A PRELIMINARY EXAMPLE 67des
ribed in Se
tion 4.4. This strategy starts o� by introdu
ing the de�nition(see rule R1):5. sat spe
(X) X=1; sat(X;:EF null)Then we unfold
lause 5 (see rule R2p) and we get:6. sat spe
(X) X=1; :sat(X;EF null)Now we introdu
e the following new de�nition:7. newsat1(X) X=1; sat(X;EF null)and we fold
lause 6 (see rule R3n) thereby deriving the
lause:8. sat spe
(X) X=1; :newsat1(X)The veri�
ation pro
ess
ontinues by
onsidering the new de�nition
lause 7and performing a sequen
e of transformation steps similar to the one performedstarting from
lause 5. By unfolding
lause 7 we get:9. newsat1(X) X=1; X=010. newsat1(X) X=1; Y =X+1; sat(Y;EF null)Clause 9 is deleted be
ause its body
ontains an unsatis�able
onstraint (seerule R4f). In order to fold
lause 10 we generalize the
onstraint X =1; Y =X+1 to the
onstraint Y >1 and we introdu
e the following new de�nition:11. newsat2(X) X>1; sat(X;EF null)whose body is obtained from the body of
lause 10 by repla
ing X=1; Y =X+1by Y >1 and applying a variable renaming. We fold
lause 10 using
lause 11(see rule R3p) and we get:12. newsat1(X) X=1; Y =X+1; newsat2(Y)Now we
onsider the new de�nition
lause 11 and, similarly to the two deriva-tions whi
h start from
lauses 5 and 7, respe
tively, we perform unfolding,
lause deletion, and folding steps as follows. We �rst unfold
lause 11 andthen apply the
lause deletion rule, thereby deriving the following
lause:13. newsat2(X) X>1; Y =X+1; sat(Y;EF null)No new de�nition is needed for folding
lause 13. Indeed
lause 13
an befolded by using
lause 11 thereby deriving:14. newsat2(X) X>1; Y =X+1; newsat2(Y)This folding step
on
ludes the �rst phase of our veri�
ation strategy (seePhase A of the strategy des
ribed in Se
tion 4.4). At the end of this phase wehave derived the following program:8. sat spe
(X) X=1; :newsat1(X)12. newsat1(X) X=1; Y =X+1; newsat2(Y)14. newsat2(X) X>1; Y =X+1; newsat2(Y)Now, sin
e the bodies of the
lauses whi
h de�ne the predi
ates newsat1 andnewsat2, that is,
lauses 12 and 14, have
alls of newsat2, we dedu
e that for

68 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSall integers n, all atoms of the form newsat1(n) or newsat2(n) are false in theperfe
t model of the program. Thus, we delete
lauses 12 and 14 (by using ruleR4u), and the literal :newsat1(X) (by using rule R2n) in the body of
lause8 and we derive a spe
ialized program PSpe

onsisting of the following
lauseonly:15. sat spe
(X) X=1Sin
e we want to verify that :EF null holds in the initial state, where the
onstraint X =1 is true, we may repla
e
lause 15 (by using rule R5) by thefollowing
lause:16. sat spe
(X) Sin
e
lause 16 belongs to Pspe
 , we have that sat spe
(1) 2M(Pspe
) and thus,by the
orre
tness of program spe
ialization (see Property (y) at the beginningof the
hapter), we also have that sat spe
(1) 2 M(PCount [f
lause 5g). Sin
eM(PCount [f
lause 5g) is a model of the
ompletion of PCount [f
lause 5g [6℄and sat spe
 is de�ned by
lause 5 only, we get sat(1;:EF null) 2 M(PCount)and this
on
ludes our proof.Before ending this se
tion we want to brie�y dis
uss the following pointsrelated to the proof we have done.(1) The generation of a re
urrent goal during the unfolding pro
ess (in our
ase,the goal X>1; sat (X;EF null) whi
h o

urs both in
lause 11 and
lause 13)determines after folding, the generation of re
ursive
lauses (in our
ase,
lause14), and these re
ursive
lauses allow us to infer that some atoms (in our
ase,newsat2(X)) are false in the perfe
t model of the program be
ause they arein�nitely failing.(2) In order to perform the folding steps required for generating re
ursive
lauses as indi
ated in Point (1) above, we may need to introdu
e new de�ni-tions by applying a generalization te
hnique. In our
ase we have introdu
ed
lause 11 by generalizing the body of
lause 10, and indeed, by using
lause 11we were able to fold all sat atoms o

urring in the program at hand.(3) The
hoi
e of a suitable generalization te
hnique plays a
ru
ial role inour veri�
ation method. Indeed, generalizations ensure termination of thespe
ialization strategy, as it has been the
ase for our proof above, but they
an also prevent the proof of the property of interest as we now indi
ate.Indeed, if we had generalized the
onstraint X=1; Y =X+1 in the bodyof
lause 10 to true, instead of Y >1, then, instead of
lause 11, we would haveintrodu
ed the following
lause:11*. newsat2(X) sat(X;EF null)By unfolding
lause 11* we would have derived the
lause newsat2(1) andwe
ould have not inferred that for all integers n, newsat2(n) is false in theperfe
t model of the program. As already mentioned, we will des
ribe ourgeneralization te
hnique in Se
tion 4.4.

4.2. THE COMPUTATIONAL TREE LOGIC 694.2 The Computational Tree Logi
In this se
tion we brie�y re
all the syntax and the semanti
s of the Compu-tational Tree Logi
 (CTL, for short), whi
h is the logi
 we use for expressingproperties of
on
urrent systems. For a more detailed treatment of CTL thereader may look at [14℄.The Computation Tree Logi
 (CTL, for short) is a temporal logi
 for ex-pressing properties of the evolutions in time of
on
urrent systems. Theseevolutions are
alled
omputation paths. CTL formulas are built from a givenset Elem of elementary properties by using: (i) the following linear-time opera-tors along a
omputation path: G (`always'), F (`sometimes'), X (`nexttime'),and U (`until'), and (ii) the quanti�ers over
omputation paths: A (`for allpaths') and E (`for some path'), as indi
ated by the following de�nition.De�nition 4.2.1. [CTL Formulas℄ A CTL formula ' has the following syntax:' ::= e j :' j '1 ^ '2 j EX ' j EU('1; '2) j AF 'where e belongs to Elem.The other
ombinations of temporal operators and quanti�ers are assumed tobe abbreviations:EF ' � EU(true ; ')EG' � :AF :'AX ' � :EX :'AU('1; '2) � :EU(:'2; :'1^:'2) ^ (:EG:'2)AG' � :EF :'where true is the elementary property whi
h holds in every state.The semanti
s of CTL formulas is given by using a Kripke stru
ture andde�ning the satisfa
tion relation K; s j= ', whi
h denotes that a formula 'holds in a state s of K. The
ontext will disambiguate between the use of j=for denoting the satisfa
tion relation in a Kripke stru
ture and the use of thesame symbol for providing the semanti
s of
onstraint logi
 programs.De�nition 4.2.2. [Kripke Stru
ture℄ A Kripke stru
ture K is a 4-tuplehS; I;R; Li where:1. S is a set of states,2: I � S is the set of initial states,3. R � S � S is a total relation, that is, for every state s 2 S there exists astate s0 2 S su
h that (s; s0) 2 R. R is
alled a transition relation, and4. L : S ! P(Elem) is a fun
tion whi
h assigns to ea
h state s 2 S a subsetL(s) of Elem; that is, a set of elementary properties whi
h hold in s.A
omputation path, or path, in K from a state s0 is an in�nite sequen
e ofstates s0s1 : : : su
h that (si; si+1) 2 R for every i � 0.

70 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSNoti
e that if R is not total then we
an make it total in the following way:for all states s 2 S, if there is no state s0 2 S su
h that (s; s0) 2 R then weadd the pair (s; s) to R.Given a Kripke stru
ture K = hS; I;R; Li, the relation K; s j= ' is indu
-tively de�ned as follows:K; s j= e i� e is an elementary property in L(s)K; s j= :' i� it is not the
ase that K; s j= 'K; s j= '1 ^ '2 i� K; s j= '1 and K; s j= '2K; s j= EX ' i� there exists a
omputation path s0s1 : : : in K su
h thats = s0 and K; s1 j= 'K; s j= EU('1; '2) i� there exists a
omputation path s0s1 : : : in K su
h that(i) s = s0 and (ii) for some n � 0 we have that:K; sn j= '2 and K; sj j= '1 for all j 2 f0; : : : ; n� 1gK; s j= AF ' i� for all
omputation paths s0s1 : : : in K, if s = s0 thenthere exists n � 0 su
h that K; sn j= '.Noti
e that in the de�nition of the relation K; s j= ', the set I of initial statesis not used. However, I has been introdu
ed be
ause it is often the
ase thatthe system properties we want to express are properties of the initial states ofthe system.4.3 Expressing CTL Properties by Lo
ally Strati�edCLPIn this se
tion we present the
lass of
on
urrent systems whi
h
an be veri�edby using our method. This
lass is very general, and in
ludes the
on
urrentsystems de�ned in [76℄. But, unlike [76℄, in order to spe
ify these systems andtheir temporal properties, we use
onstraint logi
 programs. In this respe
tour approa
h is similar to the one presented in [20℄. However, we use CLPprograms with negation and the perfe
t model semanti
s, while the authors of[20℄
onsider de�nite CLP programs and express temporal properties by meansof least and greatest �xpoints.For reasons of simpli
ity, we will
onsider a one-sorted [23℄
onstraint do-main. However, the extension to the many-sorted
ase is straightforward. Forthe treatment of many-sorted logi
 and its relation to one-sorted logi
, we referto [23℄.A
on
urrent system is modeled by a Kripke stru
ture K [14℄ based on a
onstraint domain D as indi
ated below. Then, starting from K we
onstru
tsa lo
ally strati�ed CLP program PK whi
h en
odes the temporal properties ofthe system. The program PK de�nes a binary predi
ate sat su
h that, for allstates s and CTL formulas ', we have that K; s j= ' i� sat(s; ') 2M(PK).

4.3. EXPRESSING CTL PROPERTIES BY CLP 71A Kripke stru
ture K = hS; I;R; Li based on the
onstraint domain D, isspe
i�ed as follows. (We borrow some of the terminology from [76℄.)1. The set S of states is the (possibly in�nite)
arrier D of the
onstraintdomain D.2. The set I of initial states is spe
i�ed by a
onstraint init(X), so that forall states s 2 S, we have that: s 2 I i� D j= init(s),3. The transition relation R is spe
i�ed by a �nite disjun
tion t1(X;Y) _: : :_ tk(X;Y) of
onstraints, so that for all states s1 and s2 in S, we havethat: (s1; s2) 2 R i� D j= t1(s1; s2) _ : : : _ tk(s1; s2)Ea
h disjun
t ti(X;Y),
alled an event, is a
onstraint of the form:
ond i(X) ^ a
t i(X;Y) su
h that3.1 D j= 8X (
ond i(X)! 9Y a
t i(X;Y)), and3.2 D j= 8X;Y;Z (a
t i(X;Y) ^ a
t i(X;Z)! Y = Z),The
onstraint
ond i(X) is
alled the enabling
ondition and the
on-straint a
t i(X;Y) is
alled the a
tion. Condition (3.1) means that a
t iis de�ned whenever the
orresponding enabling
ondition holds, and Con-dition (3.2) means that a
t i is a fun
tion of its �rst argument.4. The fun
tion L : S ! P(Elem), where Elem is the set of elementaryproperties of K, is spe
i�ed by asso
iating a
onstraint
e(X) with ea
helementary property e, so that for all states s 2 S, we have that: e 2L(s) i� D j=
e(s).For reasons of simpli
ity we assumed that the set of initial states and the setof states satisfying an elementary property
an be spe
i�ed by a
onstraint.However, the extension to the more general
ase, where these sets are spe
i�edby using a disjun
tion of
onstraints, is straightforward.The
onstru
tion of the CLP programs
orresponding to Kripke stru
tures,
an be performed by using the En
oding Algorithm we now present.The En
oding Algorithm.Input : a Kripke stru
ture K = hS; I;R; Li based on a
onstraint domain D.Output : a lo
ally strati�ed CLP program PK su
h that, for all states s 2 Sand for all CTL formulas ', K; s j= ' i� sat(s; ') 2M(PK).Let us assume that R be spe
i�ed by the disjun
t: t1(X;Y) _ : : : _ tk(X;Y).Then the
onstru
tion of PK is done by indu
tion on the stru
ture of ' asfollows.(' is the elementary property e) We introdu
e the
lause:sat(X; e)
e(X)

72 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSwhere
e(X) is the
onstraint asso
iated with the elementary property e.(' is :) We introdu
e the
lause:sat(X;:) :sat(X;)(The symbol : in the head is a fun
tion symbol, while in the body : is thenegation
onne
tive.)(' is 1 ^ 2) We introdu
e the
lause:sat(X; 1 ^ 2) sat(X; 1); sat(X; 2)(The symbol ^ in the head is a fun
tion symbol.)(' is EX) For every i = 1; : : : ; n, we introdu
e the
lause:sat(X;EX) ti(X;Y); sat(Y;)(' is EU(1; 2)) We introdu
e the
lause:sat(X;EU(1; 2)) sat(X; 2)and, for every i = 1; : : : ; n, we introdu
e the
lause:sat(X;EU(1; 2)) ti(X;Y); sat(X; 1); sat(Y;EU(1; 2))(' is AF) Let us
onsider the disjun
tion t1(X;Y)_ : : :_ tk(X;Y) of events,where for every i = 1; : : : ; k, ti(X;Y) is
ond i(X)^a
t i(X;Y). We �rst rewritethat disjun
tion as a new disjun
tion r1(X;Y) _ : : : _ rn(X;Y), su
h that:(1) for i = 1; : : : ; n, ri(X;Y) is a formula of the form
ond i(X)^(a
t i1(X;Y)_: : : _ a
t im(X;Y)),
alled a nondeterministi
 event, where for j = 1; : : : ;m,
ond i(X) ^ a
t ij(X;Y) is an event,(2) for any two distin
t i and l in f1; : : : ; ng,
ond i(X) and
ond l(X) aremutually ex
lusive, that is, D j= :9X
ond i(X) ^
ond l(X), and(3) D j= 8X;Y ((t1(X;Y) _ : : : _ tk(X;Y)) $ (r1(X;Y) _ : : : _ rn(X;Y))).We introdu
e the following
lause:sat(X;AF) sat(X;)and, for i = 1; : : : ; n, we introdu
e the
lause,sat(X;AF)
ond i(X) ^ a
t i1(X;Yi1) ^ : : : ^ a
t im(X;Yim);sat(Yi1; AF); : : : ; sat(Yim; AF)where X;Yi1; : : : ; Yim are distin
t variables.The rewriting needed for the
ase where ' is AF is always possible forKripke stru
tures based on a
onstraint domain D whi
h satis�es the followingproperty:(Property P) For every
onstraint
(X), the formula :
(X) is equivalent to a�nite disjun
tion
1(X)_: : :_
m(X) of pairwise mutually ex
lusive
onstraints.This Property P
an be formally expressed as follows: for every
onstraint
(X) in D there exist the
onstraints
1(X); : : : ;
m(X) su
h that:(i) D j= 8X (:
(X)$ (
1(X)_: : :_
m(X))), and

4.3. EXPRESSING CTL PROPERTIES BY CLP 73(ii) for any two distin
t i and l in f1; : : : ;mg,
i(X) ^
l(X) is unsatis�able,that is, D j= :9X (
i(X) ^
l(X)).If Property P holds we also say that :
(X) is partitioned into
1(X) _ : : : _
m(X), or equivalently,
1(X) _ : : : _
m(X) is a partition of :
(X).Example 4.3.1. Let us
onsider the
onstraint domainRlin of linear equations(=) and inequations (<;�) over real numbers. Without loss of generality, wemay assume that every
onstraint in Rlin is a
onjun
tion of
onstraints of theform t1 op t2, where op 2 f=; <;�g and t1 and t2 are terms built out of reals,variables, and arithmeti
 operators. Then, the negation of any
onstraint inRlin
an be partitioned into a �nite disjun
tion of
onstraints, be
ause:(i) Rlin j= 8X (: t1= t2 $ (t1<t2 _ t2<t1))(ii) Rlin j= 8X (: t1<t2 $ t2� t1).However, if we
onsider the domain FT of equations between �nite termswhi
h are built out of an in�nite set of fun
tion symbols, then in FT thereare
onstraints whose negation
annot be partitioned into a �nite disjun
tionof
onstraints. For instan
e, the negation of the
onstraint X = a, where a isa ground term,
an only be expressed by an in�nite disjun
tion of
onstraints,as follows:FT j= 8X (:X = a$ Wt2G�fagX = t)where G denotes the in�nite set of all ground terms. If we
onsider the domainof equations between �nite terms
onstru
ted from a �nite set of fun
tionsymbols, then the negation of any
onstraint
an be partitioned into a �nitedisjun
tion of
onstraints. For instan
e, if the fun
tion symbols are 0 (nullary)and s (unary), the negation of the
onstraint X=s(0)
an be partitioned intoX=0 _ 9Y X=s(s(Y)).Given a
onstraint domain whi
h satis�es (Property P) above, we showhow to perform the rewriting needed for introdu
ing a set of lo
ally strati�ed
lauses for the temporal operator AF . Indeed, we give a pro
edure su
h that,given as input a disjun
tion t1(X;Y) _ : : : _ tk(X;Y) of events, produ
es asoutput a disjun
tion r1(X;Y)_ : : :_rn(X;Y) of nondeterministi
 events whi
hsatis�es Conditions (1), (2) and (3) of the En
oding Algorithm.Pro
edure MakeME (T;R)Input : a disjun
tion T (X;Y) � t1(X;Y) _ : : : _ tk(X;Y) of events.Output : a disjun
tion R(X;Y) � r1(X;Y)_ : : :_rn(X;Y) of nondeterministi
events.Let t1(X;Y) be of the form
ond(X) ^ a
t(X;Y);R(X;Y) :=
ond (X) ^ a
t(X;Y);for i = 2; : : : ; k doLet ti(X;Y) be a formula of the form
ond(X) ^ a
t(X;Y);

74 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSLet :
ond(X) be partitioned into
1(X) _ : : : _
m(X);Let R(X;Y) be of the form r1(X;Y) _ : : : _ rh(X;Y);for j = 1; : : : ; h doLet rj(X;Y) be of the form
(X) ^ a(X;Y);Rj(X;Y) := ((
(X) ^
ond(X)) ^ (a(X;Y) _ a
t(X;Y)))_((
(X) ^
1(X)) ^ a(X;Y)) _ : : :_((
(X) ^
m(X)) ^ a(X;Y))endforR(X;Y) := Whj=1Rj(X;Y)endfor tuDuring the exe
ution of the above pro
edure we arbitrarily manipulate formu-las as spe
i�ed by the following rules:(1) repla
e a
onstraint
 by the
onstraint solve(
;X), where X denotesthe free variables of
,(2) repla
e a formula of the form false ^ F by the
onstraint false ,(3) repla
e a formula of the form F ^ false by the
onstraint false,(4) repla
e a formula of the form false _ F by the formula F ,(5) repla
e a formula of the form F _ false by the formula F .The above En
oding Algorithm
an easily be extended by
onsidering the
aseswhere the outermost operator of the formula ' is one of the following: EF, EG,AX, AU, and AG. In order to do so it is enough to express these operators interms of EX, EU, and AF. For instan
e, if ' is EF we introdu
e the following
lause:sat(X;EF) sat(X;),and for i = 1; : : : ; n, we introdu
e the
lause:sat(X;EF) ti(X;Y); sat(Y;EF)be
ause: (i) EF stands for EU(true ;) and (ii) sat(X; true) is true for allstates X.The program PK
onstru
ted by the En
oding Algorithm is lo
ally strat-i�ed w.r.t. the fun
tion � de�ned as follows: for every s 2 S and for everyCTL formulas ', �(sat(s; ')) = length('), where length(') has the followingindu
tive de�nition:if ' 2 Elem then length(') = 1,if ' is :'1 or EX '1 or AF '1 then length(') = length('1) + 1,if ' is '1^'2 or EU('1; '2) then length(') = length('1)+ length('2)+1.We have the following theorem.Theorem 4.3.2. [Corre
tness of the En
oding Algorithm℄ Let K=hS; I;R; Libe a Kripke stru
ture and let PK be the lo
ally strati�ed program
onstru
ted

4.3. EXPRESSING CTL PROPERTIES BY CLP 75from K by the En
oding Algorithm. For all states s 2 S and CTL formulas ',we have that: K; s j= ' i� sat(s; ') 2M(PK).Proof. The proof is by stru
tural indu
tion on '.(' is e 2 Elem) For all states s 2 S we have that:K; s j= e i� D j=
(s) (by the assumption on elementary properties)i� sat(s; e) 2M(PK) (by the En
oding Algorithm).(' is :) For all states s 2 S we have that:K; s j= : i� K; s j= does not hold (by the semanti
s of CTL)i� sat(s;) 62M(PK) (by indu
tion hypothesis)i� sat(s;:) 2M(PK) (by the En
oding Algorithm).(' is 1 ^ 2) For all states s 2 S we have that:K; s j= 1 ^ 2 i� K; s j= 1 and K; s j= 2 (by the semanti
s of CTL)i� sat(s; 1) 2M(PK) and sat(s; 2) 2M(PK) (by indu
tion hypothesis)i� sat(s; 1 ^ 2) 2M(PK) (by the En
oding Algorithm).(' is EX) For all states s 2 S we have that:K; s j= EX i� there exists a state s1 2 S su
h that (s; s1) 2 R andK; s1 j= (by the semanti
s of CTL)i� 9s1 2 S and 9j 2 f1; : : : ; kg su
h that D j= tj(s; s1) and sat(s1;) 2M(PK) (by the assumption on the transition relation and indu
tion hypothesis)i� 9s1 2 S and there exists a
lause
 2 ground (PK) of the form:sat(s;EX) sat(s1;) and sat(s1;) 2 M(PK) (by the En
oding Algo-rithm)i� sat(s;EX) 2M(PK) (by de�nition of M(PK)).In the rest of the proof: (i) lfp denotes the least �xpoint operator, and (ii)given a formula ', we denote by ['℄ the set fs 2 S j K; s j= 'g, that is, the setof states in whi
h ' is true.(' is EU(1; 2)) From [22℄ we have that K; s j= EU (1; 2) holds i� s 2lfp(�EU), where �EU = �I:[2℄ [([1℄ \ EX�1(I)), and EX�1(I) = fs 2S j 9s0 2 I su
h that (s; s0) 2 Rg. Now let us
onsider the operator TEU :P(S)! P(S) de�ned as follows:TEU (I) = fs 2 S j sat(s; 2) 2M(PK) orsat(s; 1) 2M(PK) and 9s0 2 I su
h that (s; s0) 2 RgBy stru
tural indu
tion we have that, for i = 1; 2, K; s j= i i� sat(s; i) 2M(PK) and, thus, we easily get that s 2 lfp(�EU) i� s 2 lfp(TEU). It remainsto show that for all s 2 S, s 2 lfp(TEU) i� sat(s;EU(1; 2)) 2M(PK). Thisproof, whi
h is left to the reader, is similar to the one of Theorem 6.5 [49, page38℄, whi
h states that the least Herbrand model of a de�nite logi
 program Pis the least �xpoint of its TP operator.

76 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS
&%'$
'$Æ
) &%'$

'$Æ
)-ha; ni hb; nin := n+2 n := n+1n>0Figure 4.3.1: A simple
on
urrent system.(' is AF) From [22℄ K; s j= AF holds i� s 2 lfp(�AF), where �AF =�I:[℄ [AX�1(I) and AX�1(I) = fs 2 S j 8s0 2 S if (s; s0) 2 R then s0 2 Ig.Now let us
onsider the operator TAF : P(S)! P(S) de�ned as follows:TAF (I) = fs 2 S j sat(s;) 2M(PK) or8s0 2 S if (s; s0) 2 R then s0 2 IgBy stru
tural indu
tion we have that K; s j= i� sat(s;) 2 M(PK), andthus, we easily get that s 2 lfp(�AF) i� s 2 lfp(TAF). It remains to show thatfor all s 2 S, s 2 lfp(TAF) i� sat(s;AF) 2 M(PK). Again, this proof issimilar to the one of Theorem 6.5 [49, page 38℄ and we leave to the reader.Re
all that, in this
ase, when writing the
lauses for AF in PK, we assumethat the relation R is spe
i�ed by a disjun
tion of nondeterministi
 events asindi
ated in the En
oding Algorithm.In the following example we
onsider a simple
on
urrent system modeledby a Kripke stru
ture K and we apply our En
oding Algorithm for generatingthe
orresponding program PK.Example 4.3.3. Let us
onsider the
on
urrent system depi
ted in Figure 4.3.1.A state of this system is a h
ontrol state,
ounteri pair. The
ontrol state iseither a or b and the
ounter is real number. The Kripke stru
ture K =hS; I;R; Li whi
h models that system
an be de�ned as follows.K is based on the
onstraint domain D whose
arrier is the set S = fa; bg�R,where R is the set of real numbers. In D we have: (i) the addition betweenreal numbers, (ii) equations between elements in fa; bg, and (iii) equationsand inequations between reals. For equations between elements in fa; bg andequations between reals we use the same symbol =.The set I of the initial states is spe
i�ed by the
onstraint init(X1;X2) �X1 = a; X2 = 0, that is, I is the singleton fha; 0ig. (Noti
e that to representstates we use two variables, instead of a single variable ranging over pairs.)The transition relation R is spe
i�ed as the disjun
tion of the followingthree events:

4.3. EXPRESSING CTL PROPERTIES BY CLP 77t1(X1;X2; Y1; Y2) � (X1=a) ^ (Y1=a ^ Y2=X2 + 2)t2(X1;X2; Y1; Y2) � (X1=a ^X2>0) ^ (Y1=b ^ Y2=X2)t3(X1;X2; Y1; Y2) � (X1=b) ^ (Y1=b ^ Y2=X2 + 1)where in ea
h disjun
t the parentheses are used to distinguish between theenabling
onditions and the a
tions.We spe
ify the elementary property neg whi
h holds in a state hX1;X2i i�X2 < 0.We want to verify that starting from the initial state ha; 0i, there exists a
omputation path in K su
h that for all states hX1;X2i along that path wehave that X2 � 0. This property is expressed by the relation K; ha; 0i j=:AF neg whi
h asserts that the CTL formula :AF neg is true in the ini-tial state ha; 0i. In order to verify this property, we �rst apply the En-
oding Algorithm thereby deriving the program PK su
h that K; ha; 0i j=:AF neg i� sat(a; 0;:AF neg) 2M(PK).Noti
e that the
onditions o

urring in the events t1(X1;X2; Y1; Y2) andt2(X1;X2; Y1; Y2) are not mutually ex
lusive be
ause D j= 9X19X2 ((X1 =a)^ (X1=a^X2>0)). Thus, in order to
onstru
t the
lauses for the operatorAF we have to perform the rewriting des
ribed in the En
oding Algorithm.This rewriting
an indeed be performed be
ause the
onstraint domain D sat-is�es Property P (see also Example 4.3.1). In parti
ular, we use the followingequivalen
es:D j= 8X((:X>0)$ X�0)D j= 8X((:X=a)$ X=b)Thus, we spe
ify the transition relation by using the disjun
tion of the followingthree nondeterministi
 events:r1(X1;X2; Y1; Y2) � (X1=a ^X2�0) ^ (Y1=a ^ Y2=X2 + 2)r2(X1;X2; Y1; Y2) � (X1=a ^X2>0)^((Y1=a ^ Y2=X2 + 2) _ (Y1=b ^ Y2=X2))r3(X1;X2; Y1; Y2) � (X1=b) ^ (Y1=b ^ Y2=X2 + 1)The appli
ation of the En
oding Algorithm produ
es a program PK
ontainingthe following
lauses (we do not list the
lauses for the operators EX and EUbe
ause they are not needed for verifying our property :AF neg):sat(X1;X2;neg) X2 < 0sat(X1;X2;:') :sat(X1;X2; ')sat(X1;X2; AF ') sat(X1;X2; ')sat(X1;X2; AF ') X1=a; X2�0; X3=X2 + 2; sat(X1;X3; AF ')sat(X1;X2; AF ') X1=a; X2>0; X3=b; X4=X2 + 2;sat(X1;X4; AF '); sat(X3;X2; AF ')sat(X1;X2; AF ') X1=b; X3=X2 + 1; sat(X1;X3; AF ')

78 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS4.4 The Veri�
ation StrategyNow we present the veri�
ation strategy whi
h we use for verifying CTL prop-erties of
on
urrent systems.Suppose that we are given a
on
urrent system modeled by a Kripke stru
-ture K, and a CTL formula '. We want to verify that, for all initial statess, the formula ' holds in state s, that is, K; s j= '. By Theorem 4.3.2, inorder to do this veri�
ation it is enough to verify that, for all initial states s,sat(s; ') 2M(PK), where PK is the lo
ally strati�ed CLP program
onstru
teda

ording to our En
oding Algorithm.We start o� by introdu
ing the
lause Æin : sat spe
(X) init(X); sat(X;'),where sat spe
 is a new predi
ate and init(X) is the
onstraint whi
h spe
i�esthe initial states of the system (see Se
tion 4.3). Then we apply the transforma-tion rules of Se
tion 3.2, a

ording to the veri�
ation strategy presented below,with the aim of deriving a program PK;spe

ontaining the fa
t sat spe
(X) .If we su

eeds in doing so, we have that for all states s, if init(s) holds thensat(s; ') 2M(PK) (see Theorem 4.4.3).Our veri�
ation strategy is divided into three phases,
alled Phase A, B,and C, respe
tively.Phase A starts o� by unfolding the de�nition Æ and then applying the
on-straint repla
ement rule for simplifying the
onstraints as mu
h as possible.By doing so, we derive a new set of
lauses, say �. Then we apply a general-ization fun
tion and we introdu
e a (possibly empty) set of new de�nitions ofthe form newp(X) d(X); sat (X;) su
h that we
an apply the folding rulew.r.t. ea
h
onstrained literal sat(X;) or :sat(X;) o

urring in the body ofa
lause in �. We iterate unfolding, generalization, and folding steps, for ea
hnew de�nition introdu
ed by generalization, and we stop this iteration whenno new de�nitions are ne
essary for applying the folding rule w.r.t. all (positiveor negative) o

urren
es of sat literals, be
ause we
an fold those o

urren
esby using de�nitions whi
h have been already introdu
ed.Below we will present the generalization fun
tion whi
h ensures that a �niteset of de�nitions will be introdu
ed and, thus, Phase A of the veri�
ationstrategy always terminates (see Theorem 4.4.4). At the end of Phase A wederive a program PA where the (positive or negative) dependen
ies among satatoms have been lifted to dependen
ies among newly introdu
ed predi
ates.In parti
ular, due to the stru
ture of the CTL formulas whi
h o

ur as se
ondarguments of the predi
ate sat, we always derive a strati�ed program. Thisproperty will be exploited during Phase C.In order to derive a program PK;spe
 whi
h
ontains the fa
t sat spe
(X) ,that is, a program where sat spe
(X) is valid, we may need to derive programswhere the atoms of the form newp(X) are either valid or failed. This
an bea

omplished during Phases B and C of our veri�
ation strategy by applying

4.4. THE VERIFICATION STRATEGY 79the following rules: (i) positive and negative unfolding, (ii) removal of use-less and subsumed
lauses, and (iii)
onstraint repla
ement, as the followingexample illustrates.Example 4.4.1. Let us assume that the output of Phase A is the followingprogram PA:1. sat spe
(X) X=0; newsat1(X); :newsat2(X)2. newsat1(X) X�03. newsat1(X) X�0; Y =X+1; newsat1(Y)4. newsat2(X) X�0; Y =X�1; newsat2(Y)Suppose that init(X) is the
onstraint X = 0 in
lause 1. From PA we wantto derive a program
ontaining the fa
t sat spe
(X) . In order to do so, we�rst derive a program where newsat1(X) is valid and newsat2(X) is failed.We pro
eed as follows. We noti
e that the
onstraint X � 0 in the body of
lause 2 is redundant be
ause it is implied by the
onstraint whi
h holds atea
h
all of newsat1(X). Indeed, for newsat1(X) in the body of
lause 1 wehave that X =0 holds, and for newsat1(Y) in the body of
lause 3, we havethat Y � 1 holds. Thus, by applying the
ontextual
onstraint repla
ementrule we repla
e
lause 2 by the fa
t:5. newsat1(X) that is, we derive a program where newsat1(X) is valid. Thus, by applying ruleR4s we may delete
lause 3. Next, we noti
e that
lause 4 is useless and, byapplying rule R4u, we
an delete it and we derive a program where newsat2(X)is failed. Now, by positive and negative unfolding, from
lause 1 we derive the
lause:6. sat spe
(X) X=0.Sin
e we want to derive a fa
t whi
h holds for the initial state where the
onstraint X = 0 is true, by applying the
ontextual
onstraint repla
ementrule we repla
e
lause 6 by the fa
t:7. sat spe
(X) During Phase B of the veri�
ation strategy des
ribed in Se
tion 4.4, we deleteredundant
onstraints (in our example above, the
onstraint X�0 in the bodyof
lause 2 and the
onstraint X = 0 in the body of
lause 6), by using the
ontextual
onstraint repla
ement rule R5.During Phase C of the strategy, we derive valid and failed atoms (in ourexample above, newsat1(X) and newsat2(X), respe
tively). In parti
ular,during that phase, we work bottom-up on the strata of the program (re
all thatat the end of Phase A we always derive a strati�ed program), and we simplifythe de�nition of every predi
ate symbol newp o

urring in the program, withthe aim of deriving either the fa
t newp(X) or the empty de�nition.

80 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS4.4.1 The Generalization Fun
tionNow we present the generalization fun
tion gen used during Phase A of the ver-i�
ation strategy for introdu
ing new
lauses by using the
onstrained atomi
de�nition rule.During the Generalization Step of Phase A, given a
all pattern
p of theform (
(X); sat (X;); Y) where Y � X, we introdu
e a new de�nition � of theform newp(X) gen(
(X)); sat (X;) where gen(
(X)) is a
onstraint su
hthat D j= 8X (
(X) ! gen(
(X))). This
ondition ensures that the
lausewhere the
all pattern
p o

urs,
an be folded by using �. Moreover, we willde�ne gen(
(X))) so that it is the least
onstraint, in the sense spe
i�ed below,whi
h makes it possible to fold. This minimality
ondition is motivated by thefa
t that, as already remarked at the end of Se
tion 4.1, generalization shouldbe applied with parsimony, be
ause it may prevent the proof of the propertyof interest.An important feature of the gen fun
tion is that it has a �nite
odomainand thus, for any CTL formula , a �nite number of new de�nitions of theform newp(X) gen(
(X)); sat (X;)
an be introdu
ed. This fa
t ensuresthat the veri�
ation strategy always terminates. As already mentioned, bydoing so we obtain a method whi
h is in
omplete, in the sense that there existproperties of in�nite state systems that
annot be proved. However, we willshow in Se
tion 4.5 that several interesting properties
an indeed be proved byusing the proposed generalization fun
tion.The
odomain of gen is the �nite set C(E) of
onstraints
onstru
ted asfollows. Let X be a variable ranging over the states of K. We assume thatevery
lause in PK [fÆing is written by using X as the �rst argument of thehead. Thus, every
lause in PK [fÆing is either of the form sat(X;)
;Gor of the form sat spe
(X)
;G. We
onsider the set EK of
onstraints e su
hthat: (i) e is a basi

onstraint, (ii) there exists a
lause H
;G in PK[fÆingsu
h that solve(
;X) = e^ d for some
onstraint d. We assume that PropertyP of Se
tion 4.3 holds. Let us also
onsider the set Eneg of basi

onstraints e0su
h that there exists a basi

onstraint e 2 EK su
h that the partition of :eis of the form
1 _ : : :_ (e0 ^ d)_ : : :_
m for some
onstraint d. We de�ne thefollowing set of basi

onstraints: E = EK [Eneg . We identify two elementse and e0 in E i� D j= 8 (e $ e0). Let C(E) be the smallest set of
onstraintsin
luding true, all
onstraints in E, and
losed w.r.t. ^. By
onstru
tion, C(E)is a �nite set.We de�ne gen(
) as the least
onstraint in C(E) w.r.t. the impli
ationordering, su
h that D j= 8 (
 ! gen(
)). The
onstraint gen(
)
an be
om-puted by applying the algorithm des
ribed below. This algorithm performsa breadth-�rst visit of the dire
ted a
y
li
 graph G whi
h is
onstru
ted asfollows: (i) the verti
es of G are the
onstraints in E, and (ii) there exists an

4.4. THE VERIFICATION STRATEGY 81edge from e to e0 i� (ii.1) e and e0 are distin
t, (ii.2) D j= 8 (e! e0), and (ii.3)there is no d 2 E, distin
t from e and e0, su
h that D j= 8 ((e! d)^ (d! e0)).Given a vertex e of G, we denote by Rea
h(e) the set of verti
es whi
h arerea
hable from e.The Algorithm for Constraint GeneralizationInput : the
onstraint
 to be generalized and the graph G.Output : a
onstraint d 2 C(E) su
h that (i) D j= 8 (
 ! d) and (ii) for alle 2 C(E) if D j= 8 (
! e) then D j= 8 (d! e).d := true;ToBeVisited := E;Let Current be the set of verti
es of G with no in
oming edges;for ea
h vertex e 2 Current doif D j= 8 (
! e) thend := d ^ e;Current := Current � feg;ToBeVisited := ToBeVisited � (feg [Rea
h(e))elseCurrent := (Current � feg)[fe0 2 ToBeVisited j there is an edge from e to e0gToBeVisited := ToBeVisited � fegend-for4.4.2 The Veri�
ation StrategyNow we present the veri�
ation strategy whi
h we use for verifying CTL prop-erties of
on
urrent systems. Let K be a Kripke stru
ture based on a
onstraintdomain D and let PK be the lo
ally strati�ed program
onstru
ted by the En-
oding Algorithm des
ribed in Se
tion 4.3.The Veri�
ation StrategyInput : (i) The program PK and (ii) a
onstrained atom (init(X); sat (X;')).Output : (i) A spe
ialized program PK;spe
 and (ii) a new predi
ate symbolsat spe
 su
h that, for all states s 2 D, if D j= init(s) then sat(s; ') 2 M(PK)i� sat spe
(s) 2M(PK;spe
).Phase A. We use the following three variables: (1) PA, whi
h denotes theoutput program of this phase, (2) Defs, whi
h denotes the set of de�nitionsintrodu
ed during the spe
ialization pro
ess, and (3) NewDefs, whi
h denotesthe set of de�nitions whi
h have been introdu
ed but not yet unfolded. LetElem be the set of elementary properties of the Kripke stru
ture K.

82 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSIntrodu
e the
lause Æin : sat spe
(X) init(X); sat (X;') by applying the
onstrained atomi
 de�nition rule R1.PA := ;; Defs := fÆing; NewDefs := fÆing;while there exists a
lause � 2 NewDefs doNewDefs := NewDefs � f�g;Step 1: Unfolding-Repla
ement.Let � be the set of
lauses derived by unfolding � w.r.t. the atom in bd(�);while there exists a
lause
 in � of the form H
;G1; sat(X;); G2 ,where either belongs to Elem or is of the form : 1or is of the form 1 ^ 2 dorepla
e
 in � by the set of
lauses derived by unfolding
 w.r.t. sat(X;)end-whileLet � be the set of
lauses obtained from � by: (i) applying rule R4f wherebyremoving all
lauses with an unsatis�able
onstraint in the body, and(ii) applying rule R5r whereby repla
ing ea
h
lause of the form H
; Gby H solve(
; Y); G, where Y = FV (
) \ vars(fH;Gg);Step 2: Generalization.for every (possibly renamed)
all pattern (
(X); sat (X;); Y) 2 CP(�) doif there is no
lause in Defs whose body is (gen(
(X)); sat (X;))then introdu
e the de�nition �: newp(X) gen(
(X)); sat (X;) byapplying rule R1;Defs := Defs [f�g; NewDefs := NewDefs [f�g;end-forStep 3: Folding.while there exists a
lause
 in � of the form H
;G1; L;G2, where L iseither an atom sat(X;) or a negated atom :sat(X;) dorepla
e
 by the
lause derived by folding
 w.r.t. L using a
lause in Defsend-whilePA := PA [�end-whilePhase B. This Phase of the veri�
ation strategy takes the output program PAof Phase A as input and returns a new program PB .PB := ;;LetC be f(init(X); sat spe
(X))g[f(
(X); p(X)) j (
(X); p(X); Y) 2 CP(PA)g,where CP(PA) is the set of
all patterns in PA;for every renamed apart
lause
 in PA of the form H
1; : : : ;
n; G,where
1; : : : ;
n are basi

onstraints doapply the
ontextual
onstraint repla
ement rule w.r.t. C and derivea new
lause
0 by deleting, for i = 1; : : : ; n, the
onstraint
i if, forevery
onstrained atom (
;Atom) in C, D j= 8 ((
 ^Atom=H)!
i);

4.4. THE VERIFICATION STRATEGY 83PB := PB [f
0g;end-forPhase C. This Phase of the veri�
ation strategy takes as input the outputprogram PB of Phase B and returns the �nal, spe
ialized program PK;spe
 . LetS1; : : : ; Sn be a strati�
ation of program PB (see Lemma 4.4.2 below).PK;spe
 := ;;for i := 1; : : : ; n dorepeatS := Si;Apply to Si, as long as possible, the
lause removal rule R4s;Apply to Si, as long as possible, the positive unfolding rule R2pand the negative unfolding rule R2n w.r.t. the valid and failed atomso

urring in S1 [: : : [Si;for all
lauses in Si of the form H
 doif D j= 8(9Y
) where Y = FV (
)� vars(H)then apply the
onstraint repla
ement rule R5rand repla
e H
 by the fa
t H end-foruntil S = Si;Apply the
lause removal rule R4u for removing the useless
lauses from Si;PK;spe
 := PK;spe
 [Siend-forThe two Theorems 4.4.3 and 4.4.4 below, establish the
orre
tness and thetermination of our veri�
ation strategy. We �rst need the following lemma.Lemma 4.4.2. Let PA and PB the output programs of Phase A and Phase B,respe
tively, of the veri�
ation strategy. Then PA and PB are strati�ed.Proof. Program PA is strati�ed w.r.t. the level mapping � de�ned as follows:�(newp) = length(), where the de�nition of newp in Defs is newp(X) sat(X;).Indeed, by
onstru
tion, for every
lause
 in PA of the form newp(X)
;Gand for all literals L in G we have that:(1) if L is of the form newq(Y) then �(newq) � �(newp), and(2) if L is of the form :newq(Y) then �(newq) < �(newp).Sin
e in Phase B we use the
ontextual
onstraint repla
ement rule only, byCorollary 3.3.15 program PB is strati�ed.Theorem 4.4.3. [Corre
tness of the Veri�
ation Strategy℄ Let K be a Kripkestru
ture based on a
onstraint domain D and let PK be the lo
ally strati�edprogram
onstru
ted by the En
oding Algorithm. Let init(X) be the
onstraintwhi
h spe
i�es the set of initial states and let ' be a CTL formula. By applying

84 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSthe veri�
ation strategy to the input program PK and the
onstrained atominit(X); sat (X;'), we obtain: (i) a spe
ialized program PK;spe
 and (ii) a newpredi
ate symbol sat spe
 su
h that, for all states s 2 D, if D j= init(s) thensat(s; ') 2M(PK) i� sat spe
(s) 2M(PK;spe
).Proof. Let Æin be the initial de�nition sat spe
(X) init(X); sat (X;') and lets be a state su
h that D j= init(s). Let us
onsider the �nal values of Defs(i.e., the set of de�nitions introdu
ed during Phase A), PA (i.e., the outputprogram of Phase A), and PB (i.e., the output program of Phase B). We havethat:sat(s; ') 2M(PK) i� sat spe
(s) 2M(PK [fÆing)(by the de�nition of M , be
ause Def (sat spe
 ; PK [fÆing)=fÆing)i� sat spe
(s) 2M(PK [Defs)(be
ause Def (sat spe
 ;Defs)=fÆing)i� sat spe
(s) 2M(PK [PA)(by Theorem 3.3.10)i� sat spe
(s) 2M(PK) [M(PA)(be
ause there is no predi
ate symbol o

urring both in PK and in PA)i� sat spe
(s) 2M(PA)(be
ause sat is the only predi
ate symbol o

urring in PK).Now, we show that sat spe
(s) 2 M(PA) i� sat spe
(s) 2 M(PB). Let C be theset of
onstrained atoms
onsidered at the beginning of Phase B. Sin
e: (i)PA is strati�ed (by Lemma 4.4.2), (ii) C � f(
;A) j h
;A;Xi 2 CP(PA)g, (iii)(init(X); sat spe
(X)) 2 C, and (iv) D j= init(s), then by Theorem 3.3.15 wehave that, sat spe
(s) 2M(PA) i� sat spe
(s) 2M(PB).Finally, we have that sat spe
(s; ') 2 M(PB) i� sat spe
(s) 2 M(PK;spe
). In-deed, during Phase C rule R1 is not applied and rule R5 is applied only inits restri
ted form R5r and, thus, by Theorem 3.3.10, we have that M(PB) =M(PK;spe
).Theorem 4.4.4. The veri�
ation strategy always terminates.Proof. We prove the termination of Phase A, Phase B, and Phase C separately.Termination of Phase A. Let us �rst show the termination of ea
h appli
ationof Steps 1, 2, and 3.Termination of Step 1. Let us
onsider an appli
ation of Step 1 starting froma de�nition �. Let T be the tree
onstru
ted as follows: (i) the root of T is thede�nition � and (ii) for any two nodes �1 and �2 in T , �2 is a
hild of �1 i� �2is obtained by unfolding �1. Sin
e the input program PK
onstru
ted by theEn
oding Algorithm is �nite, ea
h appli
ation of the unfolding rule w.r.t. anatom of the form sat(X;) produ
es a �nite number of
lauses. Thus, everynode of T has a �nite number of
hildren. Now, we show that every path inT is �nite. Let us
onsider the well-founded ordering >a over atoms de�ned

4.4. THE VERIFICATION STRATEGY 85as follows. For all atoms of the form sat(X; 1) and sat(Y; 2), sat(X; 1) >asat(Y; 2) i� length(1) > length(2). Let >
 be the well-founded orderingover
lauses de�ned as follows. For all
lauses �1: H1
;G1 and �2: H2 d;G2, �1 >
 �2 i� G2
an be obtained from G1 by repla
ing a literal L ofthe form A or :A by a
onjun
tion of literals L1; : : : ; Ln su
h that, for alli = 1; : : : ; n, Li is of the form Ai or :Ai and A >a Ai. Now noti
e that,the unfolding rule is applied w.r.t. atoms of the form sat(X;), where either belongs to Elem or is of the form : 1 or is of the form 1^ 2. Moreover, bythe
onstru
tion of PK, this appli
ation of the unfolding rule repla
es the atomsat(X;) by a
onstrained goal of the form
; sat(X1; 1); : : : ; sat(Xk; k),where k � 0 and, for i = 1; : : : ; k, i is a proper subformula of . Thus, if�2 is a
hild of �1 in T then �1 >
 �2. This proves that there exist no in�nitepaths in T and therefore the set of nodes of T is �nite. Thus, also the set of
lauses derived by appli
ations of the unfolding rule during Step 1 is �nite.Sin
e we perform at most one appli
ation of the
lause removal rule or the
onstraint repla
ement rule to the
lauses derived by unfolding, we have thatStep 1 terminates.Termination of Steps 2 and 3. It is guaranteed by the following two fa
ts: (i)the set � of
lauses is �nite, and (ii) every
lause
ontains a �nite number ofliterals in its body, and thus, there is only a �nite number of
all patterns.Now we prove the termination of Phase A. The number of iterations of theoutermost while-loop is equal to the number of de�nitions introdu
ed duringthe appli
ations of Step 2. Thus, the termination of Phase A follows fromthe fa
t that only a �nite number of de�nitions are introdu
ed. Indeed, everyappli
ation of the
onstrained atomi
 de�nition rule performed at Step 2 intro-du
es a
lause � of the form newp(X) gen(
(X)); sat (X;) where: (i) genis a fun
tion with a �nite
odomain (see Se
tion 4.4.1), (ii) is a subformulaof the initial CTL formula ', and (iii) the body of � is not a variant of thebody of any
lause introdu
ed by previous appli
ations of the de�nition rule.Termination of Phase B. Phase B terminates be
ause the input program PAis �nite and in every
lause there is a �nite number of basi

onstraints.Termination of Phase C. It follows from the following fa
ts: (i) the inputprogram PB is strati�ed (see Lemma 4.4.2), and (ii) ea
h appli
ation of atransformation rule in the repeat-loop removes either a
lause or a
onstraintor a literal.Now, we
an prove the soundness of our veri�
ation method based on pro-gram spe
ialization.Theorem 4.4.5. [Soundness of the Veri�
ation Method℄ Let K be a Kripkestru
ture whose initial states are spe
i�ed by the
onstraint init(X), and let 'be a CTL formula. Let PK be the lo
ally strati�ed CLP program
onstru
ted by

86 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSusing the En
oding Algorithm. Let the predi
ate sat spe
 and the program PK;spe
be the output of the veri�
ation strategy. If the fa
t sat spe
(X) o

urs inPK;spe
 then K; s j= ' holds for all initial states s of K.Proof. Let s be an initial state of K, that is, D j= init(s). Sin
e the fa
tsat spe
(X) o

urs in PK;spe
 then sat spe
(s) 2 M(PK;spe
) and, by the
orre
tness of the veri�
ation strategy (see Theorem 4.4.3), we have thatsat(s; ') 2 M(PK). Thus, by the
orre
tness of the En
oding Algorithm (seeTheorem 4.3.2), K; s j= ' holds.4.4.3 An Example of Appli
ation of the Veri�
ation StrategyLet us
onsider the Kripke stru
ture K presented in Example 4.3.3 and let PKbe the program
onstru
ted by using the En
oding Algorithm. We will verifythat K; ha; 0i j= :AF neg , where neg holds in a state hX1;X2i i� X2 < 0,by proving that sat(a; 0;:AF neg) 2 M(PK). We will do so by applyingthe veri�
ation strategy to the input program PK and the
onstrained atomX1 = a;X2 = 0; sat(X1;X2;:AF neg). The veri�
ation strategy will start o�by introdu
ing the
lause:1. sat spe
(X1;X2) X1=a;X2=0; sat(X1;X2;:AF neg)The proof of the property of interest will
onsist in deriving the
lause:sat spe
(X1;X2) The generalization fun
tion gen to be used during the appli
ation of the strat-egy is de�ned as follows. The set EK of
onstraints
omputed from PK[f1g asindi
ated in Se
tion 4.4.1 is fX2< 0; X1=a; X2� 0; X2> 0; X1= b; X2=0g.The partition of :X2 < 0 is X2 � 0 and the partitions of the negations ofthe other
onstraints in EK generate
onstraints in EK. Thus, the set E of
onstraints is de�ned as follows:E = EK [fX2�0gLet C(E) be the
losure of ftrueg [E w.r.t.
onjun
tion (see Se
tion 4.4.1).Then, given a
onstraint
(X1;X2), gen(
(X1;X2)) is the least
onstraint inC(E) w.r.t. the impli
ation ordering, su
h that D j= 8X18X2 (
(X1;X2) !gen(
(X1;X2))).Let us now des
ribe how the veri�
ation strategy works in our example.Phase A.We start o� by introdu
ing the de�nition
lause 1 in Defs and NewDefs.First iteration.Step 1: Unfolding-Repla
ement. We apply the unfolding rule to
lause 1w.r.t. the atom in its body and we derive:2. sat spe
(X1;X2) X1=a;X2=0; :sat(X1;X2; AF neg)

4.4. THE VERIFICATION STRATEGY 87Step 2: Generalization. The only
all pattern in
lause 2 is:X1=a;X2=0 ; sat(X1;X2; AF neg)Sin
e, the generalization of X1=a;X2=0 is X1=a;X2=0 itself, we introdu
ethe following new de�nition:3. newsat1(X1;X2) X1=a;X2=0; sat(X1;X2; AF neg)Thus, Defs is {d1, d3}.Step 3: Folding. By folding
lause 2 using
lause 3, we derive:4. sat spe
(X1;X2) X1=a;X2=0; :newsat1(X1;X2)Now, NewDefs = f3g and we iterate the spe
ialization pro
ess as follows.Se
ond iteration.Step 1: Unfolding-Repla
ement. We apply the unfolding and
onstraint re-pla
ement rules to
lause 3 and we derive:5. newsat1(X1;X2) X1=a;X2=2; sat(X1;X2; AF neg)Step 2: Generalization. The only
all pattern in
lause 5 is:X1=a;X2=2; sat(X1;X2; AF neg)The generalization of the
onstraint X1 = a ^ X2 = 2 is X1 = a;X2 > 0 and,thus, we introdu
e the following new de�nition:6. newsat2(X1;X2) X1=a;X2>0; sat(X1;X2; AF neg)Defs is {1, 3, 6}.Step 3: Folding. By folding
lause 5 using
lause 6, we derive:7. newsat1(X1;X2) X1=a;X2=2;newsat2(X1;X2)Sin
e NewDefs = f6g we iterate the spe
ialization pro
ess as follows.Third iteration.Step 1: Unfolding-Repla
ement. By unfolding and
onstraint repla
ement,from
lause 6 we derive:8. newsat2(X1;X2) X1=a;X2>0;X3=X2 + 2;X4=b;sat(X1;X3; AF neg); sat(X4;X2; AF neg)Step 2: Generalization. The
all patterns in
lause 8 are (after variable renam-ing):X1=a;X2>2; sat(X1;X2; AF neg)X1=b;X2>0; sat(X1;X2; AF neg)We
onsider the �rst
all pattern. The generalization of the
onstraint X1=a;X2 > 2 is the
onstraint X1 = a;X2 > 0 and, sin
e the
onstrained atomX1 = a;X2 > 0; sat(X1;X2; AF neg) is the body of
lause 6 in Defs, wedo not introdu
e a new de�nition for this
onstrained atom. Now we
on-sider the se
ond
all pattern in
lause 8. Sin
e the generalization of X1 =

88 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSb;X2> 0 is X1= b;X2> 0 itself and no
lause in Defs has body X1= b;X2>0; sat(X1;X2; AF neg), we introdu
e the de�nition:9. newsat3(X1;X2) X1=b;X2>0; sat(X1;X2; AF neg)Thus, Defs is {1, 3, 6, 9}.Step 3: Folding. By folding using
lauses 6 and 9, from
lause 8 we derive:10. newsat2(X1;X2) X1=a;X2>0;X3=X2 + 2;X4=b;newsat2(X1;X3);newsat3(X4;X2)Now, NewDefs = f9g and we perform one more iteration of the spe
ializationpro
ess.Fourth iteration.Step 1: Unfolding-Repla
ement. We now pro
eed by applying the unfoldingand
onstraint repla
ement rules to
lause 9 and we derive:11. newsat3(X1;X2) X1=b;X2>0;X3=X2 + 1; sat(X1;X3; AF neg)Step 2: Generalization. The only
all pattern in
lause 11 is (after variablerenaming): X1 = b;X2 > 1; sat(X1;X2; AF neg). The generalization of X1 =b;X2 > 1 is X1 = b;X2 > 0. Sin
e X1 = b;X2 > 0; sat(X1;X2; AF neg) is thebody of
lause 9 in Defs, we need not introdu
e any new de�nition.Step 3: Folding. By folding
lause 11 using 9, we derive:12. newsat3(X1;X2) X1=b;X2>0;X3=X2 + 1; newsat3(X1;X3)Sin
e there are no de�nitions in NewDefs we
on
lude Phase A with the fol-lowing program PA:4. sat spe
(X1;X2) X1=a;X2=0; :newsat1(X1;X2)7. newsat1(X1;X2) X1=a;X2=2; newsat2(X1;X2)10. newsat2(X1;X2) X1=a;X2>0;X3=X2 + 2;X4=b;newsat2(X1;X3); newsat3(X4;X2)12. newsat3(X1;X2) X1=b;X2>0;X3=X2 + 1; newsat3(X1;X3)Phase B.We
onsider the set C
onsisting of the following
onstrained atoms:
p1. X1=a;X2=0; sat spe
(X1;X2)
p2. X1=a;X2=0; newsat1(X1;X2)
p3. X1=a;X2=2; newsat2(X1;X2)
p4. X1=a;X2>2; newsat2(X1;X2)
p5. X1=b;X2>0; newsat3(X1;X2)
p6. X1=b;X2>1; newsat3(X1;X2)where the
onstraint in
p1 is init(X1;X2) and {
p2,
p3,
p4,
p5,
p6} isthe set CP(PA) of the
all patterns in PA (after variable renaming). We applythe
ontextual
onstraint repla
ement rule for deleting redundant
onstraints

4.4. EXAMPLES OF VERIFICATION VIA SPECIALIZATION 89from the
lauses of PA as follows. We delete the
onstraint X1 = a;X2 = 0from
lause 4, be
ause it is implied by the
onstraint in
p1, and we derive thefollowing
lause:13. sat spe
(X1;X2) :newsat1(X1;X2)We also delete the
onstraint X2> 0 from
lause 10, be
ause it is implied bythe
onstraints of the
all patterns
p3 and
p4 of newsat2(X1;X2). We derivethe following
lause:14. newsat2(X1;X2) X1=a;X3=X2 + 2;X4=b;newsat2(X1;X3); newsat3(X4;X2)Similarly, we remove the
onstraint X2 > 0 from
lause 12 thereby obtainingthe
lause:15. newsat3(X1;X2) X1=b;X3=X2 + 1; newsat3(X1;X3)Thus, we end Phase B with program PB
onsisting of
lauses 13, 7, 14, and15.Phase C.We
ompute a strati�
ation of the program PB and we get PB = S1 [S2,where S1 = f7; 14; 15g and S2 = f13g. Then, we pro
ess the two strata of PBas follows.Stratum S1. Sin
e the predi
ates newsat1, newsat2, and newsat3 are uselessin S1, we remove their de�nitions and we derive S1 = ;.Stratum S2. The atom newsat1(X1;X2) is failed in the program S1[S2, whi
h
ontains
lause 13 only. Thus, by applying the negative unfolding rule R2n to
lause 13, we derive our �nal, spe
ialized program PK;spe
 whi
h
onsists of thefollowing
lause:16. sat spe
(X1;X2) Thus, as desired, we have proved that K; ha; 0i j= :AF neg holds.4.5 Examples of Proto
ol Veri�
ation via Spe
ializa-tionNow we present the veri�
ation of three proto
ols by using our method basedon program spe
ialization: (i) the Bakery Proto
ol [42℄, (ii) the Ti
ket Proto-
ol [4℄, and the Bounded Bu�er Proto
ol [12℄.The Bakery Proto
ol and the Ti
ket Proto
ol ensure mutual ex
lusion be-tween two
on
urrent pro
esses A and B trying to a

ess a shared resour
e. Weveri�ed that either of these proto
ols: (i) indeed guarantees mutually ex
lusivea

esses to the resour
e, and (ii) will eventually serve a pro
ess requesting theresour
e.

90 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS' $?# " ! # " ! # " !- -hthink ; ai hwait; ai huse; aia := 0a := b+1 a<b _ b=0Figure 4.5.1: Pro
ess A of the Bakery Proto
ol.The Bounded Bu�er Proto
ol governs the intera
tion between two messageprodu
ers and two message
onsumers
ommuni
ating through a shared bu�erof limited size. We veri�ed that no message is lost during
ommuni
ations.The veri�
ation of all the temporal properties was performed automati-
ally by using the experimental
onstraint logi
 program transformation sys-tem MAP [26℄.4.5.1 The Bakery Proto
olThe state sA of pro
ess A is represented by a pair h
A; ai where
A is an elementof the set fthink ;wait ; useg of
ontrol states, and a is a
ounter whi
h takes asvalue a non negative real number (we
ould have used natural numbers instead,but real numbers allow us a simpler
onstraint solver for Rlin). Analogously,the state sB of pro
ess B is represented by a pair h
B ; bi.The evolution over time of pro
ess A is modeled by the transition relationRA (depi
ted in Figure 4.5.1) whi
h also uses the
ounter b asso
iated withpro
ess B: RA = f(hthink ; ai ; hwait ; b+ 1i)g [f(hwait ; ai ; huse; ai) j a < b or b = 0g [f(huse; ai ; hthink ; 0i)gThe evolution over time of pro
ess B is modeled by an analogous transitionrelation RB , where a and b are inter
hanged.The state of the system resulting by the asyn
hronous parallel
ompositionof pro
esses A and B, is represented by the 4-tuple h
A; a;
B ; bi. Thus, thetransition relation of the system is (here and in the following examples, forreasons of simpli
ity, we will feel free to omit some angle bra
kets):R = f(sA; sB ; s0A; sB) j (sA; s0A) 2 RAg[f(sA; sB; sA; s0B) j (sB; s0B) 2 RBgThis system has an in�nite number of states, be
ause
ounters may in
reasein an unbounded way, as the following
omputation path illustrates:hthink ; 0; think ; 0i, hwait ; 1; think ; 0i, hwait ; 1;wait ; 2i, huse; 1;wait ; 2i,

4.5. EXAMPLES OF VERIFICATION VIA SPECIALIZATION 91hthink ; 0;wait ; 2i, hthink ; 0; use ; 2i, hwait ; 3; use; 2i, hwait ; 3; think ; 0i, : : :The set I of initial states is the singleton fhthink ; 0; think ; 0ig.We have applied our spe
ialization method to the veri�
ation of two prop-erties of the Bakery Proto
ol: (i) the mutual ex
lusion property, and (ii) thestarvation freedom property. The mutual ex
lusion property is a safety prop-erty whi
h says that `the system will never rea
h a state where both pro
essesare using the shared resour
e'. The starvation freedom property is a livenessproperty whi
h says that `if a pro
ess wants to use a resour
e then it will even-tually get it'. The mutual ex
lusion property
an be expressed by the CTLformula :EF unsafe , where unsafe is an elementary property whi
h holds i�both pro
esses are in
ontrol state use, that is,for all states s 2 S, unsafe 2 L(s) i� s is of the form huse; a; use; biwhere a and b are non negative real numbers.The starvation freedom property for a pro
ess, say pro
ess A,
an be ex-pressed by the CTL formula :EF (wait^:AF use). The elementary propertieswait and use hold are de�ned as follows:for all states s 2 S, wait 2 L(s) i� s is of the form hwait ; a;
B ; bi, andfor all states s 2 S, use 2 L(s) i� s is of the form huse; a;
B ; biwhere a and b are non negative real numbers and
B 2 fthink ;wait ; useg.4.5.2 The Ti
ket Proto
olThe Ti
ket Proto
ol [4℄ provides an alternative solution to the mutual ex
lusionproblem. The intera
tion of the two pro
esses A and B is
ontrolled by apro
ess C whi
h assigns ti
kets to A and B.The states of the pro
esses A and B are represented as for the BakeryProto
ol. The state sC of pro
ess C is represented by a pair ht; ni of nonnegative real numbers, where t is used for assigning a new ti
ket to A or B,and n provides an upper bound for the value of the ti
kets required for a

essingthe
riti
al se
tion.The overall system is (A jC) jj (B jC) where j denotes the syn
hronousparallel
omposition and jj denotes the asyn
hronous one. The transitions for(A jC) are spe
i�ed by the following relation RA jC (see also Figure 4.5.2):RA jC = f(hthink ; a; t; ni ; hwait ; t; t+ 1; ni)g [f(hwait ; a; t; ni ; huse; a; t; ni) j a � ng [f(huse; a; t; ni ; hthink ; 0; t; n+ 1i)gThe transitions for (B jC)
an be spe
i�ed by a relation RB jC , whi
h is ob-tained repla
ing a by b in RA jC .

92 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS' $?# " ! # " ! # " !- -hthink ;a;t;ni hwait;a;t;ni huse;a;t;nin := n+1a := tt := t+1 a�nFigure 4.5.2: The Ti
ket Proto
ol: (A jC).The state of the overall system is represented by the 6-tuple h
A; a;
B ; b; t; niand its transition relation is the following:R = f(sA; sB ; sC ; s0A; sB; s0C) j (sA; sC ; s0A; s0C) 2 RA jCg[f(sA; sB ; sC ; sA; s0B; s0C) j (sB; sC ; s0B; s0C) 2 RB jCgThis system has an in�nite number of states, be
ause there is no upper boundto the values of t and n.The set I of the initial states is fhthink ; 0; think ; 0; t; ni j t=ng.We have applied our veri�
ation method for proving the mutual ex
lusionproperty and the starvation freedom property of the Ti
ket Proto
ol. Themutual ex
lusion property
an be expressed by the CTL formula :EF unsafe.The elementary property unsafe is de�ned as follows:for all states s 2 S, unsafe 2 L(s) i� s is of the form huse; a; use; b; t; niwhere a; b; t and n are non negative real numbers.The starvation freedom property for a pro
ess, say pro
ess A,
an be ex-pressed by the CTL formula :EF (wait ^ :AF use). The set of states wherethe elementary properties wait and use hold
an be de�ned as follows:for all states s 2 S, wait 2 L(s) i� s is of the form hwait ; a;
B ; b; t; ni, andfor all states s 2 S, use 2 L(s) i� s is of the form huse; a;
B ; b; t; niwhere a; b; t, and n are non negative real numbers and
B 2 fthink ;wait ; useg.4.5.3 The Bounded Bu�er Proto
olThe Bounded Bu�er Proto
ol governs the intera
tion of �ve pro
esses: twoprodu
ers P1; P2, two
onsumers C1; C2 and the bu�er B.The state spi of pro
ess Pi, where i 2 f1; 2g, is represented by a real numberpi whi
h is the number of messages produ
ed by Pi during the proto
ol run.Analogously, the state s
i of pro
ess Ci, where i 2 f1; 2g, is des
ribed by areal number
i whi
h is the number of messages
onsumed by Ci during theproto
ol run. The state b of the bu�er B is des
ribed by a pair hS;Ai of realnumbers where S denotes the bu�er size (whi
h does not
hange over time)and A denotes the number of available lo
ations.

4.6. EXTENDING THE VERIFICATION METHOD 93The overall system is (P1 jB) jj (P2 jB) jj (C1 jB) jj (C2 jB) where the tran-sitions for (Pi jB), where i 2 f1; 2g, are spe
i�ed by the following relation:RPi jB = f(hpi; S;Ai ; hpi + 1; S;A� 1i) jA > 0gand the transitions for (Ci jB), where i 2 f1; 2g, are spe
i�ed by the followingrelation:RCi jB = f(h
i; S;Ai ; h
i + 1; S;A + 1i) jA < SgThe state of the overall system is represented by the 5-tuple hsp1; sp2; s
1; s
2; biand its transition relation is the following:R = �Si2f1;2gf(sp1; sp2; s
1; s
2; b) j (spi; b; sp0i; b0) 2 RPi jBg�[�Si2f1;2gf(sp1; sp2; s
1; s
2; b) j (s
i; b; s
0i; b0) 2 RCi jBg�This system has an in�nite number of states, be
ause sp1; sp2; s
1 and s
2 donot have an upper bound.The set S0 of initial states is fh0; 0; 0; 0; (S;A)i jA=Sg.We have applied our veri�
ation method for proving that no message is lostduring the evolution of the system, that is, `the number of non empty lo
ationsin the bu�er is equal to the number of messages produ
ed and not
onsumed'.This property
an be expressed by the CTL formula :EF lost , where lostis de�ned as follows:for all states s 2 S of the form hsp1; sp2; s
1; s
2; (S;A)i,lost 2 L(s) i� (S�A > sp1+sp2�s
1�s
2) _ (S�A < sp1+sp2�s
1�s
2).4.6 Extending the Veri�
ation MethodWe now present two extensions of our Veri�
ation Method. The �rst extensionallows us to extend the appli
ability of our Veri�
ation Method to a larger
lassof
on
urrent systems, by restri
ting the
lass of CTL formulas whi
h
an beused for spe
ifying the property to be veri�ed. The se
ond extension allows usto prove the truth of some CTL formulas by performing a ba
kward traversalof the state spa
e.Let us
onsider the proper subset CTLE of CTL formulas generated by thefollowing grammar:' ::= p j :' j '1 ^ '2 j EX ' j EU('1; '2)whi
h
onsists of all the CTL formulas
onstru
ted without using the operatorAF .We now modify some of the assumptions of Se
tion 4.3 whi
h were neededfor expressing the transition relation by using
onstraints.

94 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSA relational event is a formula of the form
ond(X) ^ a
t(X;Y), su
hthat, D j= 8X
ond (X) ! 9Y a
t(X;Y), where
ond (X) and a
t(X;Y) are
onstraints whose free variables are X and X [Y , respe
tively.Noti
e that the above de�nition di�ers from the de�nition of event pre-sented in Se
tion 4.3. Indeed, in the de�nition of event, we require that a
tiona
t is a fun
tional relation, that is, D j= 8X;Y;Z a
t(X;Y) ^ a
t(X;Z) !Y = Z, thus disallowing a
tions of the form X > Y . This
ondition
an nowbe relaxed be
ause it was only needed for introdu
ing the
lauses whi
h spe
ifythe truth of CTL formulas of the form AF ' whi
h are not present in CTLE.We assume that there exists a disjun
tion t1(X;Y) _ : : : _ tk(X;Y) of re-lational events satisfying the following
ondition:(TR) for all states s1 and s2 in S we have(s1; s2) 2 R i� D j= t1(s1; s2) _ : : : _ tk(s1; s2)The
lass of
on
urrent systems whi
h
an be spe
i�ed by using the de�nitionspresented above allow us to spe
ify a
on
urrent system K = hS; I;R; Li su
hthat, for some state s 2 S, the set fs0 j (s; s0) 2 Rg is in�nite, and thus it isstri
tly larger than the
lass of
on
urrent systems of [76℄.The following theorem states the
orre
tness of the method presented inSe
tion 4.3 with the modi�ed de�nitions above.Theorem 4.6.1. [Corre
tness of the En
oding℄ Let K = hS; I;R; Li be a
on-
urrent system satisfying the
onditions presented above and let PK be a lo
allystrati�ed program
onstru
ted by applying the En
oding Algorithm. Then, forall states s 2 S and for all formulas ' in CTLE, we have thatK; s j= ' i� sat(s; ') 2M(PK)Proof. (Outline) The proof is similar to the proof of Theorem 4.3.2.We now des
ribe the se
ond extension of our Veri�
ation Method whi
hallows us to prove the truth of CTL formulas of the form :EF p or :EX p,where p is an elementary property, by exploring the state spa
e ba
kwards.This extension
an be applied to the extended
lass of
on
urrent systemsdes
ribed above.Let K = hS; I;R; Li be a
on
urrent system and let p be an elementaryproperty su
h that the set Sp = fs 2 S j p 2 L(s)g of states in whi
h p is true
an be expressed by a
onstraint
(X) over the system variables, that is, forall states s we have s 2 Sp i� D j=
(s)Moreover, we assume that the set I of initial states
an be expressed by a
onstraint init(X), that is, for all states s we haves 2 I i� D j= init(s)

4.7. RELATED WORK 95Let init be an elementary property and let K0 = hS; Sp; R0; L0i be a
on
urrentsystem where:� R0 = f(s0; s) j (s; s0) 2 Rg is the inverse of the transition relation R,� L0 is a labeling fun
tion su
h that, for all s0 2 S0, init 2 L0(s) i� s 2 I.Then we have thatK0; s0 j= :EF init holds for all s0 2 Sp i� K; s j= :EF p holds for all s 2 IandK0; s0 j= :EX init holds for all s0 2 Sp i� K; s j= :EX p holds for all s 2 IThus, in order to prove the truth of the CTL formula :EF p (respe
tively,:EX p) in system K we
an apply our veri�
ation method to the CTL formula:EF init (respe
tively, :EX init) and the system K0.For reasons of simpli
ity in this se
tion we assumed that the set I of initialstates and the set Sp
an be expressed by a
onstraint over the system variables.However, the extension to the more general
ase, where the sets I and Sp arespe
i�ed by using disjun
tions of
onstraints, is straightforward.4.7 Related WorkIn re
ent years many logi
-based te
hniques have been developed for auto-mati
ally verifying properties of
on
urrent systems, the most su

essful ofthem being model
he
king [14℄. The su

ess of model
he
king is also due tothe use of Binary De
ision Diagrams whi
h provide a very
ompa
t symboli
representation of a possibly very large, but �nite, set of states. In order toover
ome this �niteness restri
tion, some e�orts have re
ently been devotedfor dealing with in�nite state systems by in
orporating into model
he
kingsome abstra
tion and dedu
tion te
hniques (see [77℄ for a brief survey).Re
ent papers also demonstrate the usefulness of logi
 programming and
onstraint logi
 programming as a basis for the veri�
ation of �nite or in�nitestate systems.In [67℄ the authors present XMC, a model
he
king system implemented inthe tabulation-based logi
 programming language XSB[71℄. XMC
an verifytemporal properties expressed in the alternation-free fragment of the �-
al
ulusof �nite state
on
urrent systems spe
i�ed in a CCS-like language. The XMCimplementation
ontains many sour
e-level optimizations whi
h take advan-tage of the tabulation-based exe
ution me
hanism of XSB, thereby a
hievingperforman
es
omparable to those of state-of-the-art model
he
kers.A method for the veri�
ation of some CTL properties of in�nite state
on-
urrent systems using
onstraint logi
 programming is des
ribed in [20℄. De-pending on the formula and the system being veri�ed, suitable CLP programs

96 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMSare introdu
ed. The truth of CTL properties is then veri�ed by
omputingexa
t and approximated least and greatest �xed points of those programs, butunfortunately there is no guarantee of termination.In [45℄ the authors show that a restri
ted form of partial dedu
tion of logi
programs, augmented with abstra
t interpretation, is su�
ient to solve all
overability problems of in�nite state Petri nets. Moreover, it is shown how itis possible to
ompute the Karp-Miller tree and Finkel's minimal
overabilityset, by using partial dedu
tion algorithms.In [58℄ a model
he
ker is presented for verifying CTL properties of �nitestate systems, by using CLP programs over �nite
onstraint domains whi
hare
losed under
onjun
tion, disjun
tion, variable proje
tion and negation.The veri�
ation pro
ess is performed by exe
uting a CLP program en
odingthe semanti
s of CTL in an extended exe
ution model whi
h uses
onstru
tivenegation and tabled resolution.In [30℄ an automati
 method for verifying safety properties of in�nite statePetri nets with parametri
 initial markings is presented. The method triesto
onstru
t the rea
hability set of the Petri net being veri�ed by
omputingthe least �xpoint of CLP with Presburger arithmeti

onstraints. Invariant
he
king and transformations of Petri nets are used for improving performan
e.A method for proving safety and liveness properties for parameterized �-nite state systems with various network topologies is presented in [69℄. Theveri�
ation pro
ess is
arried out by proving goal equivalen
e in logi
 programsusing unfold/fold based program transformation.This
hapter presents a systemati
 method for verifying CTL propertiesof in�nite state
on
urrent systems based on a variant of the te
hniques de-veloped in [27℄ for spe
ializing
onstraint logi
 programs. The main featuresby whi
h our method may show some advantages w.r.t. the above-mentionedapproa
hes are: (i) we
onsider in�nite state
on
urrent systems [76℄ whosetransitions
an be spe
i�ed by
onstraints over a generi
 domain, (ii) we ver-ify properties spe
i�ed by using any CTL formula, and (iii) our veri�
ationmethod terminates in all
ases.We have applied our veri�
ation method to the familiar examples of: theBakery Proto
ol [42℄, the Ti
ket Proto
ol [4℄, and the Bounded Bu�er Proto
ol[12℄. We have proved that the �rst two proto
ols ensure mutual ex
lusionand starvation freedom. We have also proved that no message is lost when
omplying with the Bounded Bu�er Proto
ol.We believe that the use of CLP as modeling language together with pro-gram spe
ialization as inferen
e system, provides a very �exible and powerfultool for the veri�
ation of in�nite state systems. Indeed,
onstraints allow sim-ple representations of in�nite sets of values, and the de
larativeness of logi
programming makes it easy to model a large variety of systems and properties.Future work on the appli
ation of spe
ialization of CLP programs for the

4.7. RELATED WORK 97veri�
ation of in�nite state systems will in
lude: experimentation with di�erent
hoi
es of
onstraint domains and generalization operators, and experimenta-tion with di�erent
lasses of systems and properties.

98 CHAPTER 4. VERIFICATION OF INFINITE STATE SYSTEMS

Chapter 5Systems with an ArbitraryNumber of In�nite StatePro
essesIn this
hapter we present a method for the veri�
ation of safety propertiesof
on
urrent systems whi
h
onsist of �nite sets of in�nite state pro
esses.This method is an enhan
ement of the method proposed in Chapter 4. Sys-tems and properties are spe
i�ed by using
onstraint logi
 programs, and theinferen
e engine for verifying properties is provided by a te
hnique based onunfold/fold program transformations. We deal with properties of �nite sets ofpro
esses of arbitrary
ardinality, and in order to do so, we
onsider
onstraintlogi
 programs where the
onstraint theory is the Weak Monadi
 Se
ond OrderTheory of k Su

essors. Our veri�
ation method
onsists in transforming theprograms that spe
ify the properties of interest into equivalent programs wherethe truth of these properties
an be
he
ked by simple inspe
tion in
onstanttime. We present a strategy for guiding the appli
ation of the unfold/fold rulesand realizing the transformations in a semiautomati
 way.5.1 Introdu
tionAs already mentioned, model
he
king
an be used for the veri�
ation of tem-poral properties of
on
urrent systems
onsisting of a �xed number of �nitestate pro
esses [14℄. In Chapter 4 we have presented a te
hnique for extendingmodel
he
king to
on
urrent systems
onsisting of a �xed number of in�nitestate pro
esses. Re
ently, there have been various proposals to extend model
he
king for verifying properties of systems
onsisting of an arbitrary num-ber of in�nite state pro
esses (see, for instan
e, [56, 63, 77℄). The veri�
ationproblem addressed by these new proposals
an be formulated as follows: given99

100 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSESa system SN
onsisting of N in�nite state pro
esses and a temporal property'N , prove that, for all N , the system SN veri�es property 'N .The main di�
ulty of this veri�
ation problem is that most properties ofinterest, su
h as safety and liveness properties, are unde
idable for that
lassof
on
urrent systems, and thus, there
annot be any
omplete method fortheir veri�
ation. For this reason, all proposed methods resort to semiau-tomati
 te
hniques, based on suitable abstra
tions, redu
tion to �nite statemodel
he
king, and mathemati
al indu
tion.This
hapter des
ribes a method for verifying safety properties of systems
onsisting of an arbitrary number of in�nite state pro
esses. Our methodavoids the use mathemati
al indu
tion by abstra
ting away from the numberN of pro
esses a
tually present in the system. Indeed, this parameter does noto

ur in our en
odings of the systems and the safety properties to be veri�ed.These en
odings are expressed as
onstraint logi
 programs, whose
onstraintsare formulas of the Weak Monadi
 Se
ond-order Theory of k Su

essors, de-noted WSkS [82℄. These programs will be
alled CLP(WSkS) programs. Byusing these en
odings, the a
tual
ardinality of the set of pro
esses in the sys-tems is not needed for the proofs of the formulas expressing the properties ofinterest.Our method uses the transformation rules of Se
tion 3.2 as inferen
e rulesfor
onstru
ting proofs. Other veri�
ation methods proposed in the literatureare based on CLP and/or program transformation [20, 28, 29, 47, 58, 67, 70℄.However, those methods deal either with: (i) �nite state systems [58, 67℄,or (ii) in�nite state systems where the number N of in�nite state pro
esses is�xed in advan
e [20, 28, 29, 47℄, or (iii) parameterized systems, that is, systems
onsisting of an arbitrary number of �nite state pro
esses [70℄. A more detaileddis
ussion of these methods
an be found in Se
tion 5.6.In the
on
urrent systems we
onsider, every pro
ess evolves a

ording toits lo
al state,
alled the pro
ess state, and the state of the other pro
esses.Correspondingly, the whole system evolves and its state,
alled the systemstate,
hanges.We assume that ea
h pro
ess state
onsists of a pair hn; si 2 IN �CS ,where IN denotes the set of natural numbers and CS is a �nite set. n and sare
alled the
ounter and the
ontrol state of the pro
ess, respe
tively. Noti
ethat, during the evolution of the system ea
h pro
ess may rea
h an in�nitenumber of distin
t states.Sin
e two distin
t pro
esses in a given system may have the same h
ounter,
ontrol statei pair, a system state is a multiset of pro
ess states.As usual in model
he
king, a
on
urrent system is viewed as a Kripkestru
ture K = hS; I;R; Li, where: (i) S is the set of system states, that is, theset of the multisets of h
ontrol state,
ounteri pairs, (ii) I � S is a set of initial

5.1. INTRODUCTION 101system states, (iii) R � S�S is a transition relation, and (iv) L : S ! P(Elem)is a fun
tion whi
h assigns to ea
h state s 2 S a subset L(s) of Elem; that is,a set of elementary properties whi
h hold in s.We also assume that for all hX;Y i2R, we have that Y = (X�fxg) [fygfor some pro
ess states x and y, where obviously, the di�eren
e and unionoperations are to be understood in the multiset sense. Thus, a transition froma system state to a new system state
onsists in repla
ing a pro
ess state by anew pro
ess state. This assumption implies that: (i) the number of pro
essesin the
on
urrent systems does not
hange over time, and (ii) the
on
urrentsystem we are modeling is asyn
hronous, i.e., the pro
esses of the system donot ne
essarily syn
hronize their a
tions.We will address the problem of proving safety properties of systems. Asafety property is expressed by a formula of the Computational Tree Logi
 (seeSe
tion 4.2) of the form :EF (unsafe), where unsafe is an elementary propertyand EF is a temporal operator. The meaning of any su
h formula is given viathe satisfa
tion relation K;X0 j= :EF (unsafe) whi
h holds for a system K anda system state X0 i� there is no sequen
e of states X0;X1; : : : ;Xn su
h that:(i) for i = 0; : : : ; n� 1, hXi;Xi+1i 2 R and (ii) Xn 2 unsafe.We may extend our method to prove more
omplex properties, su
h asthose whi
h
an be expressed by using, in addition to : and EF, other logi
al
onne
tives and CTL temporal operators. However, for simpli
ity reasons, inthis
hapter we deal with safety properties only, and we do not
onsider nestedtemporal operators.Now we outline our method for verifying that, for all initial system statesX of a given system K, the safety property ' holds. For the notions of lo
allystrati�ed program and perfe
t model we refer to Se
tion 3.1.Veri�
ation Method.Step 1. (System and Property Spe
i�
ation) We introdu
e: (i) a WSkS formulainit(X) whi
h
hara
terizes the initial system states, that is, X is an initialsystem state i� init(X) holds, and (ii) a lo
ally strati�ed CLP(WSkS) programPK whi
h de�nes a binary predi
ate sat su
h that for ea
h system state X,K;X j= ' i� sat(X;') 2M(PK)where M(PK) denotes the perfe
t model of the program PK.Step 2. (Proof Method) We introdu
e a new predi
ate sat spe
 de�ned by theCLP(WSkS)
lause F : sat spe
(X) init(X); sat (X;'), where X is a variable.We then apply the transformation rules of Se
tion 3.2, and from programPK [fFg we derive a new program PK;spe
 .If the
lause sat spe
(X) init(X) o

urs in PK;spe
 then for all initial systemstates X, we have that K;X j= ' holds.

102 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSESThe
hoi
e of the perfe
t model as the semanti
s of the program PK requires afew words of explanation. By de�nition, K;X j= :' holds i� K;X j= ' doesnot hold, and this fa
t
an be expressed by the
lause:C : sat(X;:') : sat(X;')where : in the head of C is interpreted as a fun
tion symbol, while : inthe body of C is interpreted as negation by (�nite or in�nite) failure. Now,sin
e
lause C is lo
ally strati�ed and the other
lauses for sat do not
ontainnegated atoms (see Se
tion 5.2.2), the semanti
s of negation by failure is theone
aptured by the perfe
t model (re
all that for lo
ally strati�ed programsthe perfe
t model is identi
al to the stable model and the well-founded model[6℄).This
hapter is stru
tured as follows. In Se
tion 5.2 we des
ribe Step 1of our veri�
ation method and we introdu
e CLP(WSkS) programs, that is,
onstraint logi
 programs whose
onstraints are formulas in the WSkS theory.In Se
tion 5.3 we illustrate our spe
i�
ation method by
onsidering the
aseof a system of N pro
esses whi
h use the bakery proto
ol for ensuring mutualex
lusion [42℄. In Se
tion 5.4 we show how Step 2 of our veri�
ation methodis realized by applying a semiautomati
 strategy for guiding the appli
ation ofthe transformation rules presented in Se
tion 3.2 and
onstru
ting the proofsof the properties of interest. In Se
tion 5.5, we will see our strategy in a
tionfor the veri�
ation of the N -pro
ess bakery proto
ol. Finally, in Se
tion 5.6we
ompare our method with the
urrent literature in the �eld and we dis
usspossible enhan
ements of our method.5.2 System and Property Spe
i�
ation using WeakMonadi
 Se
ond Order Theories and CLPIn this se
tion we des
ribe Step 1 of our veri�
ation method and, in parti
ular,we indi
ate how to spe
ify a system
onsisting of a set of in�nite state pro
essesand how to spe
ify its safety properties.In order to spe
ify a system K = hS; I;R; Li, we use the WSkS theory[82℄. This theory is de
idable [81℄ and it allows us to express properties of�nite sets of �nite strings over an alphabet of k symbols. In order to useWSkS, we represent a pro
ess state as a �nite string and a system state, thatis, a �nite multiset of pro
ess states, as a �nite set of �nite strings. S is theset of system states. The set I � S of initial system states is spe
i�ed by aWSkS formula init(X), where X is a variable ranging over �nite sets of �nitestrings. Similarly, the transition relation R and the elementary properties inElem (and, as a
onsequen
e, the labeling fun
tion L) are spe
i�ed by formulas

5.2. SYSTEM AND PROPERTY SPECIFICATION IN CLP(WSKS) 103of the form r(X;Y) and e(X), respe
tively, where X and Y range over �nitesets of �nite strings.In order to spe
ify safety properties, that is, the sat relation indi
ated atStep 1 of our veri�
ation method, we now introdu
e CLP programs whose
onstraints are WSkS formulas, denoted CLP(WSkS).5.2.1 Constraint Logi
 Programs over WSkSThe syntax of WSkS is de�ned as follows. Let us
onsider a set � = fs1; : : : ; skgof k symbols,
alled su

essors, and a set Ivars of individual variables. Anindividual term is either a string � or a string x�, where x 2 Ivars and � 2 ��,i.e., the set of the �nite strings of su

essor symbols. By " we denote the emptystring.Let us also
onsider a set Svars of set variables ranged over by X;Y; : : :WSkS terms are either individual terms or set variables.Atomi
 formulas of WSkS are either (i) equalities between individual terms,written t1= t2, or (ii) inequalities between individual terms, written t1� t2, or(iii) membership atomi
 formulas, written t2X, where t is an individual termand X is a set variable.The formulas of WSkS are
onstru
ted from the atomi
 formulas by meansof the usual logi
al
onne
tives and the quanti�ers over individual variablesand set variables. Given any two individual terms, t1 and t2, we will also writet1 6= t2 and t1 < t2, as a shorthand for : (t1 = t2) and t1 � t2 ^ : (t1 = t2),respe
tively.The semanti
s of WSkS formulas is de�ned by
onsidering the interpre-tation W with domain �� su
h that = is interpreted as string equality, � isinterpreted as the pre�x ordering on strings, and 2 is interpreted as member-ship of a string to a �nite set of strings. We say that a
losed formula ' ofWSkS holds i� W j= '. The relation W j= ' is re
ursive [81℄.A CLP(WSkS) program is a set of many-sorted �rst order formulas [23℄.There are three sorts: string, stringset, and tree, interpreted as �nite strings,�nite sets of strings, and �nite trees, respe
tively. We use many-sorted logi
 toavoid the formation of meaningless program
lauses su
h as p(X; s1) X=s1,where X is a set variable of sort stringset and s1 is a
onstant in � of sortstring.CLP(WSkS) terms are either WSkS terms or ordinary terms (that is, terms
onstru
ted out of variables,
onstants, and fun
tion symbols distin
t fromthose used for WSkS terms). The WSkS individual terms are assigned thestring sort, the WSkS set variables are assigned the stringset sort, and ordinaryterms are assigned the tree sort. Ea
h predi
ate of arity n is assigned a uniquesort whi
h
onsists of an n-tuple hi1; : : : ; ini of sorts. For instan
e, the predi
ate2 is of sort hstring ; stringseti. We assume that CLP(WSkS) programs are

104 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSES
onstru
ted by
omplying with the sorts of terms and predi
ates.An atom is an atomi
 formula whose predi
ate symbol is not in f�;=;2g.As usual, a literal is either an atom or a negated atom. A CLP(WSkS)
lauseis of the form A
; L1; : : : ; Ln, where A is an atom,
 is a formula of WSkS,and L1; : : : ; Ln are literals. We extended to
onstraint logi
 programs thede�nitions of lo
ally strati�ed program and perfe
t model, by adapting the
orresponding de�nitions relative to logi
 programs (see Se
tion 3.1). Given alo
ally strati�ed CLP program P , M(P) denotes the perfe
t model of P .5.2.2 System and Property Spe
i�
ation Using CLP(WSkS)Now we present our method for spe
ifying systems and their safety propertiesby using CLP(WSkS). A system K will be spe
i�ed as a tuple hS; I;R; Li.Re
all that a system state
onsists of a multiset of pro
ess states, that is, amultiset of pairs hn; si where n 2 IN is a
ounter and s 2 CS is a
ontrol state.We assume that CS is the �nite set fs1; : : : ; shg of symbols.We
onsider the following set of su

essor symbols: � = f1; 2g [CS .A pro
ess state is represented as a term of the form 1ns2m, where: (i) 1nand 2m are (possibly empty) strings of 1's and 2's, respe
tively, and (ii) s isan element of CS . For a pro
ess state 1ns2m we have that: (i) the string 1nrepresents its
ounter (the empty string " represents the
ounter 0), and (ii)the symbol s represents its
ontrol state. The string 2m, with di�erent valuesof m, is used to allow di�erent terms to represent the same h
ounter,
ontrolstatei pair, so that a set of terms ea
h of whi
h is of the form 1ns2m
an beused to represent a multiset of pro
ess states.Thus, a system state in S, whi
h is a multiset of pro
ess states, is repre-sented as a set of terms ea
h of whi
h is of the form 1ns2m.Now we will show that pro
ess states and system states are de�nable byformulas in WSkS. First we need the following de�nitions (here and in thesequel between parentheses we write the intended meanings):� is-
n(x) � 9X ((8y y 2 X ! (y=" _ 9z (y=z 1 ^ z2X))) ^ x2X)(x is a term of the form 1n for some n�0, i.e., x is a
ounter)� is-
s(x) � x=s1 _ : : : _ x=sh(x2CS , i.e., x is a
ontrol state)Here are the WSkS formulas whi
h de�ne pro
ess states and system states:� ps(x) � 9X ((8y y2X ! (9n9s y=n s ^ is-
n(n) ^ is-
s(s)) _9z (y=z 2 ^ z2X))) ^ x2X)(x is a pro
ess state, that is, a term of the form 1ns2m for some n;m�0and s2CS)

5.2. SYSTEM AND PROPERTY SPECIFICATION IN CLP(WSKS) 105� ss(X) �8x (x2X ! ps(x)) (X is a system state, that is, a set of termsof the form 1ns2m)Now we des
ribe the general form of the WSkS formulas whi
h
an be usedfor de�ning the transition relation of a system. We need the following twode�nitions:�
n(x; n) � ps(x) ^ is-
n(n) ^ n�x ^ (8y (y�x ^ is-
n(y)) ! y�n)(n is the
ounter of pro
ess state x)�
s(x; s) � ps(x) ^ is-
s(s) ^ (9y 9z (y�x ^ is-
n(z) ^ y=z s)(s is the
ontrol state of pro
ess state x)We re
all that a transition is the repla
ement of a pro
ess state in a systemstate by a new pro
ess state. The repla
ement relation is de�ned as follows(the angle bra
kets h, i are used to improve readability and they are not partof the syntax of WSkS):� repla
e(hn1; s1i;X; hn2; s2i; Y) � ss(X) ^ ss(Y) ^9x (x2X ^
n(x; n1) ^
s(x; s1))^9y (y2Y ^
n(y; n2) ^
s(y; s2))^8z ((z2X ^ z 6= x)$ (z2Y ^ z 6= y))(Y = (X�fxg)[fyg for some pro
ess states x 2 X and y 2 Y su
h that:(i) x has
ounter n1 and
ontrol state s1 and (ii) y has
ounter n2 and
ontrol state s2)Sin
e any transition relation R
an be viewed as the union of a �nite number,say k, of relations, without loss of generality, we may assume that R is spe
i�edby a disjun
tion of formulas, that is, r(X;Y) � r1(X;Y)_ : : :_ rk(X;Y) and,for i = 1; : : : ; k:� ri(X;Y) � 9n1 9s1 9n2 9s2 (repla
e(hn1; s1i;X; hn2; s2i; Y)^event i(hn1; s1i;X; hn2; s2i)where event i(hn1; s1i;X; hn2; s2i) is any WSkS formula whi
h spe
i�es thetransition relation of the system under
onsideration. Thus, we stipulate thathX;Y i 2 R i� W j= r(X;Y).The set I of initial system states is spe
i�ed by a WSkS formula init(X)where the set variable X is the only free variable. Similarly, an elementaryproperty of system states is spe
i�ed by a formula e(X) where the set variableX is the only free variable.Finally, the safety properties of the system K are spe
i�ed by means of thefollowing CLP(WSkS) program PK:

106 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSESsat(X; e1) e1(X): : :sat(X; em) em(X)sat(X;:') : sat(X;')sat(X;EF (')) sat(X;')sat(X;EF (')) r1(X;Y), sat(Y;EF (')): : :sat(X;EF (')) rk(X;Y), sat(Y;EF ('))where e1; : : : ; em are the elementary properties of system states.For any system K = hS; I;R; Li, program PK is lo
ally strati�ed w.r.t. thesize of the se
ond argument of sat, and thus, it has a unique perfe
t modelM(PK). By Theorem 4.3.2 we have that, for any system state X in S andsafety property ' of the form :EF (e), where e is an elementary property, wehave that: K;X j= ' i� sat(X;') 2M(PK)5.3 An Example of System and Property Spe
i�
a-tion: The N -Pro
ess Bakery Proto
olIn this se
tion we illustrate our method for spe
ifying systems and propertiesin the
ase of the N-pro
ess bakery proto
ol. This proto
ol ensures mutualex
lusion in a system made out of N pro
esses whi
h use a shared resour
e.Mutual ex
lusion holds i� the shared resour
e is used by at most one pro
essat a time.Let us �rst give a brief des
ription of the proto
ol [42℄. In this proto
ol ea
hpro
ess state is a h
ounter,
ontrol statei pair hn; si, where the
ontrol state sis an element of the set CS = ft; w; ug. The
onstants t, w, and u stand forthink, wait, and use, respe
tively. The transition relation from a system stateX, whi
h is a multiset of pro
ess states, to a new system state Y is spe
i�edas follows (re
all that the � and [operations refer to multisets).(T1: from think to wait) if there exists a pro
ess state hn; ti in X, thenY = (X � fhn; tig) [fhm+1; wigwhere m is the maximum value of the
ounters of the pro
esses states in X,(T2: from wait to use) if there exists a pro
ess state hn; wi in X su
h that, forany pro
ess state hm; si in X � fhn; wig, either m = 0 or n<m, thenY = (X � fhn; wig) [fhn; uig(T3: from use to think)Y = (X � fhn; uig) [fh0; tig

5.3. SPECIFICATION OF THE N-PROCESS BAKERY PROTOCOL 107An initial system state is any multiset of pro
ess states ea
h of the formh0; ti.The mutual ex
lusion property
an be spe
i�ed by using the CTL formula:EF (unsafe), where unsafe is an elementary property whi
h holds in a systemstate X i� there are at least two distin
t pro
ess states in X with
ontrol stateu. In order to give a formal spe
i�
ation of our N -pro
ess bakery proto
ol weuse the 5 su

essor symbols: 1, 2, t, w, and u. Thus, we
onsider the WS5Stheory. For spe
ifying the transition relation in
ases (T1) and (T2) above, wede�ne the following predi
ates max and min:� max (X,m) � 9x (x2X ^
n(x;m)) ^8y 8n ((y2X ^
n(y; n)) ! n�m)(m is the maximum
ounter in the system state X)� min(X,m) � 9x (x2X ^
n(x;m)) ^8y 8n ((y2X ^ y 6=x ^
n(y; n)) ! (n=" _ m<n))(In the system state X there exists a pro
ess state x with
ounter m su
hthat the
ounter of any pro
ess state in X � fxg is either 0 or greaterthan m. Re
all that the term " denotes the
ounter 0.)The transition relation between system states is de�ned as follows: hX;Y i 2 Ri� W j= tw(X;Y)_wu(X;Y)_ ut(X;Y), where the predi
ates tw, wu, and ut
orrespond to the transition of a pro
ess from think to wait, from wait to use,and from use to think, respe
tively.� tw(X;Y) � 9n9m repla
e(hn; ti;X; hm 1; wi; Y) ^ max(X;m)(Y = (X�fxg) [fyg, where x is a pro
ess state in X with
ontrol statet, and y is a pro
ess with
ontrol state w and
ounter m+1 su
h that mis the maximum
ounter in X. Noti
e that the term m 1 represents the
ounter m+1)� wu(X;Y) � 9n repla
e(hn; wi;X; hn; ui; Y) ^ min(X;n)(Y = (X�fxg) [fyg, where x is a pro
ess state in X with
ounter nand
ontrol state w su
h that the
ounter of any pro
ess state in X�fxgis either 0 or greater than n, and y is a pro
ess state with
ounter n and
ontrol state u)� ut(X;Y) � 9n repla
e(hn; ui;X; h"; ti; Y)(Y = (X�fxg) [fyg, where x is a pro
ess state in X with
ontrol stateu, and y is a pro
ess state with
ounter 0 and
ontrol state t)The initial and the unsafe system states are expressed by the following formu-las:

108 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSES� init(X) � 8x (x2X ! (
n(x; ") ^
s(x; t)))(all pro
ess states in X have
ounter 0 and
ontrol state t)� unsafe(X) � 9x9y (x 2 X ^ y 2 X ^ x 6= y ^
s(x; u) ^
s(y; u))(there exist two distin
t pro
ess states in X with
ontrol state u)The following lo
ally strati�ed CLP(WSkS) program Pbakery spe
i�es the pred-i
ate sat of Step 1 of our veri�
ation method.sat(X; unsafe) unsafe(X)sat(X;:F) : sat(X;F)sat(X;EF (')) sat(X;')sat(X;EF (')) tw(X;Y), sat(Y;EF ('))sat(X;EF (')) wu(X;Y), sat(Y;EF ('))sat(X;EF (')) ut(X;Y), sat(Y;EF ('))Thus, in order to verify the safety of the bakery proto
ol we have to provethat, for all system states X, if init(X) holds then sat(X;:EF (unsafe)) 2M(Pbakery).5.4 A Strategy for Veri�
ationIn this se
tion we show how our veri�
ation method is performed by using theunfold/fold rules of Se
tion 3.2 for transforming CLP(WSkS) programs. Inparti
ular, we present a semiautomati
 strategy for guiding the appli
ation ofthe transformation rules. We will see this strategy in a
tion for the veri�
ationof a safety property of the N -pro
ess bakery proto
ol (see Se
tion 5.5).Suppose that we are given a system K and a safety formula ', and we wantto verify that K;X j= ' holds for all initial system states X. Suppose also thatK and ' are spe
i�ed by a CLP(WSkS) program PK as des
ribed in Se
tion5.2.2. We pro
eed as follows. First we
onsider the
lause:F. sat spe
(X) init(X); sat(X;')where: (i) sat spe
 is a new predi
ate symbol, and (ii) W j= init(X) i� X is aninitial system state.Then we apply the following veri�
ation strategy whi
h uses a general-ization fun
tion gen. Given a WSkS formula
 and a literal L whi
h isthe atom A or the negated atom :A, the fun
tion gen returns a de�nition
lause newp(v1; : : : ; vn) d;A su
h that: (i) newp is a new predi
ate sym-bol, (ii) FV (d;A) = fv1; : : : ; vng, and (iii) W j= 8w1; : : : ; wn (
 ! d), whereFV (
! d) = fw1; : : : ; wng.

5.4. A STRATEGY FOR VERIFICATION 109The Veri�
ation StrategyInput : (i) Program PK, (ii)
lause F : sat spe
(X) init(X); sat (X;'), and(iii) generalization fun
tion gen.Output : A program PK;spe
 su
h that for every system state X, sat spe
(X) 2M(PK [fFg) i� sat spe
(X) 2M(PK;spe
).Phase A. Defs := fFg; NewDefs := Defs; P := PK;while NewDefs 6= ; do1. from P [NewDefs derive P [Cunf by unfolding on
e ea
h
lause inNewDefs;2. from P [Cunf derive P [Cr by removing all
lauses with unsatis�ablebody;3. NewDefs := ;;for all
lauses
 2 Cr of the form H
;G and for all literals L in Gsu
h that

annot be folded w.r.t. L using a
lause in Defs doNewDefs := NewDefs [fgen(
; L)g;Defs := Defs [NewDefs;4. fold ea
h
lause in Cr w.r.t. all literals in its body and derive P [C
d ;5. P := P [C
dend-whilePhase B.1. from P derive Pu by removing all useless
lauses in P ;2. from Pu derive PK;spe
 by unfolding the
lauses in Pu w.r.t. every negativeliteral o

urring in them.Our veri�
ation method ends by
he
king whether or not
lause sat spe
(X) init(X) o

urs in program PK;spe
 . If it o

urs, then for all initial system statesX, we have that K;X j= '.The
orre
tness of our veri�
ation method is a
onsequen
e of the followingtwo fa
ts: (i) the transformation rules preserve perfe
t models, and (ii) perfe
tmodels are models of the
ompletion of a program.Theorem 5.4.1. [Corre
tness of the Veri�
ation Method℄ Given a system Kand a safety property ', if sat spe
(X) init(X) o

urs in PK;spe
 then for allinitial system states X, we have that K;X j= '.

110 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSESProof. Let us assume that sat spe
(X) init(X) o

urs in PK;spe
 and letus
onsider an initial system state I. Thus, W j= init(I) and sat spe
(I) 2M(PK;spe
). By the
orre
tness of the transformation rules (see Theorem3.3.10), we have that sat spe
(I) 2M(PK [fFg). Sin
e: (i) M(PK [fFg) is amodel of the
ompletion
omp(PK [fFg), (ii) the formula 8X (sat spe
(X) $(init(X) ^ sat(X;')) belongs to
omp(PK [fFg), and (iii) W j= init(I) wehave that sat(I; ') 2M(PK [fFg). Now, sin
e no sat atom in M(PK [fFg)
an be inferred by using
lause F , we have that sat(I; ') 2 M(PK) and, byTheorem 4.3.2, K; I j= ' .The automation of our veri�
ation strategy depends on the availability ofa suitable generalization fun
tion gen. In parti
ular, our strategy terminateswhenever the
odomain of gen is �nite. Suitable generalization fun
tions with�nite
odomain
an be
onstru
ted by following an approa
h similar to the onedes
ribed in Chapter 4. More remarks on this issue will be made in Se
tion 5.6.5.5 Veri�
ation of the N -Pro
ess Bakery Proto
olvia Program TransformationIn this se
tion we show how our veri�
ation strategy des
ribed in Se
tion 5.4is applied for verifying the safety of the N -pro
ess bakery proto
ol.As already remarked at the end of Se
tion 5.4, the appli
ation of our strat-egy
an be fully automati
, provided that we are given a generalization fun
tionwhi
h introdu
es new de�nition
lauses to allow folding steps (see Point 3 ofthe veri�
ation strategy). In parti
ular, during the appli
ation of the strat-egy for the veri�
ation of the bakery proto
ol, we have that: (i) all formulasto be
he
ked for applying the transformations rules are formulas of WS5S,and thus, they are de
idable, and (ii) the generalization fun
tion is needed forintrodu
ing
lauses d3, d9, and d16.We start o� the veri�
ation of the N-pro
ess bakery proto
ol by introdu
ingthe following new de�nition
lause:d1. sat spe
(X) init(X), sat(X;:EF (unsafe))Our goal is to transform the program Pbakery[{d1} into a program Pbakery;spe
whi
h
ontains a
lause of the form sat spe
(X) init(X).We start Phase A by unfolding
lause 1 w.r.t. the sat atom, thereby obtaining2. sat spe
(X) init(X), : sat(X;EF (unsafe))The
onstraint init(X) is satis�able and
lause 2
annot be folded using thede�nition
lause d1. Thus, we introdu
e the new de�nition
laused3. newp1(X) init(X), sat(X;EF (unsafe))By using
lause d3 we fold
lause 2, and we obtain

5.5. VERIFICATION OF THE N-PROCESS BAKERY PROTOCOL 1114. sat spe
(X) init(X), : newp1(X)We pro
eed by applying the unfolding rule to the newly introdu
ed
lause d3,thereby obtaining5. newp1(X) init(X) ^ unsafe(X)6. newp1(X) init(X) ^ tw (X;Y), sat(Y;EF (unsafe))7. newp1(X) init(X) ^ wu(X;Y), sat(Y;EF (unsafe))8. newp1(X) init(X) ^ ut(X;Y), sat(Y;EF (unsafe))Clauses 5, 7 and 8 are removed, be
ause their bodies
ontain unsatis�able
on-straints. Indeed, the following formulas hold: (i) 8X :(init(X) ^ unsafe(X)),(ii) 8X 8Y :(init(X) ^ wu(X;Y)), and (iii) 8X 8Y :(init(X) ^ ut(X;Y)).Clause 6
annot be folded using either d1 or d3, be
ause 8X 8Y (init(X)^tw(X;Y)! init(Y)) does not hold. Thus, in order to fold
lause 6, we intro-du
e the new de�nition
laused9. newp2(X)
(X), sat(X;EF (unsafe))where
(X) is a new
onstraint de�ned by the following WS5S formula:8x (x 2 X ! ((
n(x; ") ^
s(x; t)) _ (9
 (
n(x;
) ^ "<
) ^
s(x; w))))denoting that every pro
ess state in the system state X is either h0; ti or h
; wifor some
> 0. We have that 8X 8Y (init(X) ^ tw(X;Y) !
(Y)) holds andthus, we
an fold 6 using d9. We obtain10. newp1(X) init(X) ^ tw(X;Y), newp2(Y)By unfolding the de�nition
lause d9 we obtain11. newp2(X)
(X) ^ unsafe(X)12. newp2(X)
(X) ^ tw(X;Y), sat(Y;EF (unsafe))13. newp2(X)
(X) ^ wu(X;Y), sat(Y;EF (unsafe))14. newp2(X)
(X) ^ ut(X;Y), sat(Y;EF (unsafe))Clauses 11 and 14 have unsatis�able
onstraints in their bodies and we removethem. Indeed, the following formulas hold: (i) 8X :(
(X) ^ unsafe(X)), and(ii) 8X 8Y :(
(X) ^ ut(X;Y)).We fold
lause 12 by using the already introdu
ed de�nition
lause d9,be
ause 8X 8Y (
(X) ^ tw (X;Y)!
(Y)) holds. We obtain15. newp2(X)
(X) ^ tw(X;Y), newp2(Y)However,
lause 13
annot be folded by using a de�nition
lause introdu
ed sofar. Thus, in order to fold
lause 13, we introdu
e the following new de�nition
laused16. newp3(X) d(X), sat(X;EF (unsafe))where the
onstraint d(X) is the WS5S formula:

112 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSES8x (x 2 X ! ((
n(x; ") ^
s(x; t)) _(9
 (
n(x;
) ^ "<
) ^
s(x; w)) _(9n (
n(x; n) ^ min(X;n) ^ "<n) ^
s(x; u)))denoting that every pro
ess state in the system state X is either h0; ti, or h
; wifor some
 > 0, or hn; ui for some n > 0 su
h that no pro
ess state in X hasa positive
ounter smaller than n. We have that 8X 8Y (
(X) ^ wu(X;Y)!d(Y)) holds, and thus, we
an fold
lause 13 using
lause d16. We obtain17. newp2(X)
(X) ^ wu(X;Y), newp3(Y)We now pro
eed by applying the unfolding rule to the de�nition
lause d16and we obtain18. newp3(X) d(X) ^ unsafe(X)19. newp3(X) d(X) ^ tw(X;Y), sat(Y;EF (unsafe))20. newp3(X) d(X) ^ wu(X;Y), sat(Y;EF (unsafe))21. newp3(X) d(X) ^ ut(X;Y), sat(Y;EF (unsafe))We remove
lause 18 be
ause its body
ontains an unsatis�able
onstraintbe
ause 8X :(d(X) ^ unsafe(X)) holds. Then, we fold
lauses 19, 20, and21 by using the de�nition
lauses d16, d16, and d9, respe
tively. Indeed, thefollowing three formulas hold:8X 8Y (d(X) ^ tw (X;Y) ! d(Y))8X 8Y (d(X) ^ wu(X;Y) ! d(Y))8X 8Y (d(X) ^ ut(X;Y) !
(Y))We obtain22. newp3(X) d(X) ^ tw(X;Y), newp3(Y)23. newp3(X) d(X) ^ wu(X;Y), newp3(Y)24. newp3(X) d(X) ^ ut(X;Y), newp2(Y)Sin
e these last folding steps were performed without introdu
ing new de�ni-tion
lauses, we terminate Phase A of our transformation pro
ess. The programderived so far is Pbakery [f4; 10; 15; 17; 22; 23; 24g.Now we pro
eed by performing Phase B of our veri�
ation strategy. Weremove the useless
lauses 10, 15, 17, 22, 23, and 24 de�ning the predi
atesnewp1, newp2, and newp3. Therefore, we derive the program Pbakery [f4g.Then we apply the unfolding rule to
lause 4 w.r.t. the literal :newp1(X),where newp1(X) is a failed atom (see Point R2n of the unfolding rule). Weobtain25. sat spe
(X) init(X)Thus, we derive the �nal program Pbakery;spe
 whi
h is Pbakery[f25g. A

ordingto our veri�
ation method, the presen
e of
lause 25 in Pbakery;spe
 proves, asdesired, the mutual ex
lusion property for the N -pro
ess bakery proto
ol.

5.6. RELATED WORK 1135.6 Related WorkRe
ently there have been several proposals of veri�
ation methods for param-eterized systems, that is, systems
onsisting of an arbitrary number of �nitestate pro
esses. Among them the method des
ribed in [70℄ is
losely relatedto ours, in that it uses unfold/fold program transformations for generating in-du
tion proofs of safety properties for parameterized systems. However, ourmethod di�ers from the method presented in [70℄ be
ause we use
onstraintlogi
 programs with lo
ally strati�ed negation to spe
ify
on
urrent systemsand their properties, while [70℄ uses de�nite logi
 programs. Correspondingly,we use a di�erent set of transformation rules. Moreover, we
onsider systemswith an arbitrary number of in�nite state pro
esses whi
h are more generalthan parameterized systems.Now we re
all the main features of some veri�
ation methods based on(
onstraint) logi
 programming, whi
h have been re
ently proposed in the lit-erature. For a more detailed dis
ussion on these methods, see Se
tion 4.7.(i) The method des
ribed in [47℄ uses partial dedu
tion and abstra
t interpre-tation of logi
 programs for verifying safety properties of in�nite state systems.(ii) The method presented in [29℄ uses logi
 programs with linear arithmeti

onstraints and Presburger arithmeti
 to verify safety properties of Petri nets.(iii) The method presented in [20℄ uses
onstraint logi
 programs to representin�nite state systems. This method
an be applied to verify CTL properties ofthose systems by
omputing approximations of least and greatest �xed pointsvia abstra
t interpretation. (iv) The method proposed in [67℄ uses tabulation-based logi
 programming to e�
iently verify �-
al
ulus properties of �nitestate transitions systems expressed in a CCS-like language. (v) The methoddes
ribed in [58℄ uses CLP with �nite domains, extended with
onstru
tivenegation and tabled resolution, for �nite state lo
al model
he
king.With respe
t to these methods (i)�(v), the distin
tive features of our methodare that: (1) we deal with systems
onsisting of an arbitrary number of in�nitestate pro
esses, (2) we use CLP(WSkS) for their des
ription, and (3) we applyunfold/fold program transformations for the veri�
ation of their properties.Veri�
ation te
hniques for systems with an arbitrary number of in�nitestate pro
esses have been presented also in the following papers.In [56℄ the authors introdu
e a proof te
hnique whi
h is based on indu
tionand model
he
king. Proofs are
arried out by solving a �nite number ofmodel
he
king problems on a �nite abstra
tion of the initial system and theyare me
hani
ally
he
ked. The te
hnique is illustrated by proving that theN -pro
ess bakery proto
ol is starvation free.In [63℄ the author presents a proof of the mutual ex
lusion for the N -pro
essversion of the ti
ket proto
ol whi
h is uniform w.r.t. N and it is based on theOwi
ki-Gries assertional method. The proof has been me
hani
ally
he
ked by

114 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSESusing the Isabelle theorem prover.In [77℄ the author presents a proof of the mutual ex
lusion for the N -pro
ess bakery proto
ol. This proof is based on a
ombination of theoremproving, model
he
king, and an abstra
tion of the proto
ol itself so to redu
eit to the
ase of two pro
esses only.Similarly to the te
hniques presented in the above three papers [56, 63, 77℄,ea
h step of our veri�
ation method
an be me
hanized, but the
onstru
tionof the whole proof requires some human guidan
e. However, in
ontrast to [56,63, 77℄ in our approa
h the parameter N representing the number of pro
essesis invisible, no expli
it indu
tion on N is performed, and no abstra
tion of theset of pro
esses is needed.More re
ently, in [11℄ the authors have presented an automated method forthe veri�
ation of safety properties of parameterized systems with unboundedlo
al data. The method, whi
h is based on multiset rewriting and
onstraints,is
omplete for a restri
ted
lass of parameterized systems.The veri�
ation method presented in this
hapter is an enhan
ement ofthe rules+ strategies transformation method proposed in Chapter 4 for veri-fying CTL properties of systems
onsisting of a �xed number of in�nite statepro
esses. In Chapter 4 we proved the mutual ex
lusion property for the 2-pro
ess bakery proto
ol by using CLP programs with
onstraints expressed bylinear inequations over the reals. That proof
an easily be extended to the
ase of any �xed number of pro
esses by using CLP programs over the same
onstraint theory. Here, however, we proved the mutual ex
lusion property forthe N -pro
ess bakery proto
ol, uniformly for any N, by using CLP programswith
onstraints over WSkS.The proof of the mutual ex
lusion property for the N -pro
ess bakery proto-
ol presented in Se
tion 5.5, was done by applying under human guidan
e theveri�
ation strategy of Se
tion 5.4. However, our veri�
ation method
an beautomated by integrating our CLP program transformation system MAP [26℄with: (i) a solver for
he
king WSkS formulas, and (ii) suitable generalizationfun
tions for introdu
ing new de�nition
lauses. For Point (i) we may adaptexisting implementations, su
h as, the MONA system [41℄. Point (ii) requiresfurther investigation but we believe that the approa
h presented in Chapter 4in the
ase of systems
onsisting of a �xed number of in�nite state pro
esses
an serve as a good starting point.As already mentioned, the veri�
ation method we proposed is tailored tothe veri�
ation of safety properties for asyn
hronous
on
urrent systems, whereea
h transition is made by one pro
ess at a time. This limitation to asyn-
hronous systems is a
onsequen
e of our assumption that ea
h transition froma system state X to a new system state Y is of the form Y = (X�fxg) [fygfor some pro
ess states x and y. In order to model syn
hronous systems, wheretransitions may involve more than one pro
ess at a time, we may relax this

5.6. RELATED WORK 115assumption and allow transitions of the form Y = (X�A) [B for some mul-tisets of pro
ess states A and B. Noti
e that, however, these more generaltransitions whereby the number of pro
esses may
hange over time,
an bede�ned by WSkS formulas, and thus, it is arguable that our approa
h
an alsobe used to verify properties of syn
hronous systems.

116 CHAPTER 5. SYSTEMS WITH N INFINITE STATE PROCESSES

Bibliography[1℄ Abdulla, P. A., Cerans, K., Jonsson, B., and Tsay, Y.-K. Gen-eral de
idability theorems for in�nite-state systems. In IEEE Symposiumon Logi
 in Computer S
ien
e, LICS'96 (1996), IEEE Computer So
ietyPress, pp. 313�321.[2℄ Alpuente, M., Falas
hi, M., Julián, P., and Vidal, G. Spe-
ialization of lazy fun
tional logi
 programs. In Partial Evaluation andSemanti
s-Based Program Manipulation, Amsterdam, The Netherlands,June 1997 (1997), pp. 151�162.[3℄ Andersen, L. Program Analysis and Spe
ialization for the C Program-ming Language. PhD thesis, DIKU, University of Copenhagen, Denmark,1994. DIKU Resear
h Report 94/19.[4℄ Andrews, G. Con
urrent programming: prin
iples and pra
ti
e.Addison-Wesley, 1991.[5℄ Apt, K. R. Introdu
tion to logi
 programming. In Handbook of Theoret-i
al Computer S
ien
e, J. van Leeuwen, Ed. Elsevier, 1990, pp. 493�576.[6℄ Apt, K. R., and Bol, R. N. Logi
 programming and negation: Asurvey. Journal of Logi
 Programming 19, 20 (1994), 9�71.[7℄ Aravindan, C., and Dung, P. M. Partial dedu
tion of logi
 programswrt well-founded semanti
s. In Algebrai
 and Logi
 Programming, ALP'92(1992), Le
ture Notes in Computer S
ien
e 632, Springer-Verlag, pp. 384�402.[8℄ Baier, R., Glü
k, R., and Zö
hling, R. Partial evaluation of nu-meri
al programs in Fortran. In Partial Evaluation and Semanti
s-BasedProgram Manipulation, Orlando, Florida, June 1994 (Te
hni
al Report94/9, Department of Computer S
ien
e, University of Melbourne) (1994),pp. 119�132. 117

118 BIBLIOGRAPHY[9℄ Bensaou, N., and Guessarian, I. Transforming
onstraint logi
 pro-grams. Theoreti
al Computer S
ien
e 206 (1998), 81�125.[10℄ Bossi, A., Co

o, N., and Dulli, S. A method for spe
ializing logi
programs. ACM Transa
tions on Programming Languages and Systems12, 2 (April 1990), 253�302.[11℄ Bozzano, M., and Delzanno, G. Beyond parameterized veri�
a-tion. In Pro
eedings of the Eighth International Conferen
e on Tools andAlgorithms for the Constru
tion and Analysis of Systems (TACAS'02)"(2002), Le
ture Notes in Computer S
ien
e 2280, Springer, pp. 221�235.[12℄ Bultan, T., Gerber, R., and Pugh, W. Model-
he
king
on
urrentsystems with unbounded integer variables: symboli
 representations, ap-proximations, and experimental results. ACM Transa
tions on Program-ming Languages and Systems 21, 4 (1999), 747�789.[13℄ Burstall, R. M., and Darlington, J. A transformation system fordeveloping re
ursive programs. Journal of the ACM 24, 1 (January 1977),44�67.[14℄ Clarke, E., Grumberg, O., and Peled, D. Model Che
king. MITPress, 2000.[15℄ Clarke, E. M., Grumberg, O., and Long, D. E. Model
he
king andabstra
tion. ACM Transa
tions on Programming Languages and Systems16, 5 (1994), 1512�1542.[16℄ Consel, C., and Khoo, S. Parameterized partial evaluation. ACMTransa
tions on Programming Languages and Systems 15, 3 (1993), 463�493.[17℄ Cousot, P., and Cousot, R. Abstra
t interpretation: A uni�ed latti
emodel for stati
 analysis of programs by
onstru
tion of approximation of�xpoints. In Pro
eedings 4th ACM-SIGPLAN Symposium on Prin
iplesof Programming Languages (POPL '77) (1977), ACM Press, pp. 238�252.[18℄ Dams, D., Grumberg, O., and Gerth, R. Abstra
t interpretationof rea
tive systems. ACM Transa
tions on Programming Languages andSystems 19, 2 (1997), 253�291.[19℄ De S
hreye, D., Glü
k, R., Jørgensen, J., Leus
hel, M.,Martens, B., and Sørensen, M. H. Conjun
tive partial dedu
tion:Foundations,
ontrol, algorithms, and experiments. Journal of Logi
 Pro-gramming 41, 2�3 (1999), 231�277.

BIBLIOGRAPHY 119[20℄ Delzanno, G., and Podelski, A. Model
he
king in CLP. In 5thInternational Conferen
e TACAS'99 (1999), R. Cleaveland, Ed., Le
tureNotes in Computer S
ien
e 1579, Springer-Verlag, pp. 223�239.[21℄ Dershowitz, N., and Jouannaud, J.-P. Rewrite systems. In Hand-book of Theoreti
al Computer S
ien
e, J. van Leuveen, Ed., vol. B. Else-vier, 1990, pp. 243�320.[22℄ E.A. Emerson, and E.M. Clarke. Chara
terizing
orre
tness proper-ties of parallel programs as �xpoints. In Pro
eedings of the Seventh Inter-national Colloquium on Automata, Languages and Programming (Berlin,1981), vol. 85, Springer-Verlag, pp. 169�181.[23℄ Enderton, H. A Mathemati
al Introdu
tion to Logi
. A
ademi
 Press,1972.[24℄ Esparza, J. De
idability of model
he
king for in�nite-state
on
urrentsystems. A
ta Informati
a 34, 2 (1997), 85�107.[25℄ Etalle, S., and Gabbrielli, M. Transformations of CLP modules.Theoreti
al Computer S
ien
e 166 (1996), 101�146.[26℄ Fioravanti, F. MAP: A system for transforming
onstraint logi
 pro-grams. available at http://www.iasi.rm.
nr.it/�fioravan, 2001.[27℄ Fioravanti, F., Pettorossi, A., and Proietti, M. Automatedstrategies for spe
ializing
onstraint logi
 programs. In Pro
eedings ofLOPSTR'2000, Tenth International Workshop on Logi
-based ProgramSynthesis and Transformation, London, UK, 24-28 July, 2000 (2001),K.-K. Lau, Ed., vol. 2042 of Le
ture Notes in Computer S
ien
e, Springer-Verlag, pp. 125�146.[28℄ Fioravanti, F., Pettorossi, A., and Proietti, M. Verifying CTLproperties of in�nite state systems by spe
ializing
onstraint logi
 pro-grams. In Pro
eedings of the ACM Sigplan Workshop on Veri�
ation andComputational Logi
 VCL'01, Floren
e (Italy) (2001), Te
hni
al ReportDSSE-TR-2001-3, University of Southampton, UK, pp. 85�96.[29℄ Fribourg, L., and Olsén, H. A de
ompositional approa
h for
omput-ing least �xed-points of Datalog programs with z-
ounters. Constraints 2,3/4 (1997), 305�335.[30℄ Fribourg, L., and Olsén, H. Proving safety properties of in�nitestate systems by
ompilation into Presburger arithmeti
. In CONCUR'97 (1997), Le
ture Notes in Computer S
ien
e 1243, Springer-Verlag,pp. 96�107.

120 BIBLIOGRAPHY[31℄ Frühwirth, T. Theory and Pra
ti
e of Constraint Handling Rules, Spe-
ial Issue on Constraint Logi
 Programming. Journal of Logi
 Program-ming (O
t. 1998), 95�138.[32℄ Gallagher, J. P. Tutorial on spe
ialization of logi
 programs. In Pro-
eedings of ACM SIGPLAN Symposium on Partial Evaluation and Se-manti
s Based Program Manipulation, PEPM '93, Copenhagen, Denmark(1993), ACM Press, pp. 88�98.[33℄ Gardner, P. A., and Shepherdson, J. C. Unfold/fold transform-ations of logi
 programs. In Computational Logi
, Essays in Honor ofAlan Robinson, J.-L. Lassez and G. Plotkin, Eds. MIT, 1991, pp. 565�583.[34℄ Gelfond, M., and Lifs
hitz, V. The stable model semanti
s for logi
programming. In Pro
eedings of the Fifth International Conferen
e andSymposium on Logi
 Programming (1988), The MIT Press, pp. 1070�1080.[35℄ Hi
key, T. J., and Smith, D. A. Towards the partial evaluation ofCLP languages. In Pro
eedings ACM Symposium on Partial Evaluationand Semanti
s Based Program Manipulation, PEPM '91, New Haven, CT,USA (1991), SIGPLAN Noti
es, 26, 9, ACM Press, pp. 43�51.[36℄ Holzbaur, C. OFAI
lp(q,r) manual, edition 1.3.2. Te
h. Rep. TR-95-09,Austrian Resear
h Institute for Arti�
ial Intelligen
e, Vienna, 1995.[37℄ Intelligent Systems Laboratory. SICStus Prolog 3.8.5. SwedishInstitute of Computer S
ien
e, 2000.[38℄ Jaffar, J., and Maher, M. Constraint logi
 programming: A survey.Journal of Logi
 Programming 19/20 (1994), 503�581.[39℄ Jaffar, J., Marriott, M. M. K., and Stu
key, P. The semanti
s of
onstraint logi
 programming. Journal of Logi
 Programming 37 (1998),1�46.[40℄ Jones, N. D., Gomard, C. K., and Sestoft, P. Partial Evaluationand Automati
 Program Generation. Prenti
e Hall, 1993.[41℄ Klarlund, N., and Møller, A. MONA Version 1.4 User Manual.BRICS Notes Series NS-01-1, Department of Computer S
ien
e, Univer-sity of Aarhus, January 2001.[42℄ Lamport, L. A new solution of Dijkstra's
on
urrent programming prob-lem. Communi
ations of the ACM 17, 8 (1974), 453�455.

BIBLIOGRAPHY 121[43℄ Leus
hel, M. Advan
ed Te
hniques for Logi
 Program Spe
ial-isation. PhD thesis, K.U. Leuven, May 1997. A

essible viahttp://www.e
s.soton.a
.uk/�mal.[44℄ Leus
hel, M. Improving homeomorphi
 embedding for online termina-tion. In Pro
eedings of LOPSTR'98, Man
hester, UK, June 1998 (1999),P. Flener, Ed., Le
ture Notes in Computer S
ien
e 1559, Springer-Verlag,pp. 199�218.[45℄ Leus
hel, M., and Lehmann, H. Solving
overability problems of petrinets by partial dedu
tion. In Pro
eedings of the 2nd International ACMSIGPLAN Conferen
e on Prin
iples and Pra
ti
e of De
larative Program-ming (PPDP-00) (N.Y., Sept. 20�23 2000), ACM Press, pp. 268�279.[46℄ Leus
hel, M., Martens, B., and De S
hreye, D. Controlling gener-alization and polyvarian
e in partial dedu
tion of normal logi
 programs.ACM Transa
tions on Programming Languages and Systems 20, 1 (1998),208�258.[47℄ Leus
hel, M., and Massart, T. In�nite state model
he
king byabstra
t interpretation and program spe
ialization. In PrePro
eedings ofLOPSTR '99, Veni
e, Italy (1999), Università Ca' Fos
ari di Venezia,Dipartimento di Informati
a, pp. 137�144.[48℄ Leus
hel, M., and S
hreye, D. D. Constrained partial dedu
tion.In Pro
eedings of the 12th Workshop Logis
he Programmierung (WLP'97)(Muni
h, Germany, September 1997), B. F. F. Bry and D. Seipel, Eds.,pp. 116�126.[49℄ Lloyd, J. W. Foundations of Logi
 Programming. Springer-Verlag,Berlin, 1987. Se
ond Edition.[50℄ Lloyd, J. W., and Shepherdson, J. C. Partial evaluation in logi
programming. Journal of Logi
 Programming 11 (1991), 217�242.[51℄ Maher, M. J. A transformation system for dedu
tive database moduleswith perfe
t model semanti
s. Theoreti
al Computer S
ien
e 110 (1993),377�403.[52℄ Manna, Z., and Pnueli, A. Models for rea
tivity. A
ta Informati
a 30(1993), 609�678.[53℄ Marriott, K., and Stu
key, P. The 3 R's of optimizing
onstraintlogi
 programs: Re�nement, Removal and Reordering. In POPL'93: Pro-
eedings ACM SIGPLAN Symposium on Prin
iples of Programming Lan-guages (1993), pp. 334�344.

122 BIBLIOGRAPHY[54℄ Mayr, R. De
idability of model
he
king with the temporal logi
 EF.Theoreti
al Computer S
ien
e 256, 1-2 (2001), 31�62.[55℄ M
Millan, K. L. Veri�
ation of in�nite state systems by
ompositionalmodel
he
king. In Corre
t Hardware Design and Veri�
ation Methods(1999), Le
ture Notes in Computer S
ien
e 1703, Springer, pp. 219�233.[56℄ M
Millan, K. L., Qadeer, S., and Saxe, J. B. Indu
tion in
ompo-sitional model
he
king. In CAV 2000 (2000), Le
ture Notes in ComputerS
ien
e 1855, Springer-Verlag, pp. 312�327.[57℄ Mendelson, E. Introdu
tion to Mathemati
al Logi
. Wadsworth &Brooks/Cole Advan
ed Books & Software, Monterey, California, Usa,Monterey, California, Usa, 1987. Third Edition.[58℄ Nilsson, U., and Lüb
ke, J. Constraint logi
 programming for lo-
al and symboli
 model-
he
king. In CL 2000: Computational Logi
(2000), J. L. et al., Ed., no. 1861 in Le
ture Notes in Arti�
ial Intelli-gen
e, pp. 384�398.[59℄ Ousterhout, J. T
l and the Tk Toolkit. Addison-Wesley, 1994.[60℄ Pettorossi, A., and Proietti, M. Transformation of logi
 programs:Foundations and te
hniques. Journal of Logi
 Programming 19,20 (1994),261�320.[61℄ Pettorossi, A., and Proietti, M. A theory of logi
 program spe
ial-ization and generalization for dealing with input data properties. In Pro-
eedings of the Dagstuhl Seminar on Partial Evaluation (1996), O. Danvy,R. Glü
k, and P. Thiemann, Eds., Le
ture Notes in Computer S
ien
e1110, Springer-Verlag, pp. 386�408.[62℄ Pettorossi, A., and Proietti, M. Perfe
t model
he
king via un-fold/fold transformations. In First International Conferen
e on Compu-tational Logi
, CL'2000, London, 24-28 July, 2000 (2000), J. L. et al.,Ed., Le
ture Notes in Arti�
ial Intelligen
e 1861, Springer, pp. 613�628.[63℄ Prensa-Nieto, L. Completeness of the owi
ki-gries system for parame-terized parallel programs. In Formal Methods for Parallel Programming:Theory and Appli
ations (FMPPTA 2001) (2001).[64℄ Prestwi
h, S. Online partial dedu
tion of large programs. In Pro
eed-ings ACM Sigplan Symposium on Partial Evaluation and Semanti
s-BasedProgram Manipulation, PEPM '93, Copenhagen, Denmark (1993), ACMPress, pp. 111�118.

BIBLIOGRAPHY 123[65℄ Przymusinski, T. C. On the de
larative semanti
s of strati�ed dedu
tivedatabases and logi
 programs. In Foundations of Dedu
tive Databases andLogi
 Programming, J. Minker, Ed. Morgan Kaufmann, 1987, pp. 193�216.[66℄ Puebla, G., and Hermenegildo, M. Abstra
t multiple spe
ializationand its appli
ation to program parallelization. J. of Logi
 Programming.Spe
ial Issue on Synthesis, Transformation and Analysis of Logi
 Pro-grams 41, 2&3 (November 1999), 279�316.[67℄ Ramakrishna, Y. S., Ramakrishnan, C. R., Ramakrishnan, I. V.,Smolka, S. A., Swift, T., and Warren, D. S. E�
ient model
he
k-ing using tabled resolution. In CAV '97 (1997), Le
ture Notes in Com-puter S
ien
e 1254, Springer-Verlag, pp. 143�154.[68℄ Roy
houdhury, A., Kumar, K. N., Ramakrishnan, C., and Ra-makrishnan, I. Proofs by program transformation. In PrePro
eedingsof LOPSTR '99, Veni
e, Italy (1999), Università Ca' Fos
ari di Venezia,Dipartimento di Informati
a, pp. 57�64.[69℄ Roy
houdhury, A., Kumar, K. N., Ramakrishnan, C., Ramakr-ishnan, I., and Smolka, S. Veri�
ation of parameterized systems usinglogi
 program transformations. In Pro
eedings of the Sixth InternationalConferen
e on Tools and Algorithms for the Constru
tion and Analysis ofSystems, TACAS 2000, Berlin, Germany (2000), Springer.[70℄ Roy
houdhury, A., and Ramakrishnan, I. Automated indu
tiveveri�
ation of parameterized proto
ols. In CAV 2001 (2001), pp. 25�37.[71℄ Sagonas, K., Swift, T., Warren, D. S., Freire, J., Rao, P., Cui,B., and Johnson, E. The xsb system, version 2.2., 2000.[72℄ Sahlin, D. Mixtus: An automati
 partial evaluator for full Prolog. NewGeneration Computing 12 (1993), 7�51.[73℄ Seki, H. A
omparative study of the well-founded and the stable modelsemanti
s: Transformation's viewpoint. In Pro
eedings of the Workshop onLogi
 Programming and Non-monotoni
 Logi
 (1990), Cornell University,pp. 115�123.[74℄ Seki, H. Unfold/fold transformation of strati�ed programs. Theoreti
alComputer S
ien
e 86 (1991), 107�139.[75℄ Seki, H. Unfold/fold transformation of general logi
 programs for well-founded semanti
s. Journal of Logi
 Programming 16, 1&2 (1993), 5�23.

124 BIBLIOGRAPHY[76℄ Shankar, A. U. An introdu
tion to assertional reasoning for
on
urrentsystems. ACM Computing Surveys 25, 3 (Sept. 1993), 225�262.[77℄ Shankar, N. Combining theorem proving and model
he
king throughsymboli
 analysis. In CONCUR 2000: Con
urren
y Theory (State Col-lege, PA, Aug. 2000), no. 1877 in Le
ture Notes in Computer S
ien
e,Springer-Verlag, pp. 1�16.[78℄ Sipma, H. B., Uribe, T. E., and Manna, Z. Dedu
tive model
he
king.Formal Methods in System Design 15 (1999), 49�74.[79℄ Sørensen, M. H., and Glü
k, R. An algorithm of generalization inpositive super
ompilation. In Pro
eedings of the 1995 International Logi
Programming Symposium (ILPS '95) (1995), J. W. Lloyd, Ed., MIT Press,pp. 465�479.[80℄ Tamaki, H., and Sato, T. Unfold/fold transformation of logi
 pro-grams. In Pro
eedings of the Se
ond International Conferen
e on Logi
Programming, Uppsala, Sweden (1984), S.-Å. Tärnlund, Ed., UppsalaUniversity, pp. 127�138.[81℄ That
her, J. W., and Wright, J. B. Generalized �nite automatawith an appli
ation to a de
ision problem of se
ond-order logi
. Mathe-mati
al System Theory 2 (1968), 57�82.[82℄ Thomas, W. Languages, Automata, and Logi
, vol. 3. Springer, 1997,pp. 389�455.[83℄ Van Gelder, A., Ross, K., and S
hlipf, J. Unfounded sets andwell-founded semanti
s for general logi
 programs. In Pro
eedings ofthe ACM Siga
t-Sigmod Symposium on Prin
iples of Database Systems(1989), ACM Press, pp. 221�230.[84℄ Wrzos-Kaminska, A. Partial evaluation in
onstraint logi
 program-ming. In Pro
eedings of the 9th International Symposium on Foun-dations of Intelligent Systems, Zakopane, Poland (1996), Z. Ras andM. Mi
halewi
z, Eds., Le
ture Notes in Computer S
ien
e 1079, Springer-Verlag, pp. 98�107.

Appendix AThe MAP TransformationSystemWe now present the MAP system [26℄ whi
h supports intera
tive and auto-mated transformation of
onstraint logi
 programs.The MAP system
onsists of two parts: a transformation engine, writtenin SICStus Prolog 3.8.5 [37℄ and a graphi
al user interfa
e (GUI, for short)written in T
l/Tk [59℄. The interfa
e between the transformation engine andthe GUI is implemented by using SICStus's t
ltk library.A.1 The Transformation EngineThe transformation engine
ontains
ode for implementing (i) the transforma-tion rules of Se
tion 3.2 and (ii) the transformation strategies of Se
tions 2.5,3.4 and 4.4. The transformation engine is lo
ated in the sr
_si
s/ subdire
-tory of the MAP installation dire
tory and
ontains the following �les:� definition_rule.pl:
ontains
ode for implementing the
onstrainedatomi
 de�nition rule R1;� unfolding_rule.pl:
ontains
ode for implementing the positive un-folding rule R2p and the negative unfolding rule R2n;�
af.pl:
ontains
ode for implementing the
onstrained atomi
 foldingrule R3;� solve_
lauses.pl:
ontains
ode for implementing the
onstraint re-pla
ement rule R5r;�

r.pl:
ontains
ode for implementing the
ontextual
onstraint re-pla
ement rule R5n; 125

126 APPENDIX A. THE MAP TRANSFORMATION SYSTEM�
ontextual_spe
ialization.pl:
ontains
ode whi
h implementsPhase A and Phase B of the transformation strategies of Se
tions 2.5,3.4 and 4.4.� bup.pl:
ontains
ode for implementing Phase C of the transformationstrategies of Se
tions 2.5, 3.4 and 4.4. This �le also
ontains
ode for the
lause removal rules R4s and R4u.The
ode for the transformation rules whose appli
ability
onditions requiretests for
onstraint satis�ability or entailment is parametri
 in the
hoi
e ofthe predi
ates whi
h a
tually perform those tests. The implementation of the
onstraint solving algorithms
an be found in �le solvers.pl whi
h
ontainsthe de�nitions of the following predi
ates. In the following, we will feel free to
onfuse a mathemati
al entity with the data stru
ture used for representing it.� is_a_solver(Solver) Solver is a ground term representing the
onstraintdomain;� is_a_
onstraint_predi
ate(Solver, Pred, A): Pred is a
onstraint pred-i
ate of arity A for Solver ;� solve(Solver, C, X, D) This predi
ate implements the solve fun
tionof Se
tion 2.1.2 for the
onstraint domain Solver. The arguments C, Xand D are lists representing the input
onstraint, the set of variables ofinterest, and the the output
onstraint, respe
tively.If solve(Solver, C, X, D) holds then Solver j= 8X((9Y C) $ D) whereY = FV (C)�X and FV (D) � FV (9Y C).� entails(Solver,C,D) This predi
ate implements the entailment test forthe
onstraint domain Solver.If entails(Solver,C,D) holds then Solver j= 8(C ! D).The
ode for the transformation strategies of Se
tions 2.5 and 3.4 is indepen-dent from the de�nition of the predi
ates implementing the parameters of thestrategies: the unfolding fun
tion, the widening operator for realizing
lausegeneralization, and the well-quasi orders for
ontrolling the unfolding pro
essand the generalization pro
ess. The de�nition of these predi
ates
an be foundin the following �les:� uf.pl:
ontains the following predi
ates for realizing the unfolding fun
-tion:� is_a_uf (Unfold, S) Unfold is a ground term representing an un-folding fun
tion whi
h is
ompatible with the
onstraint domainS ;

A.1. THE TRANSFORMATION ENGINE 127� uf (Unfold, Cl, Utree, S, I) This predi
ate realizes the unfoldingfun
tion Unfold su
h that, given a
onstraint domain S, a term Clrepresenting a
lause of the form H
; L1; : : : ; Ln, and a termUtree representing an unfolding tree, sele
ts the positive literal LI .This predi
ate must su

eed if Utree
onsists of the root
lause onlyand it must fail if there is no positive literal in the body of the
onsidered
lause.� widening.pl:
ontains the following predi
ates for realizing the wideningoperator used in the
lause generalization pro
ess:� is_a_widening(W, S) W is a ground term representing a wideningoperator whi
h is
ompatible with the
onstraint domain S ;� widening(W, S, C1, C2, C3) This predi
ate holds if and only ifC3 = C1 W C2, where W is a widening operator and C1, C2 andC3 are
onstraints over S.� wqounf.pl:
ontains the following predi
ates for realizing the well-quasiorder for
ontrolling the unfolding pro
ess:� is_a_wqounf (Wqo, S) Wqo is a ground term representing a well-quasi order over
onstrained goals whi
h is
ompatible with the
onstraint domain S ;� embeds(Wqo, S, K1, K2) This predi
ate holds if and only if K2Wqo K1, that is, K2 is embedded in K1 a

ording to Wqo, whereWqo is a well-quasi order and K1 and K2 are terms representing
onstrained goals with
onstraints over S.� wqogen.pl:
ontains the following predi
ates for realizing the well-quasiorder for
ontrolling the generalization pro
ess:� is_a_wqogen(Wqo, S) Wqo is a ground term representing a well-quasi order over
onstrained atoms whi
h is
ompatible with the
onstraint domain S ;� embeds(Wqo, S, K1, K2) This predi
ate holds if and only ifK2 Wqo K1, that is, K2 is embedded in K1 a

ording to Wqo,where Wqo is a well-quasi order and K1 and K2 are terms repre-senting
onstrained atoms with
onstraints over S.� agrees_with(W,Wqo) This predi
ate holds if and only if the widen-ing operatorW agrees with the well-quasi orderWqo (see De�nition2.7.1 for details).

128 APPENDIX A. THE MAP TRANSFORMATION SYSTEM

Figure A.2.1: Starting a new derivation in MAP.The parameters for the spe
ialization strategies
an be sele
ted through theGUI, as shown in the following se
tion.A.2 The Graphi
al User Interfa
eThe graphi
al user interfa
e provides the user a friendly way of intera
ting withthe transformation engine by means of mouse
li
ks. It is implemented in theinterpreted s
ripting language T
l and it uses the Tk extension for managing
reation, deletion and
on�guration of graphi
al obje
ts,
alled widgets, likewindows, buttons and menus.When the MAP system starts up, the GUI
reates a main window,
alledthe MAP window, whi
h
ontains menus and buttons for allowing the userto start a new derivation and to intera
t with the transformation engine. Aderivation
an be started by sele
ting one of the following items in the Deriva-tion menu:New opens a dialog box for sele
ting the �le whi
h
ontains the ini-tial program of the derivation. By default, program �les are lo
ated in thePrograms/ subdire
tory.Load opens a dialog box for sele
ting the �le
orresponding to a previouslysaved derivation. By default, derivation �les are lo
ated in the Sessions/

A.2. THE GRAPHICAL USER INTERFACE 129

Figure A.2.2: Applying transformation rules intera
tively.subdire
tory.In both
ases, if no error o

urs, the
urrent program is displayed in a textarea,
alled the Program window, whi
h is
ontained in the MAP window (seeFigure A.2.1).On
e a derivation is started, the user
an either (i) apply the transformationrules intera
tively, or (ii) apply one of the automati
 transformation strategiesprovided by the MAP system.In intera
tive mode, the user sele
ts the arguments of the transformationrule she wants to apply by
li
king on them. Arguments
an be literals and
lauses from the Program window and, for applying the
onstrained atomi
folding rule, de�nitions from the Init+Defs window. On
e the argumentshave been sele
ted, the user presses the button
orresponding to the
hosentransformation rule (see Figure A.2.2 for an example). If the
onditions ofappli
ability of the rule are not satis�ed, then an error message is displayed,otherwise the
orresponding transformation is performed and the
ontent ofthe Program window is updated by showing an informative message and thederived
lauses, if any. Clauses displayed in the Program window are numberedand the number of a
lause is in boldfa
e style i� it belongs to the
urrentprogram (see Figure A.2.2).

130 APPENDIX A. THE MAP TRANSFORMATION SYSTEM

Figure A.2.3: Applying an automati
 strategy.In order to apply an automati
 strategy, the user must a
tivate the
orre-sponding window whi
h gives the possibility of sele
ting the required param-eters and to start the automati
 transformation pro
ess. Figure A.2.3 showsthe window for applying the spe
ialization strategy presented in Se
tion 3.4.Moreover, from the MAP window the user
an a
tivate some subsidiarywindows su
h as (i) the Init+Defs window whi
h displays the set of
lausesintrodu
ed by using the
onstrained atomi
 de�nition rule R1, and (ii) theHistory window whi
h
ontains a summary of the transformation rules whi
hhave been applied for transforming the initial program into the
urrent one.

Appendix BBen
hmark ProgramsB.1 The CLP Program MmodIn this se
tion we present the sour
e
ode for program Mmod of Se
tion 2.8 andfor the programs generated by applying the Contextual Spe
ialization Strat-egy to program Mmod with the
onstrained atom I=0,J>=0,mmod(I, J, M) asinput.Program Mmod.mmod(I,J,M) :- I>=J, M=0.mmod(I,J,M) :- I<J, I1=I+1, M=M1+L, mymod(I,L), mmod(I1,J,M1).mymod(X,M) :- X>=0, M=X.mymod(X,M) :- X<0, M=(-X).The program obtained after Phase A.mmod_pe(I,J,M) :- I=0, J=<0, M=0.mmod_pe(I,J,M) :- I=0, J>0, I1=1, genp_pe(I1,J,M).genp_pe(I,J,M) :- I>=J, M=0.genp_pe(I,J,M) :- I>=0, I<J, I2=I+1, genp_pe(I2,J,M2), M=M2+I.The program obtained after Phase C.mmod_s_

r(I,J,M) :- J=<0, M=0.mmod_s_

r(I,J,M) :- J>0, I1=1, genp_

r(I1,J,M).genp_

r(I,J,M) :- I>=J, M=0.genp_

r(I,J,M) :- I<J, I2=I+1, genp_

r(I2,J,M2), M=M2+I.B.2 The CLP Program SumMat
hIn this se
tion we present the sour
e
ode for program SumMat
h of Se
tion2.9 and for the programs generated by applying the Contextual Spe
ializationStrategy to program SumMat
h with the
onstrained atoms131

132 APPENDIX B. BENCHMARK PROGRAMS(1) E1+E2+E3=<5,E1>=0,E2>=0,E3>=0,sm([E1,E2,E3℄,X)and(2) A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=<5,A1>=0,A2>=0,A3>=0,A4>=0,A5>=0,A6>=0,A7>=0,A8>=0,A9>=0,A10>=0,sm([A1,A2,A3,A4,A5,A6,A7,A8,A9,A10℄,X)as input.Program SumMat
hsm(P,S) :- LP=LQ,N=M,prefix(Q,S),length(P,LP),length(Q,LQ),sum(P,N),sum(Q,M).sm(P,[X|Xs℄) :- X>=0,sm(P,Xs).sum([℄,N) :- N=0.sum([X|Xs℄,N) :- X>=0,N>=0,N=X+N1,sum(Xs,N1).length([℄,N) :- N=0.length([X|Xs℄,N) :- X>=0,N>0,N=N1+1,length(Xs,N1).prefix([℄,_).prefix([X|Xs℄,[Y|Ys℄) :- X=Y, prefix(Xs,Ys).Let us �rst
onsider the spe
ialization of program SumMat
h w.r.t the
onstrained atom (1).The program obtained after Phase A.sm_pe3(A,B,C,[D,E,F|S℄) :- A+B+C=<5,A>=0,B>=0,C>=0,A+B+C=D+E+F,D>=0,E>=0,F>=0.sm_pe3(A,B,C,[D|S℄) :- D>=0,sm_pe3(A,B,C,S).The program obtained after Phase C.sm_
3(A,B,C,[D,E,F|S℄) :- A+B+C=D+E+F,D>=0,E>=0,F>=0.sm_
3(A,B,C,[D|S℄) :- D>=0,sm_
3(A,B,C,S).Let us now
onsider the spe
ialization of program SumMat
h w.r.t the
onstrained atom (2).The program obtained after Phase A.sm_pe10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,[D1,D2,D3,D4,D5,D6,D7,D8,D9,D10|S℄) :-A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=<5,A1>=0,A2>=0,A3>=0,A4>=0,A5>=0,A6>=0,A7>=0,A8>=0,A9>=0,A10>=0,A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10,D1>=0,D2>=0,D3>=0,D4>=0,D5>=0,D6>=0,D7>=0,D8>=0,D9>=0,D10>=0.sm_pe10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,[D|S℄) :-

B.3. THE CLP PROGRAM CRYPTOSUM 133D>=0,sm_pe10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,S).The program obtained after Phase C.sm_
10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,[D1,D2,D3,D4,D5,D6,D7,D8,D9,D10|S℄) :-A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10,D1>=0,D2>=0,D3>=0,D4>=0,D5>=0,D6>=0,D7>=0,D8>=0,D9>=0,D10>=0.sm_
10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,[D|S℄) :-D>=0,sm_
10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,S).B.3 The CLP Program CryptosumIn this se
tion we present the sour
e
ode for program Cryptosum of Se
tion2.9 and for the programs generated by applying the Contextual Spe
ializationStrategy to program Cryptosum with the
onstrained atom
ry([[D,N,E,S℄,[E,R,O,M℄,[Y,E,N,O,M℄℄,[S,E,N,D,M,O,R,Y℄)as input.Program Cryptosum.
ry([Xs,Ys,Zs℄,Diff):-solve(Xs, Ys, Zs, [0℄,Carries),last(Xs,LXs), LXs>0,last(Ys,LYs), LYs>0,last(Zs,LZs), LZs>0,bits(Carries),gendiff(Diff,[0,1,2,3,4,5,6,7,8,9℄).solve([℄, [℄, [℄, [Carry|Cs℄,[Carry|Cs℄) :- Carry=0.solve([℄, [℄, [Z|Zs℄, [Carry|Cs℄,OCs) :-Carry = Z + Carry1*10,solve([℄, [℄, Zs, [Carry1,Carry|Cs℄,OCs).solve([℄, [Y℄, [Z|Zs℄, [Carry|Cs℄,OCs) :-Y + Carry = Z + Carry1*10,solve([℄, [℄, Zs, [Carry1,Carry|Cs℄,OCs).solve([X℄, [℄, [Z|Zs℄, [Carry|Cs℄,OCs) :-X + Carry = Z + Carry1*10,solve([℄, [℄, Zs, [Carry1,Carry|Cs℄,OCs).solve([X|Xs℄, [Y|Ys℄, [Z|Zs℄, [Carry|Cs℄,OCs) :-X + Y + Carry = Z + Carry1*10,solve(Xs, Ys, Zs, [Carry1,Carry|Cs℄,OCs).bits([℄).

134 APPENDIX B. BENCHMARK PROGRAMSbits([D|Ds℄) :- member(D,[0,1℄), bits(Ds).member(X,[Y|_℄) :- X=Y.member(X,[_|Ys℄) :- member(X,Ys).last([X℄,X).last([X,Y|L℄,Z) :- last([Y|L℄,Z).gendiff([℄,Dom).gendiff([X|Xs℄,Dom1) :- del(X,Dom1,Dom2), gendiff(Xs,Dom2).del(X1,[X2|Xs℄,Xs) :- X1=X2.del(X,[Y|Ys℄,[Y|Zs℄) :- del(X,Ys,Zs).The program obtained after Phase C (whi
h is equal to the program ob-tained after Phase A).n
(A,B,C,D,1,F,G,H) :- D+B=H+I*10,C+G+I=B+J*10, B+F+J=C+K*10,A+K=F+9,A>0,member(K,[0,1℄),member(J,[0,1℄), member(I,[0,1℄),ndel1(A,K1),ndel2(B,K1,L),del(C,L,M), del(D,M,N),ndel3(N,O),del(F,O,P), del(G,P,Q), del(H,Q,R).ndel1(A,[2,3,4,5,6,7,8,9℄) :- A=1.ndel1(A,[1|B℄) :- newdel1(B,A).newdel1([3,4,5,6,7,8,9℄,A) :- A=2.newdel1([2|A℄,B) :- newdel2(A,B).newdel2([4,5,6,7,8,9℄,A) :- A=3.newdel2([3|A℄,B) :- newdel3(A,B).newdel3([5,6,7,8,9℄,A) :- A=4.newdel3([4|A℄,B) :- newdel4(A,B).newdel4([6,7,8,9℄,A) :- A=5.newdel4([5|A℄,B) :- newdel5(A,B).

B.3. THE CLP PROGRAM FOR THE BAKERY PROTOCOL 135newdel5([7,8,9℄,A) :- A=6.newdel5([6|A℄,B) :- newdel6(A,B).newdel6([8,9℄,A) :- A=7.newdel6([7|A℄,B) :- newdel7(A,B).newdel7([9℄,A) :- A=8.newdel7([8|A℄,B) :- newdel8(A,B).newdel8([℄,A) :- A=9.ndel2(A,B,B) :- A=0.ndel2(A,B,[0|C℄) :- newdel1_1(C,A,B).newdel1_1(A,B,[C|A℄) :- C=B.newdel1_1([A|B℄,C,[A|D℄) :- newdel1_1(B,C,D).ndel3([A|B℄,B) :- A=1.ndel3([A|B℄,[A|C℄) :- ndel3(B,C).B.4 The CLP Program for the 2-Pro
ess Bakery Pro-to
olThe CLP program, written in a Prolog-like syntax, generated by the En
od-ing Algorithm for the
on
urrent system des
ribed by the bakery proto
ol ofSe
tion 4.5.1.sat(s(u,A,u,B),unsafe).sat(s(w,A,B,C),wait).sat(s(u,A,B,C),use).sat(A,or(B,C)) :- sat(A,B).sat(A,or(B,C)) :- sat(A,C).sat(A,and(B,C)) :- sat(A,B), sat(A,C).sat(A,not(B)) :- \+ sat(A,B).sat(A,ef(B)) :- sat(A,B).sat(s(t,A,S,B),ef(C)) :- D=B+1, A>=0, B>=0,sat(s(w,D,S,B),ef(C)).sat(s(w,A,S,B),ef(C)) :- A<B, A>=0, sat(s(u,A,S,B),ef(C)).sat(s(w,A,S,B),ef(C)) :- B=0, A>=0, sat(s(u,A,S,B),ef(C)).

136 APPENDIX B. BENCHMARK PROGRAMSsat(s(u,A,S,B),ef(C)) :- D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).sat(s(S,A,t,B),ef(C)) :- D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).sat(s(S,A,w,B),ef(C)) :- B<A, B>=0, sat(s(S,A,u,B),ef(C)).sat(s(S,A,w,B),ef(C)) :- A=0, B>=0, sat(s(S,A,u,B),ef(C)).sat(s(S,A,u,B),ef(C)) :- D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).sat(A,af(B)) :- sat(A,B).sat(s(t,T1,t,T2),af(P)) :- T3=T2+1, T4=T1+1,sat(s(w,T3,t,T2),af(P)), sat(s(t,T1,w,T4),af(P)).sat(s(t,T1,u,T2),af(P)) :- T3=T2+1, T4=0,sat(s(w,T3,u,T2),af(P)), sat(s(t,T1,t,T4),af(P)).sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T2<T1,sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1=0,sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1>0, T1=<T2,sat(s(w,T3,w,T2),af(P)).sat(s(u,T1,u,T2),af(P)) :- T3=0, T4=0,sat(s(t,T3,u,T2),af(P)), sat(s(u,T1,t,T4),af(P)).sat(s(u,T1,w,T2),af(P)) :- T3=0, T2<T1,sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).sat(s(u,T1,w,T2),af(P)) :- T3=0, T1=0,sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).sat(s(u,T1,w,T2),af(P)) :- T3=0, T1>0, T1=<T2,sat(s(t,T3,w,T2),af(P)).sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1=0,sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).sat(s(w,T1,w,T2),af(P)) :- T1<T2, T1>0,sat(s(u,T1,w,T2),af(P)).sat(s(w,T1,w,T2),af(P)) :- T2=0, T1=0,sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).sat(s(u,T2,t,T1),af(P)) :- T3=T2+1, T4=0,sat(s(u,T2,w,T3),af(P)), sat(s(t,T4,t,T1),af(P)).sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T2<T1,sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1>0, T1=<T2,sat(s(w,T2,w,T3),af(P)).sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).sat(s(w,T2,u,T1),af(P)) :- T3=0, T2<T1,

B.4. THE CLP PROGRAM FOR THE BAKERY PROTOCOL 137sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,sat(s(w,T2,t,T3),af(P)).sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1=0,sat(s(w,T2,u,T1),af(P)),sat(s(u,T2,w,T1),af(P)).sat(s(w,T2,w,T1),af(P)) :- T1<T2, T1>0,sat(s(w,T2,u,T1),af(P)).sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).

138 APPENDIX B. BENCHMARK PROGRAMS

Università degli Studi di Roma La SapienzaDottorato di Ri
er
a in Informati
aColle
tion of Ph.D. ThesesXI-00-1 Andrea Formisano. Theory-based Resolution and Automated Set Rea-soning. Defense: Mar
h 24, 2000.XI-00-2 Ivano Salvo. Con�uen
e and Expressiveness in Redu
tion Systems.Defense: Mar
h 24, 2000.XI-00-3 Marta Simeoni. A Categori
al Approa
h to Modularization of GraphTransformation Systems using Re�nements. Defense: Mar
h 24, 2000.XII-01-1 Lu
a Forlizzi. Algorithms and Models for Spatial Data. Defense:June 15, 2001.XII-01-2 Luigi Mazzu

helli. Distributed Fun
tional Obje
ts. Defense: June15, 2001.XII-01-3 Paolo Penna. Resour
e Assignment in Wireless Networks. Defense:June 15, 2001.XIII-02-1 Irene Fino

hi. Hierar
hi
al De
ompositions for Visualizing LargeGraphs. Defense: February 22, 2002.XIII-02-2 Fabio Fioravanti. Transformation of Constraint Logi
 Programs forSoftware Spe
ialization and Veri�
ation. Defense: February 22, 2002.XIII-02-3 Henry Mu

ini. Software Ar
hite
ture for Testing, Coordinationand Views Model Che
king. Defense: February 22, 2002.

