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Abstract

In this thesis we will develop a methodology for transforming constraint logic
programs and we will demonstrate its effectiveness by using it for (i) the special-
ization of a program to the context of use and (ii) the verification of temporal
properties of infinite state concurrent systems.

We will introduce new transformation rules which allow us to perform pro-
gram optimizations which cannot be done by using the transformation rules
already presented in the literature, and highly parameterized strategies which
guide the application of the transformation rules. We will show the semantic
correctness of the transformation rules and the termination of the strategies.
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Chapter 1

Introduction

In this thesis we will develop a methodology for transforming constraint logic
programs. We will focus on the following two applications: (i) the specializa-
tion of a program to the context of use and (ii) the wverification of temporal
properties of infinite state concurrent systems.

1.1 Program Transformation

We consider the program transformation methodology based on rules and
strategies as described in [13, 60, 80]. The process of deriving programs by
transformation can be formalized as the construction of a sequence Py, ..., P,
of programs where, for k = 0,...,n — 1, program Py, is obtained from pro-
gram Py by applying a semantics preserving transformation rule. Thus, if the
initial program P, is correct w.r.t. a given specification, then also the final
program P, is correct w.r.t. the same specification.

The transformation is effective if the final program is more efficient than the
initial program. However, the undisciplined application of the transformation
rules gives no warranty about performance improvements, hence transforma-
tion rules have to be applied according to suitable transformation strategies.
Strategies guide the application of the transformation rules with the goal of
reducing nondeterminism and avoiding redundant computations such as mul-
tiple visits of data structures. By achieving these goals, program efficiency is
improved.

The advantage of the approach based on rules and strategies consists in the
fact that it allows us to separate the issue of deriving a correct program from
that of deriving an efficient program.The program transformation methodol-
ogy has been developed in a number of different language paradigms, such
as, functional programming [13], logic programming [80] and constraint logic
programming [9, 25, 51].
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1.2 Constraint Logic Programming

We will be concerned with the development of automatic techniques for the
transformation of programs written in a constraint logic language.

Constraint Logic Programming |38] extends the usual logic programming
framework [49] by allowing constraints over a generic domain D. It defines
a class CLP(D) of constraint logic programming (CLP, for short) languages
which is parameterized w.r.t. the constraint domain D, that is, the mathemat-
ical structure over which computation is performed. The advantage of such
an extension is twofold. From a theoretical point of view, the use of CLP
generalizes several extensions of the logic programming paradigm in a uniform
framework. From a practical point of view, the CLP framework allows us to use
efficient algorithms specifically developed for the constraint domain D under
consideration (e.g., Fourier’s variable elimination method for linear inequalities
over the reals).

In the first part of this thesis we will apply the transformation of constraint
logic programs to program specialization. The second part will be devoted to
the verification of infinite state concurrent systems.

1.3 Program Specialization

Program specialization is a powerful methodology for software engineering and,
in particular, for program reuse. Program specialization consists in a source-
to-source program transformation whose goal is to adapt a generic program
to the specific context where it has to be used. This adaptation process may
be done via automatic or semiautomatic techniques. Omne such technique is
partial evaluation [40]. As illustrated in Figure 1.3.1, program specialization
takes as input a program P and part of its input data and produces as output
a residual program ) such that running () on the remaining part of the input
data produces the same result as running P on all its input data.

Via program specialization one can perform many sophisticated program
optimizations by taking advantage of the contexts where programs are used.
In particular, it is possible to avoid run-time computations which depend on
the known part of the input. Thus, program specialization is a very effective
technique for program reuse. Indeed, it allows the programmer to write a
single parameterized general program, which is usually easy to understand and
to maintain, instead of writing many different programs sharing many similar
computations, and each tailored to a different use. The task of generating
efficient programs from the general one, which is often not so efficient, is left
to the program specialization process.
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Figure 1.3.1: Program Specialization

Program specialization has been proposed and studied for various program-
ming languages including imperative programming languages like C [3] and
Fortran [8], as well as declarative programming languages like functional pro-
gramming [40], logic programming [32, 43, 50, 60], constraint logic program-
ming [84] and functional logic programming [2| languages. Successful appli-
cations of program specialization include ray tracing, Fast Fourier Transform,
program compilation and compiler generation.

In this thesis we will propose a technique for specializing constraint logic
programs, called contextual specialization. Our techniques follows the program
transformation approach based on rules and strategies. We will present a set
of transformation rules and fully automatic strategies for the specialization of
constraint logic programs over a generic constraint domain D. In particular,
we will adapt some of the unfold/fold rules considered in |9, 25, 51| and we
will introduce new transformation rules which allow us: (i) to perform program
optimizations which cannot be done by using the transformation rules already
presented in the literature, and (ii) to specialize constraint logic programs with
locally stratified negation (see Section 3.1) w.r.t. the properties of the input
data. Our automatic strategies for contextual specialization of CLP(D) pro-
grams generalize the strategies for the partial evaluation of logic programs
presented in [35, 64, 72| and they use concepts borrowed from the fields of
constraint programming, partial evaluation, rewrite systems, and abstract in-
terpretation. In particular, our strategies are parameterized with respect to: (i)
suitable solvers for simplifying constraints 38|, (ii) well-quasi orders [21, 44|
for ensuring the termination of the unfolding process and for activating the
clause generalization process, and (iii) widening operators [17] for ensuring the
termination of that generalization process.
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We will show: (1) the correctness of our transformation rules w.r.t. the
least D-model in the case of definite CLP programs [39], (2) the correctness
of our transformation rules w.r.t. the perfect model in the case of programs
with locally stratified negation [6, 65|, and (3) the termination of our program
specialization strategies.

1.4 Verification of Concurrent Systems

We will also study how to apply the techniques for transforming constraint
logic programs to the automatic verification of temporal properties of finite or
infinite state concurrent systems.

A concurrent system can be informally defined as a set of components,
called processes, which run in parallel and communicate with each other. Each
process executes a sequence of statements. At any given instant of time, every
process is in a state describing all its observable properties. Depending on the
type of parallel composition of processes, we distinguish between asynchronous
systems, in which exactly one process makes a step at each instant of time,
and synchronous systems, in which all processes make a step at each instant
of time. Communication can be achieved by using message passing or shared
variables. When message passing is used, one process sends a message which
is received by another process. When shared variables are used, one process
modifies the value of a variable which can be read by another process.

In order to give a formalization of the notion of concurrent system we
need to describe both its static and dynamic aspects. The static aspects are
captured through the notion of state, which is a description of the concurrent
system at a given instant of time. The dynamic aspects are captured by using
the notion of transition which describes how the concurrent system evolves in
time by specifying its state before and after a change occurs.

This motivates the choice of a formalism based on state transition systems
for specifying the behaviour of concurrent systems. A state transition system
consists of a set S, which represents the set of states of the system, equipped
with a binary relation R over S, which represents the transitions that the
system is allowed to make.

The goal of automated verification of concurrent systems is the design and
the implementation of logical frameworks which allow one: (i) to formally
specify these systems, and (ii) to prove their properties in an automatic way.
These logical frameworks require formalisms both for the description of the
systems and the description of their properties.

We will be interested in verifying properties of the evolution in time of con-
current systems. In order to express these properties, we will adopt a specific
temporal logic, called Computational Tree Logic [14]. The Computational Tree
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Logic (CTL, for short) does not consider a time variable explicitly, but it is
powerful enough to express interesting properties such as safety properties (of
the form ‘the system will never reach an unwanted state’) and liveness prop-
erties (of the form ‘a process (which reaches a suitable state) will eventually
reach a good state’).

We will present a method which uses the specialization of constraint logic
programs for verifying CTL properties of finite or infinite state concurrent sys-
tems. Our verification method can be applied to a large class of concurrent
systems [76] and it consists of two steps. Given a concurrent system S, we
construct a locally stratified constraint logic program P such that a CTL for-
mula ¢ is true in a state s of S iff an atom of the form sat(s, ¢) holds in the
perfect model semantics of P. Then, we check whether or not, for a given state
S0, sat(sg, ) is in the perfect model of P, by specializing P w.r.t. the atom

sat(so, ).

The motivation for developing an approach based on program transforma-
tion of constraint logic programs to the verification of properties of infinite
state systems is twofold. From a theoretical point of view, constraints pro-
vide a very compact symbolic representation of infinite sets of states. From a
more pragmatic point of view, this approach allows us to apply our verification
method by using existing techniques and tools developed for transforming CLP
programs.

Our verification method is incomplete but this limitation cannot be over-
come because the problem of verifying properties of infinite state processes is
undecidable and not semidecidable. However, we will show that a our veri-
fication method is able to verify several interesting properties of well-known
concurrent systems. We will show the correctness of our verification method
and we will also see (i) how it can be extended to a larger class of concurrent
systems by restricting the properties which can be verified to a proper subset
of CTL formulas, and (ii) how it can be applied for exploring in a backward
way the state space of a concurrent system.

We will also present some results on the verification of properties of concur-
rent systems which arise from the parallel composition of an arbitrary number
of infinite state processes. This class is strictly larger than the class of pa-
rameterized systems which arise from the parallel composition of an arbitrary
number of finite state processes. Proofs of properties for this larger class
have been presented, among others; in [56, 63, 77]. However, in contrast to
[56, 63, 77| in our approach the parameter N representing the number of pro-
cesses is invisible, no explicit induction on N is performed, and no abstraction
of the set of processes is needed.
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1.5 Overview of the Thesis

The thesis is organized as follows.

e In Chapter 2 we develop a methodology for specializing definite con-
straint logic programs, that is, CLP programs without negated atoms in
their bodies. We start by providing a gentle introduction to the syntax
and the semantics of constraint logic programs. We introduce a set of
transformation rules and we show their correctness w.r.t. the least D-
model semantics. We define an automatic, parameterized strategy for
specializing definite CLP programs and we show its correctness and its
termination. The strategy is illustrated through an extended example of
program specialization. The chapter ends with the presentation of some
experimental results and a comparison of our methodology with related
approaches presented in the literature.

e In Chapter 3 we extend the methodology presented in Chapter 2 for spe-
cializing general constraint logic programs with locally stratified nega-
tion. We extend the syntax of constraint logic programs and we consider
the perfect model semantics. We introduce new transformation rules and
an automatic strategy which are tailored to general CLP programs. We
show that the rules and the strategy preserve the perfect model semantics
and that the strategy terminates. At the end of the chapter we compare
our work to related work on transformation of general (constraint) logic
programs.

e In Chapter 4 we define a method for verifying CTL properties of con-
current systems which uses CLP program transformation. We start by
presenting the syntax and the semantics of Computational Tree Logic.
We define a class of concurrent systems and we illustrate our Encoding
Algorithm for constructing a locally stratified constraint logic program
whose perfect model specifies the truth of CTL formulas in a concurrent
system. Then, we show how to check whether or not a concurrent system
satisfies a CTL formula by applying a transformation strategy tailored
to verification. Our method is illustrated by applying it to the verifica-
tion of mutual exclusion and starvation freedom properties of the bakery
protocol [42], the ticket protocol [4] and the bounded buffer protocol
[12]. We show how to extend our verification method to a larger class of
concurrent systems and how it can be applied for performing backwards
verification of safety properties. The chapter ends with a comparison of
our verification method with related approaches to verification based on
(constraint) logic programming.
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In Chapter 5 we improve on the method presented in Chapter 4 and we
show how to verify properties of concurrent systems with an arbitrary
number of infinite state processes. First we introduce constraint logic
programs where the constraint theory is the weak monadic second order
logic of k successors, called CLP(WSKS) programs. Then we show how
to use CLP(WSKkS) programs to express safety properties of concurrent
systems. By transforming CLP(WSKS) programs we prove the mutual
exclusion property for the N-process bakery protocol. We conclude the
chapter by comparing our approach with related work on the verification
of concurrent systems with an arbitrary number of processes.

In Appendix A we describe some issues related to the design, imple-
mentation and use of the MAP transformation system, which has been
used to experimentally evaluate the proposed methodologies. Appendix
B contains the source code for some programs mentioned in this thesis.
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Chapter 2

Contextual Specialization of
Constraint Logic Programs

In this chapter we address the problem of automating some techniques for the
contextual specialization of constraint logic programs over a generic constraint
domain D [38].

Contextual specialization is defined as follows. Given a CLP(D) program
P and a constrained atom ¢, A derive a program P; and an atom A; such that,
for every valuation v we have that:

(Contextual Specialization)
if D =v(c) then v(A) € Im(P,D) iff v(Ay) € Im(Ps, D)
where Im(P, D) denotes the least D-model of P [39].

Contextual specialization is more general than the partial evaluation of
CLP(D) programs based on Lloyd and Shepherdson’s approach [48, 50, 84].
Indeed, partial evaluation is defined as follows. Given a CLP(D) program P
and a constrained atom ¢, A derive a program P, and an atom A, such that,
for every valuation v we have that:

(Partial Evaluation)
D =v(c) and v(A) € Im(P,D) iff v(Ape) € Im(Ppe, D)
Now we present a very simple example which illustrates the difference between
contextual specialization of CLP programs and partial evaluation. More sig-
nificant examples and experimental results will be discussed in Sections 2.8
and 2.9. Let us consider the following CLP(R) program P over the domain R
of real numbers:

p(X) + X >0, ¢(X) (Program P)
where ¢ is a predicate which does not depend on p. By contextual specialization
of P w.r.t. the constrained atom X >3, p(X) we derive the program Pj:
ps(X) + q(X) (Program F)
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together with the atom p,(X).

Instead, by partial evaluation of program P w.r.t. the same constrained atom
X >3,p(X) we derive the program Pp,:

ppe(X) — X >3, q(X) (Program Ppe)
together with the atom pp.(X).

Thus, the partially evaluated program P, is less efficient than the program P,
derived by contextual specialization, because P, redundantly checks whether
or not the constraint X >3 holds.

We perform program specialization by applying a program transformation
method based on the rules + strategies approach [13, 60, 80].

The process of specializing a given program P whereby deriving program
P,, can be formalized as the construction of a sequence Pj,..., P, of pro-
grams, called a transformation sequence, where Py = P, P, = Py and, for
k=0,...,n—1, program Py is obtained from program Pj by applying one
of the following transformation rules: constrained atomic definition, unfolding,
constrained atomic folding, clause remouval, and contertual constraint replace-
ment. We will also apply the constraint replacement rule (see rule R5r) which is
an instance of the contextual constraint replacement rule (see rule R5). These
rules are illustrated below in Section 2.2.

The transformation sequence is automatically generated by applying (an
instance of) a highly parameterized strategy which generalizes the strategies
presented in |35, 64, 72| for the partial evaluation of definite logic programs.

In Section 2.4 we address various issues concerning the full automation of
our strategies, which are described in Section 2.5. In particular, we consider
the problems of: (i) when and how to unfold, (ii) when and how to generalize,
and (iii) when and how to apply the contextual constraint replacement rule.
Our automatic strategy for contextual specialization of CLP(D) programs is
based on concepts borrowed from the fields of constraint programming, par-
tial evaluation, and abstract interpretation [17]. In particular, we consider:
(i) suitable solvers for simplifying constraints [38|, (ii) well-quasi orders for
ensuring the termination of the unfolding process and for activating the clause
generalization process [44, 46, 79|, and (iii) widening operators [17] for ensuring
the termination of that generalization process.

We now introduce some preliminaries on the syntax and the semantics of
constraint logic programs.

2.1 Constraint Logic Programming

The class CLP(D) of constraint logic programming languages is a general-
ization of the logic programming paradigm, and of several of its extensions,
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which combines the declarativeness of logic programming with the efficiency
of domain specific algorithms.

Let us begin by presenting some preliminary notions on constraint logic
programming and notational conventions which will hopefully be used consis-
tently in the rest of this thesis. For notions not defined here the reader may
refer to [5, 38, 49]. An elementary presentation of first order logic is given in

[57].

2.1.1 Syntax of Constraint Logic Programs

We consider a first order language £ which is generated by an alphabet con-
sisting of:

e an infinite set Vars of variables,
e a set @ of function symbols,
e a set II. of constraint predicate symbols,

e an infinite set I, of user defined predicate symbols,

where Vars,®, II. and II, are pairwise disjoint sets.

Every function and predicate symbol has an associated arity, a natural
number indicating how many arguments it takes. A symbol with associated
arity 0 is called a nullary symbol. A nullary function symbol is called a con-
stant. A nullary predicate symbol is called a proposition. A symbol with
associated arity n is said to be n-ary.

Variables are denoted by upper case Latin letters X,Y, ..., possibly with
subscripts. When no confusion arises, we will feel free to use upper case Latin
letters X, Y, ... to denote sets or sequences of variables.

A term of L is either a variable or an expression of the form f(t1,...,%,),
where f is a function symbol in ® and ¢4, ...,%, are terms. Terms are denoted
by lower case Latin letters ¢, u,.... An atomic formula is an expression of the
form p(t1,...,t,) where p is a symbol in II, UII, and and #4,...,%, are terms.
A formula of L is either an atomic formula or a formula constructed, as usual,
from formulas by means of connectives (=, A, V, =, <, <) and quantifiers (3,
v).

Given a term or a formula e, the set of variables occurring in e is denoted
by wars(e). Similar notation will be used for denoting the set of variables
occurring in a set of terms or formulas. Given a formula ¢, the set of the
free variables in ¢ is denoted by FV(p). A term or a formula is ground iff it
contains no variable. Given a set X = {Xy,..., X, } of n variables, by VX ¢
we denote the formula VX5 ... X,, ¢. By V(¢) we denote the universal closure
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of ¢, that is, the formula VX ¢, where FV(p) = X. Analogously, by 3(p)
we denote the existential closure of . By ¢(X1,..., X,) we denote a formula
whose free variables are among Xi,..., X,.

Similarly, we will write the formula p(t1,..., %) also as p(t), where ¢ de-
notes the sequence tq,...,t,, of terms.

We assume that the set II. of constraint predicate symbols contains the
equality symbol ‘=’. Elements of II,. are denoted by lower case Latin letters
¢ d,e,.... A primitive constraint is an atomic formula of the form ¢(¢1,. .., t;,)
where ¢ is a predicate symbol in II. and ¢1,...,¢, are terms. The set C of
constraints is the smallest set of formulas of £ which contains all primitive
constraints and it is closed w.r.t. conjunction and existential quantification. A
basic constraint is either a primitive constraint or an existentially quantified
constraint. A constraint is denoted by ¢(t1,...,tm), or ¢(X1, ..., Xp) or ¢(X).
When we do not want to specify the variables occurring in a constraint we write
it as c.

User defined predicate symbols are denoted by lower case Latin letters

D,q,-... An atom is an atomic formula of the form p(¢q,...,t,) where p is
a predicate symbol in II,, and ¢1,...,%,, are terms. Atoms are denoted by
upper case Latin letters H, A, B, ..., possibly with subscripts. A goal is a

(possibly empty) conjunction of atoms. Goals are denoted by G, possibly with
subscripts.

Given two atoms p(t1,...,t,) and p(u1, ..., uy), we denote by p(t1,...,t,)
— p(u,...,uy,) the conjunction of the constraints: t; =uqy,...,t, = u,. We
say that a term t is free for a variable X in a formula ¢ iff by substituting ¢ for
all free occurrences of X in ¢, we do not introduce new occurrences of bound
variables. A formula v is an instance of a formula ¢ iff ) is obtained from ¢
by applying a substitution {Xi/t1,..., X, /t,} such that, fori =1,...,n, the
term t; is free for X; in .

A constrained atom is the conjunction of a constraint and an atom. A
constrained goal is the conjunction of a constraint and a goal, and it is denoted
by K, possibly with subscripts. The empty conjunction of constraints or atoms
is identified with #rue.

A definite clause, or clause, vy is a formula of the form H «+ ¢, G, where:
(i) H is an atom, called the head of y and denoted hd(7y), and (ii) ¢,G is a
constrained goal, called the body of y and denoted bd(y). Clauses of the form
H < ¢, where c is a constraint, are called constrained facts. Clauses of the
form H < true are called facts, and they are also written as H <. A clause
is constraint-free iff no constraints occur in its body. Clauses are denoted by
lower case Greek letters 7,4, ...

A definite constraint logic program, or constraint logic program, or program,
is a finite set of clauses. Programs are denoted by the letters P, @, ..., possibly



Z.1. CONSITRAINT LOGIC FROGRAMMING 1o

with subscripts.

Given a user defined predicate symbol p and a program P, the definition
of p in P, denoted Def(p, P), is the set of clauses 7 in P such that p is the
predicate symbol of hd(y). We say that the atom p(tq,...,t,) is failed in a
program P iff Def(p, P) = (). We say that the atom p(ty,...,t,) is valid in a
program P iff the fact p(Xy,...,X,) < belongs to P.

The set of useless predicates of a program P is the maximal set U of pred-
icate symbols occurring in P such that the predicate p is in U iff every clause
v in Def(p, P) is of the form H + ¢,Gy,q(...),Gs for some ¢ is in U. For
instance, in the following program:

D q,r

q<p

T <
p and g are useless predicates, while r is not useless. A clause 7y is useless iff
the predicate of hd(vy) is useless.

A wariable renaming is a bijective mapping from Vars to Vars. The appli-
cation of a variable renaming p to a syntactic expression ¢ returns the syntactic
expression p(y), called a variant of ¢, obtained by replacing each variable X
in ¢ by the variable p(X). A clause 7 is said to be renamed apart iff all its
(bound or free) variables do not occur elsewhere.

Given the clause v of the form: H + K;, Ky, where K; and Ky are con-
strained goals, the set of the linking variables of K, in +y is the set F'V(Kp) N
FV(H, K;). Similarly, we define the set of the linking variables of a constraint
or a constraint atom in a clause.

We will feel free to apply to clauses the following transformations which,
as the reader may verify, preserve program semantics (see Sections 2.1.2 and
3.1):

(1) application of variable renaming,

(2) reordering of the constraints and the literals in the body (we will usually
move all constraints to the left and all literals to the right), and

(3) replacement of a clause of the form H + X =t, ¢, G, where X ¢ vars(t),
by the clause (H <+ ¢, G){X/t}, and vice versa.

2.1.2 Semantics of Constraint Logic Programs

The semantics of constraint logic programs is based on the notion of constraint
domain.

For the given set ® of function symbols and set II. of predicate symbols, a
constraint domain D, consists of two elements:

e a non-empty set D, which is called carrier, and



coAririy z. CONIEXTUAL SFLUIALIZATION OF CLE

e a pre-interpretation which assigns (i) a relation over D™ (that is, a subset
of D™) to each n-ary constraint predicate symbol in 1., and (ii) a function
fp from D" to D to each n-ary function symbol f in .

In particular, the pre-interpretation assigns the whole carrier D to true, the
empty set to false, and the identity over D to the binary equality symbol '=".

We assume that D is a set of ground terms. This is not restrictive because
we may enlarge the language £ by making every element of D to be an element
of the set Funct of function symbols.

Sometimes, for reasons of simplicity, we will identify the constraint domain
D with its carrier D.

Given a formula ¢ where all predicate symbols belong to Il., we consider
the satisfaction relation D = ¢ which is defined as usually done in the first
order predicate calculus.

A waluation is a function v: Vars — D. We extend the domain of v
to terms, constraints and atoms. Given a term ¢, we inductively define the
term v(t) as follows: (i) if ¢ is a variable X then v(t) = v(X), and (ii) if ¢ is
f(t1, ... tn) then v(t) = fp(v(t1),...,v(t,)). Given a constraint ¢, v(c) is the
constraint obtained by replacing each free variable X € FV(c) by the ground
term v(X). Notice that v(c) is a closed formula. Given an atom A of the form
p(t1,...,t,), then v(A) is the ground atom p(v(t1),...,v(t,)).

A formula F), is a ground instance of a formula F' if there exists a valuation
v such that F, = v(F) and FV(F,) = 0.

We define ground(P) as the following set of ground clauses:

ground(P) = {v(H) < v(A1),...,v(A;) | v is a valuation,
(H <+ c,Ay,...,Ap) € P,and D = v(c)}

Given a constraint domain D, a D-interpretation I assigns a relation over D"
to each m-ary user defined predicate symbol in II,,, that is, I is a subset of the
set Bp defined as follows:

Bp — {p(dy,...,dy) | pisa predicate symbol in II,, and (dy,...,d,) € D"}

Given a D-interpretation I and a constraint-free, ground clause y: H <
A1, ..., Apy, we say that v is true in I, written I |= + iff one of the following
holds: (i) H € I, or (ii) there exists 7 € {1,...,m} such that A; ¢ I.

A D-interpretation M is a D-model of a (finite or infinite) set S of constraint-
free, ground clauses iff for each clause 7 in S, we have that M = . M is a
D-model of a CLP program P iff M is a D-model of ground(P).

If we consider the following partial order C between D-models, we have the
following result (see, for instance, Corollary 4.1 of [39]).

Theorem 1. Every CLP(D) program has a least D-model.
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This is a generalization of an analogous result which holds for the least
Herbrand model of logic programs. The least D-model of a CLP(D) program
P is denoted by Im(P,D).

Let P be a CLP(D) program and I C Bp. The immediate consequence
operator Tp is defined as follows.

Tp(I) ={p(d) € Bp | for some ground instance p(d) < ¢, A1,..., An
of a clause in P we have
DiE=cand A;€lforalli=1,...n}

Tp is monotonic and continuous w.r.t. set inclusion, and thus there exists the
least fixpoint of Tp, denoted Ifp(Tp). We have the following fixpoint char-
acterization of the least D-model of a CLP(D) program P (see, for instance,
[39]).

Theorem 2. Let P be a CLP(D) program. Then, Im(P,D) = Ifp(Tp) =
Tp Tw-

In this thesis we do not specify any particular method for solving constraints
in C. We only assume that there exists a computable total function solve:
C x Pgn(Vars) — C, where Pg,(Vars) is the set of all finite subsets of Vars.
The function solve is assumed to be sound w.r.t. constraint equivalence, that is,
for every constraint ¢; and every finite set X of variables, if solve(cy, X) = ¢
then D = VX ((3Y ¢1) ¢> ¢2) where Y = FV(¢1)—X and FV (c2) C FV(3Y ).
In words, solve(cy, X) is a constraint ¢y which is equivalent to the existential
quantification of ¢; w.r.t. all variables not in X.

We also require that solve is complete w.r.t. satisfiability in the sense that,
for any constraint ¢ such that Y =FV (c):

(i) solve(c,0) = true if ¢ is satisfiable, that is, D | 3Y ¢, and
(ii) solve(e,0) = false if ¢ is unsatisfiable, that is, D = 3Y c.

In (i) and (ii) ‘if” can be replaced by ‘iff” because solve is sound w.r.t. constraint
equivalence. The soundness and the totality of the solve function are necessary
to guarantee the correctness and the termination, respectively, of the program
transformation strategies presented in this thesis, (see, for example, Sections
2.5 and 3.4). The assumption that the solve function is complete w.r.t. sat-
isfiability guarantees that constraint satisfiability tests, which are required by
our technique, are decidable and they can indeed be performed by applying
the solve function.

Finally, we assume that, for any constraints ¢; and ca, D |= V(¢1 — ¢2) is

decidable.
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2.2 Rules for Transforming Constraint Logic Pro-
grams

In this section we describe the transformation rules which we use for special-
izing CLP(D) programs. Some of the following rules are slight modifications
of the unfold/fold rules considered in [9, 25, 51| and they are designed for
performing contextual specialization.

R1. Constrained Atomic Definition. By constrained atomic definition (or
definition, for short), we introduce the new clause

d: newp(X) <+ c A
which is said to be a definition, where: (i) newp is a predicate symbol not
occurring in Py, ..., Py, (ii) X is a sequence of distinct variables occurring in
the constrained atom ¢, A, and (iii) the predicate symbol of A occurs in Py.
From program P, we derive the new program Py which is Py U {d}.
For 1 > 0, Defs; is the set of definitions introduced during the transformation
sequence Py, ..., P;. In particular, Defs, = 0.

R2. Unfolding. Let v: H + ¢,Gr, A,Ggr be a renamed apart clause of Py
and let {A; <= ¢;,G;|j = 1,...,m} be the set of all clauses in P} such that
the atoms A and A; have the same predicate symbol. For j =1,...,m, let us
consider the clause

’y] : H + C, A:A]7 Cj? GLan’GR

where A = A; stands for the conjunction of the equalities between the corre-
sponding arguments. Then, by unfolding clause v w.r.t. atom A, from program
Py, we derive the new program Py, which is (P, — {y}) U{y;|j=1,....,m}.

R3. Constrained Atomic Folding. Let v: A + ¢,Gr,, B,Ggr be a clause
of P,. Let § : newp(X) < d, B be a variant of a clause in Defs;. Suppose that:
(i) D = VY (¢ — d), where Y = FV(e¢,d), and (ii) no variable in FV(0)—X
occurs in FV(A,¢,Gp,GR). By folding clause v w.r.t. atom B using §, we
derive the new clause

vr: A+ ¢, Gr,newp(X),Gg

and from program P we derive the new program Py which is (P, — {y}) U
{vr}-

In this rule R3 condition (i) may be replaced by the following weaker, but
more complex condition: (i*) D |= VY (¢ — 3Zd), where Z = FV(d) — (X U
vars(B)) and Y = FV(e,d) — Z. However, by a suitable application of the
constraint replacement rule R5r below, from clause § we can derive a clause 7
of the form: newp(X) + (37 d), B such that condition (i*) holds for v and §
iff condition (i) holds for v and 7.
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R4f. Clause Removal: Unsatisfiable Body. Let v: A < ¢, G be a clause
of Py. If the constraint c¢ is unsatisfiable, that is, solve(c, ) = false, then from
program Pj we derive the new program Py; which is P, — {v}.

R4s. Clause Removal: Subsumed Clause. Let v : p(X) < ¢, G with
(¢, G) # true, be a clause of Py. If Py contains a fact A of the form p(Y) «
then from program Py we derive the new program Pj,q which is P, — {v}.

R4u. Clause Removal: Useless Clauses. Let I' be the set of useless
clauses in Pj. Then, by removing useless clauses from program P, we derive
the new program Py which is P, —I'.

R5. Contextual Constraint Replacement. Let C be a set of constrained
atoms. Let v be a renamed apart clause in Py of the form: p(U) « ¢1,G.
Suppose that for some constraint co, we have that for every constrained atom
¢,p(V) in C,

DEVX ((,U=V) = (Y a1 & 7))

where: (1) Y = FV(e1) —vars(U,G), (ii) Z = FV(ca) —wvars(U,G), and (iii)
X = FV(c,U =V,c1,¢9) — (Y U Z). Then, we derive program Pyy; from
program Py, by replacing clause «y by the clause: p(U) < ¢z, G. In this case we
say that Px,1 has been derived from P} by contextual constraint replacement

w.r.t. C.

The following rule is an instance of rule R5 for C = {true, p(U)}.

R5r. Constraint Replacement. Let v: A < ¢;,G be a renamed apart
clause of Pj. Assume that D = VX (3Y ¢; <> 3Z ) where: (1) Y = FV(ey)—
vars(A,G), (ii) Z = FV (co) —vars(A,G), and (iii) X = FV(c1,¢0)— (Y U Z).
Then from program Py we derive the new program Py, which is (P, — {v}) U
{A < Ca, G}

In the contezrtual specialization strategy of Section 2.5, we will make use of
the above rule R5r for replacing a clause 7y of the form A + ¢, G by the clause
A + solve(c1, X), G, where X is the set of the linking variables of ¢; in 7.

2.3 Correctness of the Transformation Rules

In this section we enunciate the correctness w.r.t. the least D-model of the
transformation rules for definite constraint logic programs presented in Section
2.2.

Theorem 2.3.1. [Correctness of the Transformation Rules| Let Py,..., P,
be a transformation sequence. Let us assume that during the construction of
Py,..., P,
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(i) each clause introduced by the constrained atomic definition rule and used
for constrained atomic folding, is unfolded w.r.t. the atom in its body, and
(i) the contextual constraint replacement rule R5 is only applied in its restricted
form Rbr.
Then,

Im(Py U Defs,,, D) = Im(P,, D)
where Defs,, denotes the set of definitions introduced during the construction
OfP(),... ,Pn.

Proof. 1t follows from the correctness of the transformation rules for general
constraint logic programs (see Theorem 3.3.10 in Section 3.3). O

In order to enunciate the theorem on the correctness of the contextual con-
straint replacement rule R5 w.r.t. the least D-model we introduce the following
notion of call patterns of a clause or set of clauses.

Definition 2.3.2. [Call Patterns| Given a clause v of the form p(X) <«
d,Ay,..., Ag, with & > 0, the set of call patterns of , which is denoted by
CP(7), is the set of triples (solve(d,Y), A,Y’) such that: (i) A is A; for some
j=1,...,k, and (ii) Y denotes the linking variables of A; in . The triple
(solve(d,Y), A,Y) is said to be the call pattern of « for A.

The set of call patterns of a set I" of clauses, denoted by CP(T'), is the union
of the sets of call patterns of the clauses in I', that is, CP(T') = U,¢p CP(7).

Call patterns will be used in our contextual specialization strategy below
(see Section 2.5) for introducing new definitions and for applying the contextual
constraint replacement rule R5.

Theorem 2.3.3. |Correctness of the Contextual Constraint Replacement Rule|
Let Py,..., P, be a transformation sequence such that, for alli = 10,...,n —
1, program P;iq is derived from P; by applying the contextual constraint re-
placement rule RS w.r.t. a given set C of constrained atoms such that C 2
{(Cv A) | <CvA7X> € CP(PO)}

Then, for all constrained atoms ¢, A € C and for every valuation v we have
that:

if D= v(c) then v(A) € Im(Py, D) iff v(A) € Im(P,, D)

Proof. It follows from the correctness of the contextual constraint replacement
rule for general constraint logic programs (see Theorem 3.3.14 in Section 3.3).
O

2.4  Well-Quasi Orders and Clause Generalization

In this section we introduce the notions of: (i) well-quasi orders over con-
strained goals, and (ii) clause generalization, which will be useful for ensuring
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the termination of our program specialization strategy of Section 2.5. These
notions are extensions to the case of CLP(D) programs of similar notions con-
sidered in the case of partial evaluation of functional and logic programs (see,
for instance, [44, 46, 79]).

Let N denote the set of natural numbers.

Definition 2.4.1. [Well-quasi order| A well-quasi order (wqo, for short) over
the set of constrained goals is a reflexive, transitive, binary relation < such
that for every infinite sequence {K;|i € N} of constrained goals there exist
two natural numbers ¢ and j such that 7 < j and K; < K; [21]. Given two
constrained goals Ky and Kj, if K1 < Ko we say that K is embedded in Ks.

Various examples of wqo’s that are used for ensuring the termination of the un-
folding process during the partial evaluation of logic and functional programs,
can be found in [44, 79]. For our specialization example of Section 2.8 we will
use the simple wqo <y, defined as follows.

Example 2.4.2. Given two constrained goals K; and Ky, we have that K <r,
Ky iff the leftmost atom (in the textual order) in K; and the leftmost atom
(in the textual order) in Ky have the same predicate symbol.

Definition 2.4.3. |Constraint Lattice and Widening| Given the set C of con-
straints over D, we consider the partial order (C,C) such that for any two
constraints ¢; and ¢ in C, ¢1 C ¢g iff D = VX (¢; — ¢2) where X = FV(cq,¢3).
We assume that (C,C) is a lattice, where: (i) the least element is false, (ii) the
greatest element is true, (iii) the least upper bound of two constraints ¢; and
¢y is denoted by ¢; U ¢y, and (iv) the greatest lower bound of two constraints
c1 and ¢ is their conjunction ¢y, co.

A widening operator (see also |17|) is a binary operator V between con-
straints such that:
(W1) (1 Ueg) E (e1Ve), and
(W2) for every infinite sequence {¢; | i € N} of constraints, the infinite sequence
{d;|i € N} of constraints where dy = ¢y and, for any i € N, d;j;1 = d; Ve,
stabilizes, that is, 3h e N Vk > h D = VX (d, <> di) where X = FV (dp,,dy).
Notice that, in general, V is not commutative.

We now introduce the notion of clause generalization, which is based upon
the widening operator V. It will be used in our strategy for contextual spe-
cialization to be presented in Section 2.5, for deriving from two given atomic
definitions a new, generalized atomic definition.

Definition 2.4.4. |Clause Generalization| Given a clause « of the form
newl(U) < c1, ¢(X), and a clause n of the form new2(V') « ca, ¢(X), where
each variable in (U, FV (¢1),V, FV (¢z)) is in X, we define the generalization of
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a w.r.t. n, denoted by gen(a,n), to be the clause: genp(W) <+ ¢1Veo, q(X),
where genp is a new predicate symbol and W is the sequence of the distinct
variables occurring in (U, V).

Example 2.4.5. [Ry,: Linear equations and inequations over the reals| Let
us consider the constraint domain Ry, of conjunctions of linear equations (=)
and inequations (<, <) over real numbers. In this domain we may replace
any existentially quantified constraint by an equivalent constraint without oc-
currences of 4. Thus, without loss of generality, we may assume that every
constraint is a conjunction of primitive constraints of the form %, op to, where
op € {=,<,<}. However, in the examples below we may occasionally write
t1 <ty as to >t1, and t; <ty as ty >ty.

Riin is a lattice whose least upper bound operation is defined by the convex
hull construction. Let us now introduce a widening operator for R, which we
will use in our program specialization example of Section 2.8.

Given a constraint ¢, let ineg(c) be the constraint obtained by replacing
every equation t; =t in ¢ by the conjunction of the two inequations £ <tg, t9 <
t1. Assume that ineg(c) is the conjunction of primitive constraints cy,...,cp.
For any constraint d, we define the widening ¢Vd to be the conjunction of all
¢;’s, with 0 <7 < n, such that d C ¢;.

This widening operator satisfies Condition W1 because, by construction,
¢ E ¢Vd and d C ¢Vd, that is, ¢Vd is an upper bound of ¢,d. Thus, we have
that: (cU d) C (cVd). Also Condition W2 holds for V, because for every
constraint ¢ and d the number of primitive constraints in ineq(c) is not smaller
than the number of primitive constraints in ineq(cVd).

Here is an example of clause generalization. Given the following two clauses:

a. mmodg(I,J, M)+ I=0, J>0, mmod(I,J, M)

n. newp(I,J,M) <+ I=1,J>0, mmod(I,J, M)
gen(a,n) is genp(I,JJ, M) < I >0, J >0, mmod(I,J, M), because we have
that: (i) ineq(I=0, J>0) = (I >0, I <0, J>0) and (ii) (ineq(I=0, J>0))
V(I=1,J>0) — (I>0, J>0) because it is not the case that (I=1, J>0) C
(I1<0).

2.5 An Automated Strategy for Contextual Special-
ization

We now describe the contextual specialization strategy for deriving efficient
CLP(D) programs by specialization. This strategy is a generalization of the
strategies for the partial evaluation of definite logic programs presented in
[35, 64, 72].

Our strategy is parameterized by: (i) the function solve which is used for
the application of the constraint replacement rule, (ii) an unfolding function
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Unfold for guiding the unfolding process, (iii) a well-quasi order <,, over con-
strained goals which tells us when to terminate the unfolding process, (iv) a
clause generalization function gemn, with its associated widening operator V,
and (v) a well-quasi order <, over constrained atoms which tells us when to
activate the clause generalization process. Once the choice of these parameters
has been made, our strategy can be applied in a fully automatic way.

The contextual specialization strategy is divided into three phases.

Phase A. Phase A consists of the iteration of two procedures, called Unfold-
Replace and Define-Fold, respectively. During the Unfold-Replace procedure
we unfold the program to be specialized so to expose some initial portions of
its computation, and we simplify the derived clauses by replacing inefficient
constraints by some more efficient ones using the given function solve. The
termination of this procedure is ensured by the use of the well-quasi order =,,.
We then apply the Define-Fold procedure and we fold the simplified clauses by
using already available definitions and, possibly, some new definitions. Phase
A is terminated when no new definitions need to be introduced for performing
the folding steps. The termination of Phase A is ensured by the properties of
the generalization function and well-quasi order <, which guarantee that the
set of generated definitions is finite.

Phase B. During Phase B, we apply the contextual constraint replacement rule
and from each clause defining a predicate, say p, we remove the constraints
which are known to hold when the clause is used. This information can be
obtained by computing the least upper bound of the set of constraints which
occur in the clauses containing a call of p.

Phase C. The goal of Phase C is to simplify the current program as follows:
(i) by unfolding a clause w.r.t. valid and failed atoms, we remove atoms from
its body or we remove the clause itself, (ii) we remove useless and subsumed
clauses, and (iii) by applying the constraint replacement rule, we replace a
constrained fact of the form H < ¢ by the fact H < thereby inferring the
validity of some atoms in the program.

For the formal description of our contextual specialization strategy we need
to introduce the following data structures. We introduce a tree Defstree, called
definition tree, whose nodes are the clauses introduced by the definition rule
during program specialization. Moreover, for each clause § in Defstree we
introduce a tree Utree(d), called unfolding tree. The root of Utree(d) is ¢
itself, and the nodes of Utree(d) are the clauses derived from ¢ by applying
the unfolding and constraint replacement rules. The usual relation of ancestor
between nodes in a tree gives us the relation of ancestor between clauses in
Defstree and also between clauses in Utree(9).
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2.5.1 The Unfold-Replace Procedure

Let us first introduce some notions which will be useful in the definition of the
Unfold-Replace procedure. Let P be a CLP program and I' be a set of clauses.

(a) A clause of the form H <« ¢, Ay,..., A, has a non-failing body iff ¢ is
satisfiable, and for 7 = 1,...,n, A; is not failed;

(b) an unfolding function is a partial function Unfold, which takes a clause A
and an unfolding tree T' of which A is a leaf, and returns the set Unfold (A, T)
of clauses obtained by unfolding the clause A in P w.r.t. an atom A in its body.
We assume that the unfolding function Unfold is associated with the wqo =<,,.
Unfold(\, T) is defined iff (i) A is a leaf of T', (ii) the body of X is non-failing
and it contains at least one atom, and (iii) there exists no ancestor « of A in T’
such that bd(a) =<, bd(\). Notice that if T' consists of the root clause A only,
and A has non-failing body, then Unfold(X,T) is defined;

(¢) Replace(T) denotes the set of clauses I'' obtained by applying the constraint
replacement rule to each clause v in I' as follows:

If v is of the form H « ¢, G then the clause H + solve(c, X), G is in I, where
X is the set of the linking variables of ¢ in ~.

The Unfold-Replace procedure which we now describe, takes as input a set
NewDefs of definition clauses and, by using the Unfold and Replace functions
defined above, constructs a forest UForest of unfolding trees, one for each
definition in NewDefs. The Unfold-Replace procedure is parametric w.r.t. the
choice of the unfolding function Unfold and its associated well-quasi order =,
on constrained goals.

The Procedure Unfold-Replace(NewDefs, UForest).
Input: a set NewDefs of definition clauses.
Output: a forest UForest of unfolding trees.

for each clause § € NewDefs do
Let Utree(d) be the root clause d;
while Unfold (X, Utree(6)) is defined for some leaf clause A of Utree(d) do
I'l := Unfold (A, Utree(d));
I'2 := Replace(T'1);
Expand Utree(d) by making every clause in I'2 a son of A
end-while
end-for
UForest := {Utree(0) | 0 € NewDefs} 0

Notice that, by the properties of the unfolding function Unfold, for each clause §
in NewDefs with non-failing body, the tree Utree(d) is constructed by applying
the unfolding rule at least once.
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2.5.2 The Define-Fold Procedure

The Define-Fold procedure takes as input a forest UForest of unfolding trees,
constructed by the Unfold-Replace procedure, and a definition tree Defstree
and it produces as output: (i) a possibly empty set NewDefs of new definition
clauses, and (ii) a set FoldedCls of clauses derived from the leaves of UForest
which have non-failing bodies, by a (possibly empty) sequence of applications
of the constrained atomic folding rule. The definition clauses in NewDefs, to-
gether with those in Defstree, make it possible to fold each leaf of UForest with
non-failing body w.r.t. each atom occurring in that same leaf. The definition
clauses in NewDefs are added to the tree Defstree as new leaves.

We now introduce the notion of folding equivalence between definition
clauses. This notion is used to avoid the introduction of unnecessary new
definition clauses.

Definition 2.5.1. Given two clauses, d; of the form Hy; < ¢1, A1 and &y of
the form Hy < 9, A9, we say that §; and dy are folding equivalent iff there
exists a variable renaming p such that (i) A;p = Ag, (ii) D = VX (c1p ¢ 2)
where X = FV(cip,ca), and (iii) vars(H;p) = vars(Hs).

For example, the clauses newl(X,Y) < X >Y, p(Y) and new2(V,U) <«
V < U, p(V) are folding equivalent. We have that, if §; and J, are folding
equivalent clauses, then a clause can be folded using §; iff it can be folded
using ds.

Notice that as consequence of the definitions of the widening operator and
the generalization function given in Section 2.4, we have the following property,
which will be useful for proving the termination of the contextual specialization
strategy.

Property FE: For any clause 7y and infinite sequence {J; |7 € N} of clauses,
if {v;]7 € N} is the infinite sequence of clauses such that, for all i € N,
Yi+1 = gen(7i, d;), then there exists an index h such that Yk > h, the clauses
v, and -y, are folding equivalent.

We now introduce a definition function Define, which takes as input a
definition tree Defstree, a leaf clause ¢ of Defstree, and a call pattern (¢, A,Y")
of a leaf clause A of Utree(d), and produces as output a clause to be used for
folding A w.r.t. A. Define is parametric w.r.t. the choices of a wqo <, and a
clause generalization function gen.
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The Definition Function Define(Defstree, d, (c, A,Y)).

Let n be the clause: newp(Y) < ¢, A, where newp is a new predicate symbol.
if 7 is folding equivalent to a clause 9 in Defstree
then return ¢
else Let 7w be the path from the root of Defstree to clause §
if in 7 there exists a clause of the form H < d, B such that
(1) (d,B) =4 (¢, A) and (2) A and B have the same predicate
then let « be the last clause in 7 with properties (1) and (2)
if gen(a,n) is folding equivalent to a clause ¥ in Defstree
then return o
else return gen(a,n) (Case G)
else return 7 (Case F). O

Now we are ready to present the Define-Fold procedure.

The Procedure Define-Fold(UForest, Defstree, NewDefs, FoldedCls).

Input: a forest UForest of unfolding trees and a definition tree Defstree. Fach
root of the trees in UForest is a leaf clause of Defstree.

Output: a set NewDefs of new definition clauses and a set FoldedCls of derived
clauses.

NewDefs := (3  FoldedCls := ()3
for each unfolding tree Utree(d) in UForest do
for each leaf clause A of Utree(d) with non-failing body do
Let A be of the form Ay < d, Ay,..., A, with k& > 0.
if k =0 then FoldedCls := FoldedCls U {\}
else begin
M= A
fori=1,....k do
Let ¢p, be the call pattern of v; for A; and let n be the clause
Define(Defstree, 6, cp;).
if 1 is not in Defstree then
begin expand Defstree by making n a son of §;
NewDefs := NewDefs U {n} end ;
Fold «; w.r.t. A; by using n thereby deriving clause 7;y1;
end-for ;
FoldedCls := FoldedCls U {11}
end
end-for
end-for O
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Notice that the clauses whose body consists of a satisfiable constraint only,
are not folded, and they are added to FoldedCls. Moreover the clauses with
failing body are not folded, and they are not added to the set FoldedCls.
This treatment of the clauses with failing body can be viewed as an implicit
application of the clause removal rule R4f.

2.5.3 The Contextual Specialization Strategy

We now present our strategy for contextual specialization of CLP(D) programs.
It consists of two phases. During Phase A we apply the unfolding, constraint
replacement, constrained atomic definition, and constrained atomic folding
rules, according to the Unfold-Replace and Define-Fold procedures. During
Phase B we eliminate redundant constraints by a suitable application of the
contextual constraint replacement rule. During Phase C we apply the rule for
removing subsumed clauses, the unfolding rule w.r.t. valid and failed atoms
and the rule for removing useless clauses.

Notice that the condition FV(¢) C X on the input to the contextual spe-
cialization strategy below, is not actually a restriction, because our constraints
are closed w.r.t. existential quantification.

Contextual Specialization Strategy
Input: (i) A CLP(D) program P and

(ii) a constrained atom ¢, p(X) such that FV(c) C X.
Output: A CLP(D) program Py and an atom py(X).

Phase A. By the definition rule introduce a clause dy of the form pg(X) +
¢, p(X). Let Defstree consist of clause dg only.
P;:=0; NewDefs := {dp};
while NewDefs #0 do
Unfold-Replace(NewDefs, UForest);
Define-Fold(UForest, Defstree, NewDefs, FoldedCls);
Py := Py U FoldedCls
end-while

Phase B. [Conteztual Constraint Replacement]
Let Py be a program of the form {v;,...,7,} and
let C be the set {(solve(c, X),ps(X))} U{(d, A)|(d,A,Y) € CP(Fs)} of con-
strained atoms.
fori=1,...,pdo
Let 7; be a clause of the form ¢(X) < e1,...,e,, G
where e1,..., e, are basic constraints with free variables in X U vars(G);
Let C, be the set {(d1,¢(X)),..., (dg,q(X))} of all renamed
constrained atoms d, ¢(X) in C;
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Let f be the conjunction of all e;’s such that
D =V (d, — e;) does not hold;
Apply the contextual constraint replacement rule w.r.t. C,
thereby replacing ; by the clause ¢(X) « f, G;
endfor

Notice that the use of the contextual constraint replacement rule is justified
by the fact that, for alli = 1,...,k, D = VX (d; — (3Ze « 3Z f)), where
7 = vars(Q).

For reasons of performance, we may replace Condition (iib) above by the
following condition:

(iib*) m C e;, where m denotes the least upper bound dy U ... L dj
which, in general, is stronger than Condition (iib).

Phase C. During this phase we apply the following rules: (i) unfolding, (ii)
removal of useless and subsumed clauses, and (iii) constraint replacement. The
algorithm for Phase C is as follows.

repeat
P = P
Apply to Py, as long as possible, the rule for removing subsumed clauses;
Apply to Ps, as long as possible, the unfolding rule
w.r.t. valid and failed atoms in the current program;
for all clauses in Py of the form H < ¢ do
if D |=VY(3Yc) where Y = FV(c) — vars(H)
then apply the constraint replacement rule Rbr
and replace H < c¢ by the fact H «+
end-for
until P' = P,
Remove the useless clauses from Pj; O

2.6 Correctness of the Strategy

Theorem 2.6.1. [Correctness of the Contextual Specialization Strategy| Let P
be a CLP(D) program and c,p(X) be a constrained atom with FV (c¢) C X. Let
P and ps(X) be the CLP(D) program and the atom obtained by the contextual
specialization strateqy. Then, for every valuation v we have that:

if D= v(c) then v(p(X)) € Im(P,D) iff v(ps(X)) € Im(Ps,D)

Proof. During the application of the contextual specialization strategy, folding
is applied only to clauses which have been derived by one or more applications
of the unfolding rule, followed by applications of the constraint replacement
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rule. Thus, the thesis follows from the correctness of the contextual special-
ization strategy for general constraint logic programs (see Section 3.5). O

2.7 Termination of the Strategy

We now present the proof of termination of the strategy of Section 2.5.

Definition 2.7.1. The widening operator V agrees with the wqo =< iff for
every atom ¢(X) and constraints ¢ and d, we have that ¢Vd, q(X) =< ¢, q(X).

We have that any widening operator V agrees with the wqo =<7, defined in
Example 2.4.2.

Theorem 2.7.2. [Termination of the Contextual Specialization Strategy| Let
P be a CLP(D) program, and c,p(X) be a constrained atom with FV(c) C X.
If the widening operator V used for clause generalization agrees with the well-
quasi order =4, then the contextual specialization strateqy terminates.

Proof. Let us begin by showing the termination of the Unfold-Replace proce-
dure. It follows from the properties of the wqo <, and the hypothesis that for
any leaf clause A of an unfolding tree 7', if there exists an ancestor « of A such
that bd(a) =, bd(X), then Unfold(X,T) is not defined.

Also the Define-Fold procedure and Phase B of the contextual specializa-
tion strategy trivially terminate because of the absence of while-loop state-
ments in their definitions.

Phase C terminates because during the repeat-loop either (i) we remove
clauses by applying the rule for removing subsumed clauses or the unfolding
rule w.r.t. a failed atom, or (ii) by applying the unfolding rule w.r.t. a valid
atom or the constraint replacement rule, we replace a clause by another clause
whose body is strictly smaller.

To prove the termination of the contextual specialization strategy we have
to show that the set NewDefs of new definitions introduced by the Define-Fold
procedure will eventually be empty, that is, Defstree is a finite tree.

Every node of Defstree has finite branching. Indeed, (i) each clause &
occurring in Defstree has a number of sons which is not greater than the
number of atoms in the bodies of the leaf clauses of Utree(d) to be folded, and
(ii) for all d, the unfolding tree Utree(d) constructed by the Unfold-Replace
procedure is finite.

We now show that every path starting from the root of Defsiree is finite.
Consider a generic path m of Defstree, of the form dg...dk ..., where dq is the
root clause of Defstree. We can partition the clauses of 7 into two sets: the
set GenDefs of clauses which have been introduced as generalizations of one
of its ancestors in 7w (see Case (G) of the definition function Define) and the
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set FreshDefs of all other clauses in m (see Case (F) of the definition function
Define). In particular, §g € FreshDefs.

Let us introduce the following binary relation <, over constrained atoms:
(c,A) =gy (d,B)iff (1) (¢,A) =4 (d,B) and (2) A and B have the same
predicate symbol. We have that <, is a wqo, because =<, is a wqo and the set
of predicate symbols is finite (recall that the predicate symbols occurring in
the bodies of the definitions also occur in the initial program). We also have
that gen agrees with <, because gen agrees with <.

We will show that for any path m, we can construct a tree T'(w) whose
nodes are the clauses of m, such that:

(Property F*) for any h > 0, a clause dj is the left son of a clause d; iff
0n € FreshDefs and ¢; is the last clause in dy...d,—; which is in FreshDefs.
Thus, bd(6;) Zgp bd(0p) foralli=0,...,h — 1.

(Property G*) for any h > 0, a clause 6h is the right son of a clause d; iff
0n € GenDefs and J; has been introduced as a generalization of §;, that is,
0 = gen(d;,n) for some clause n (which does not belong to the set Defstree,
and thus, it is not in «). Thus, (i) J; is the last clause in dy ..., such that
bd(d;) =gp bd(n), (i) bd(dy) =gp bd(d;), because gen agrees with <,,, and (iii)
there is no clause in dy ... d, 1 which is folding equivalent to dy.

We will show that for any path = we can construct the tree T'(7) by proving

that, for all finite prefixes dg...d; of m, there exists T'(dp...d) satisfying
Property F* and Property G* above. The proof proceeds by induction on k.
The base case (k = 0) is trivial. For the inductive step, let us assume that
Property F* and Property G* hold for T'(dg...d;) and let us show them for
T ... Ops1)-
(Case F) Let 0y41 € FreshDefs and (A) let §; be the last clause in dg . .. §; such
that 0; € FreshDefs. Let T'(dg...0k11) be the tree obtained from T'(dg ... dx)
by addlng 0k+1 as left son of §;. Property F* holds for T'(d¢ . .. dg41): (if part)
by construction; (only if par‘r) k41 is the only left son of §; in T'(dg ... dk41).
Indeed, if there exists a left son d;, of d;, then by 1nduct1ve hypothesis §, €
FreshDefs and j < h < k, which contradicts the assumption (A). The valid-
ity of Property G* for T'(dg...0ks1) follows immediately from the validity of
Property G* for T'(dp .. . dg)-

(Case G) Let 641 € GenDefs, that is, 61 = gen(d;,n) for some clause 7,
where: (B) §; is the last clause in dy... 0y such that bd(d;) <4y bd(n). Let
T(dp ... 0ks1) be the tree obtained from T'(dg . .. dx) by adding dy4 1 as right son
of 6;. The validity of Property F* for T'(dy ... dx41) follows immediately from
the vahdl‘ry of Property F* for T'(dg . .. d;). Property G* holds for T'(d . . . d41)
because: (if part) by construction; (only if part) 0y is the only right son of §;
in T'(do . .. 0k41). Indeed, if there exists a right son d5 of 6; in T'(dg ... 0x), ‘rhen
by inductive hypothesis j < h and bd(d5) =4p bd(d;). Thus, by transitivity of
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=<gp we have bd(d,) <4p bd(n) and j < h, which contradicts the assumption
(B).

We now show that a generic path @ of Defstree is finite by showing that
T'(m) is finite, that is (a) T'(7) is finitely branching, and (b) each path in T'(7)
is finite.

(a) By Properties F* and G*, we have that each node of T'(7) has at most two
sons and thus T'(7) has finite branching.

(b) Consider a path 7 from the root of T'(7) of the form: dopy1...7k... Let
v, be a clause in 7 such that v, € GenDefs. If such a -y, does not exist then
all clauses in 7 belong to FreshDefs, and thus, for all distinct 7,5 > 0 we have
vj Zgp Vi- In this case 7 cannot be infinite because <, is a wqo. If such a
does exist, then by Properties F* and G* the suffix of 7 of the form: v5yp11 ...
is such that for all 4 > h, v;41 = gen(v;,n;). By Point (iii) of Property G* we
have that: for all 7+ > h and for all j < 4, clause ; is not folding equivalent
to ;. The path y,yp41 ... is finite because, by Property FE of Section 2.5, if
it were infinite, then there exist two folding equivalent clauses v, and -y, with
h < s < t. Thus, 7 is finite. O

2.8 An Extended Example

Let us consider the following CLP(R;;;,) program Mmod:
1. mmod(I,J, M)+ I1>.J, M=0
2. mmod(I,J,M) + I<J, Il =141, mod(I,L), mmod(I1,J, M1),
M= MI1+L

3. mod(X,M)«+ X>0, M=X

4. mod(X,M) + X<0, M=-X
Mmod(I,J, M) holds if and only if M =|I|+ [I+1|+---+ |I+k| and k is the
largest integer such that I+k is smaller than J (recall that I, J, and M are
real numbers). Let us assume that we want to specialize the program Mmod
w.r.t. the constrained atom =0, J >0, mmod (I, J, M).

Recall that in Ry, the least upper bound operation U is defined by the
convex hull construction (see Section 2.4). In this example we instantiate
our contextual specialization strategy as follows. (i) The function solve is the
simplifier of conjunctions of linear equations and inequations over the reals
implemented in Holzbaur’s clp(q,r) solver [36], (ii) Unfold(~y, Utree(d)) returns
the set of clauses obtained by unfolding clause y w.r.t. the leftmost (in the
textual order) atom A in its body, (iii) the well-quasi order <, is the relation
=<1, over constrained goals (see Section 2.4), (iv) the function gen for clause
generalization is the one introduced in Example 1 (see Section 2.4), and (v)
the wqo =, is the restriction of <7, to constrained atoms.

We apply the contextual specialization strategy as follows.
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Phase A. We start off from the tree Defstree which consists of the root clause
5 only, where:

5. mmod(I,J, M) < I=0, J>0, mmod(I,J, M)

We apply the Unfold-Replace procedure as follows. The input for the procedure
consists of the set NewDefs = {clause 5}. Let Utree(clause 5) consist of the
root clause 5. The only atom in the body of clause 5 is mmod (I, .J, M), and
Unfold (clause 5, Utree(clause 5)) is the set {clause 6, clause 7} where:
6. mmods(I,J,M) + I=0,J>0,1>J M=0
7. mmods(I,J,M) + I=0, J>0, I<J, I1= 141, mod(I, L),
mmod (I1,J,M1), M = M1+L
We apply the constraint replacement rule using solve, thereby obtaining Re-
place({clause 6, clause 7}) = {clause 8, clause 9} where:
8. mmods(I,J, M)+ I=0, J=0, M=0
9. mmody(I,J,M) <« I=0,J>0, I1=1, mod(I, L), mmod(I1,J, M1),
M= M1+L
Now we expand Utree(clause 5) by making clauses 8 and 9 sons of clause 5.
Unfold (clause 8, Utree(clause 5)) is not defined, because the body of clause 8
contains no atom, and thus, clause 8 is not unfolded.
The construction of Utree(clause 5) proceeds by first unfolding clause 9 w.r.t.
mod(I, L) and then applying the constraint replacement rule. We get the
following clauses:

10. mmods(I,J, M) < false, mmod (I1,J, M1), M = M1+L

10.1 mmod (I, J,M) < I=0, J>0, I1=1, mmod(I1,.J, M)
We expand Utree(clause 5) by making clauses 10 and 10.1 sons of clause 9.
There is no leaf clause A of Utree(clause 5) such that Unfold (A, Utree(clause 5))
is defined. Indeed: (a) clause 10.1 is the only leaf of Utree(clause 5) whose body
is non-failing and contains at least one atom, and (b) clause 5 is an ancestor
of clause 10.1 such that bd(clause5) <p bd(clause10.1). Thus, the Unfold-
Replace procedure terminates with output UForest = { Utree(clause 5)}. The
leaves of Utree(clause 5) are the clauses 8, 10, and 10.1.

We now apply the Define-Fold procedure as follows. The input for the pro-
cedure consists of the forest { Utree(clause 5)} and the definition tree Defstree
made out of the root clause 5 only. The leaves of Utree(clause 5) with non-
failing body are clause 8 and clause 10.1.

The body of clause 8 contains no atom, and so we add clause 8 to FoldedCls.
The body of clause 10.1 contains one atom, and the only call pattern of clause
10.1 is (¢, A,Y), where cis (J >0, I1 =1), A is mmod(I1,J, M), and Y is
{11, J,M}.
We now compute Define(Defstree, clause 5, (¢, A,Y)). We consider the follow-
ing clause:
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n. newp(Il,J, M) + J>0, I1=1, mmod(I1, J, M)
Since there is no clause in Defstree which is folding equivalent to clause 7

and bd(clauseb) <7, bd(n), we compute clause gen(clause 5,7), which is (see
Example 1 at the end of Section 2.4):

11. genp(I1,J, M) < I1>0, J>0, mmod(I1,J, M)
Since there is no clause in Defstree which is folding equivalent to clause 11 we
are in Case (G). We expand Defstree by making clause 11 a son of clause 5
and we add clause 11 to the set NewDefs. Then we fold clause 10.1 by using
the definition clause 11 and we get:
12. mmodg(I,J, M)« I=0, J>0, I1=1, genp(I1,J, M)
The Define-Fold procedure terminates with output FoldedCls — {clause 8§,
clause 12} and NewDefs = {clause 11}. Since NewDefs is non-empty, we con-
tinue the execution of the while-loop of the contextual specialization strategy.
We apply the Unfold-Replace procedure as follows. The input for the procedure
consists of the set NewDefs = {clause 11}. At the beginning, Utree(clause 11)
consists of the root clause 11. The only atom in the body of clause 11 is
mmod(I1,.J, M), and Unfold(clause 11, Utree(clause 11)) is the set {clause 13,
clause 14} where:
13. genp(I1,J,M) < I1>0, J>0, I1>J, M =0
14. genp(I1,J, M) < I1>0, J>0, I1< J, [2=11+1, mod(I1, L),
mmod (12, J, M2), M=M2+L
We apply the constraint replacement rule using the solve function, and we get
Replace({clause 13, clause 14}) = {clause 15, clause 15.1} where:
15. genp(Il,J, M)+ I1>J, J>0, M=0
15.1 genp(I1,J,M) « I11>0, I1< J, 12=11+1, mod(I1, L),
mmod (12, J, M2), M=M2+L
Now we expand Utree(clause 11)) by making clauses 15 and 15.1 sons of clause
11. Unfold(clause 15, Utree(clause 11)) is not defined, because the body of
clause 15 contains no atom.
The construction of Utree(clause 11) proceeds by first unfolding clause 15.1
w.r.t. mod(I1, L) and then applying the constraint replacement rule. We get,
as the reader may verify, the following clauses:
16 genp(I1,J, M) « false, mmod (12, J, M2)
16.1 genp(I1,J, M) «+ I1>0, I1< J, I2=11+1,
mmod (12, J, M2), M=M2+11
We expand Utree(clause 11) by making clauses 16 and 16.1 sons of clause 15.1.
There is no leaf clause A of the unfolding tree Utree(clause 11) such that
Unfold (X, Utree(clause 11)) is defined. Indeed: (a) clause 16.1 is the only
leaf of Utree(clause 11) whose body is non-failing and it contains at least one
atom, and (b) clause 11 is an ancestor of clause 16.1 such that bd(clause 11) <,
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bd(clause 16.1). Thus, the Unfold-Replace procedure terminates with output
UForest = { Utree(clause 11)}.

We now apply the Define-Fold procedure as follows. The input for the proce-
dure consists of the forest { Utree(clause 11)} and the definition tree Defstree
made out of the root clause 5 and its son clause 11. The leaf clauses of
Utree(clause 11) with non-failing body are clause 15 and clause 16.1.

The body of clause 15 contains no atom, and so we add clause 15 to FoldedCls.
The body of clause 16.1 contains one atom and (¢’, A’,Y') is the only call
pattern of clause 16.1 where ¢ is (I2>1, J > 12—1), A" is mmod (12, J, M2),
and Y is {I2,.J, M2}.

We now compute Define(Defstree, clause 11,(c’, A", Y")). Let us consider the
clause:

nl. newq(12,J,M2) + 12>1, J > 121, mmod (12, J, M2)

Since there is no clause in Defstree which is folding equivalent to n1 and
bd(clause 11) <y bd(nl), we compute clause gen(clause 11,71), which is clause
11 itself. Then we fold clause 16.1 by using the definition clause 11 and we
get:
17. genp(I1,J, M) < I1>0, I1< J, I12=11+1,
genp(I12,J, M2), M=M2+11

The Define-Fold procedure terminates with output FoldedCls = {clause 15,
clause 17} and NewDefs = ().

Since during the last application of the Define-Fold procedure we did not
introduce any new definition, the while-loop of the contextual specialization
strategy terminates and we get program Ps made out of clauses 8, 12, 15, and
17.

Phase B. By computing the call patterns of P; and performing a variable
renaming we get:
C = {(I=0,J>0, mmods(I,.J, M)),
(I=1, J>0, genp(I,J, M)),
(IZL J>I*17 qenp(I, J’ M))}
We then process clauses 8, 12, 15, and 17 as indicated in the contextual spe-
cialization strategy where we use Condition (iib*) instead of Condition (iib).
We compute the least upper bounds:
for mmods: my = (I=0, J>0) and for genp: mo = (I>1, J>I-1).
For clause 8, since m; C I =0, we get:
8.c mmodg(I,J,M) + J=0, M =0
For clause 12, since mq C =0, we get:
12.c mmods(I,J, M) + J>0, I1 =1, genp(I1,J, M)

For clause 15, since mo C J >0, after a variable renaming, we get:
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15.c genp(I,J, M)+ I>J, M =0
For clause 17, since mo C I >0, after a variable renaming, we get:

17.c genp(I,J, M) + I<J, I12=1+1, genp(12,J, M2), M=M2+1
The output of Phase B is the program consisting of clauses 8.c, 12.c, 15.c, and
17.c.
Phase C. The current program contains no facts and no valid or failed atoms.
Thus, Phase C leaves the program unchanged.

The final program P, we have derived, consists of clauses 8.c, 12.c, 15.c,
and 17.c.

2.9 Experimental Results

The following table shows the speedups achieved by applying our constraint
specialization strategy to some CLP programs. The speedups after Phase A
and after Phase C are both computed w.r.t. the initial program. The Dynamic
Input Size denotes the size of the constrained goal which is supplied to the
specialized program. The experimental results were obtained by using SICStus
Prolog 3.8.5 [37] and the clp(q,r) solver [36].

Program Dynamic Input Speedup Speedup
Size after Phase A | after Phase C
Mmod \J| = 250 3.26 3.78
Mmod \J| = 25000 345 388
Summatch (1) |S| = 500 451 915
Summatch (1) S| = 1000 881 1788
Summatch (1) |S| = 500 818 2159
Summatch (1) |S| = 1000 1594 4225
Cryptosum — 1.27 1.27

e Mmod is the program described in Section 2.8 which defines the predicate
mmod (I,J,M). Tt has been specialized w.r.t. I=0,.J>0.

e Summatch is a program which defines a predicate summatch(P,S) which
holds iff there exists a substring G of S such that: (i) G and P have
the same length, and (ii) the sum of the elements of G is equal to the
sum of the elements of P. It has been specialized w.r.t. (}) a list P of
3 nonnegative integers whose sum is at most 5, and (ft) a list P of 10
nonnegative integers whose sum is at most 5.

e (Cryptosum is a program which solves a cryptoarithmetic puzzle over
three lists L1, L2, and L3 of digits, such that L1+ L2—L3. It has been
specialized w.r.t. SEND+MORE=MONEY.
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The specialized programs were derived automatically by using the MAP trans-
formation system, which provides support both for interactive derivations and
for automatic specializations based on the parameterized strategy presented in
Section 2.5. The MAP system is described in Appendix A. The source code
for the examples can be found in Appendix B.

2.10 Related Work

There are various methods for specializing programs w.r.t. properties of their
input data [10, 16, 53, 61, 66]. Contextual specialization can be viewed as one
of these methods. In this chapter we have presented a set of transformation
rules and an automated strategy for the contextual specialization of constraint
logic programs over a domain D.

For our specialization strategy we have assumed the existence of a solver
which simplifies constraints in a given domain D. We abstractly represent that
solver as a computable total function solve and we do not make any assumption
on how this function is computed. The motivation for this choice comes from
the observation that most of the available constraint solvers are based on the
so called black box approach and they provide the user with very limited ways
of interaction. In particular, in the black box approach, it is not possible to
control the constraint solving process.

For this reason the efficiency improvements which can be achieved by our
program specialization strategy are limited to the way the constraints are gen-
erated and interact with each other. Indeed, at specialization time we may
simplify constraints by discovering inconsistencies, exploiting entailment, and
applying the function solve. These opportunities for constraint simplification
are triggered by applications of the unfolding rule and are realized by the con-
straint replacement rule. The unfolding rule, in fact, may gather in a single
clause constraints which come from different clauses.

However, our specialization strategy cannot improve the efficiency of the
constraint solving algorithms. To overcome this limitation we could extend
our method to programs based on glass box solvers, for example by using
Constraint Handling Rules [31], a high-level language designed for the purpose
of building application-specific constraint solvers.

In our specialization strategy we have also assumed the existence of: (i)
a function Unfold and a well-quasi order =<, between constrained goals for
guiding the unfolding process, (ii) a clause generalization function gen param-
eterized by a widening operator V, and (iii) a well-quasi order <, between
constrained atoms, which activates the clause generalization process during
program specialization. We have shown that our specialization strategy pre-
serves the least D-model and it terminates.
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The hypothesis that the function solve is complete w.r.t. satisfiability,
makes our approach different from the one in [10|, where program special-
ization is based on some undecidable properties and thus, it cannot be easily
automated.

Partial evaluation of logic programs [50], also called partial deduction, is the
technique for program specialization which is most related to ours. However,
we would like to mention the following differences which make our contextual
specialization technique a proper extension of the traditional techniques for
partial evaluation.

(1) The most apparent difference is that traditional techniques for partial eval-
uation do not handle constraints, so that our optimizations concerning con-
straint solving cannot be performed.

(2) Partial evaluation may require post processing methods, like Redundant
Argument Filtering [19]|, to minimize the number of variables occurring in
clauses, whereas we use the folding rule during program specialization to avoid
redundant occurrences of variables.

(3) The use of our contextual constraint replacement rule R5 allows us to
perform optimizations which cannot be performed by applying the techniques
for partial evaluation of logic programs presented in [48, 84|. Indeed, our
contextual constraint replacement rule takes into account, for simplifying the
clauses of a predicate, say p, the set of constraints which occur in the clauses
containing a call of p. Nor can contextual constraint replacement be performed
by using the transformation rules presented in [9, 25, 51].

(4) What it is usually done by automatic partial evaluation techniques (see,
for instance, [46]) basically corresponds with Phase A of our contextual spe-
cialization strategy. Similarly to partial evaluation, in that phase we address
local control and global control issues. In our approach local control refers to
the termination of the Unfold-Replace procedure, while global control refers
to the termination of Phase A of the contextual specialization strategy as a
whole. In particular, global control refers to the policy of introducing new
constrained atoms which generalize old constrained atoms. For these control
issues we extend to the case of constrained logic programs the well-quasi order
techniques used for proving termination in the field of rewriting systems [21].
These techniques were also used for partial evaluation |44, 46]. With regard
to these control issues the main difference between partial evaluation and our
approach is that generalization used in partial evaluation can be seen as a
particular instance of our generalization by taking both the least upper bound
operator and the widening operator to be the most specific generalization over
finite terms.

Among the many techniques for simplifying and manipulating constraints
to get more efficient specialized programs, here we want to mention the follow-
ing methods which are related to ours.
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In [66] the authors propose a method based on abstract interpretation, for
the implementation of multiple specialization of logic programs. Particular
emphasis is given to program parallelization. Similarly to their work, our
specialization strategy may produce several specialized versions of the same
predicate by introducing different definitions corresponding to different call
patterns.

In [53] the authors present a methodology for compiling CLP(D) lan-
guages so that the workload of the constraint solver is reduced. However,
their methodology may generate non-monotonic CLP(D) programs, whose ex-
ecution requires the ability of removing constraints from the constraint store.
In contrast, in our approach we generate monotonic CLP (D) programs which
at runtime do not remove constraints from the store. However, we require the
solver to test for the satisfiability and entailment of constraints, and to com-
pute the existential closure of constraints w.r.t. given sets of variables. These
capabilities are indeed provided by most constraint solvers.

Finally, our work is related to the approach presented in [16] for a strict
first-order functional language. As in that paper, we too specify the context of
use w.r.t. which the programs should be specialized, by providing a property
which may cover an infinite set of queries.



Chapter 3

Specialization of General
Constraint Logic Programs

In this chapter we extend the framework presented in Chapter 2 so as to per-
form specialization of constraint logic programs with negation. This extension
will also be used for the verification of temporal properties of concurrent sys-
tems as described in Chapter 4.

We will consider the class of locally stratified constraint logic programs.
This class is interesting because it is expressive enough to contain many of
the constraint logic programs which are used in practice. Moreover, all major
approaches to the semantics of negation coincide for locally stratified CLP
programs. In particular, given a locally stratified constraint logic program P,
the unique perfect model [65] of P is equal to the unique stable model [34]
of P and to the well-founded model [83] of P. The perfect model of a locally
stratified constraint logic program is constructed in a way which is very similar
to the case of locally stratified logic programs and most approaches for dealing
with negation can be extended from logic programming to constraint logic
programming.

Contextual specialization for general constraint logic programs is defined
as follows. Given a locally stratified CLP(D) program P and a constrained
atom ¢, A derive a locally stratified program P; and an atom A such that, for
every valuation v we have that:

(Contextual Specialization)
if D |=v(c) then v(A) e M(P) iff v(As) € M(Ps)
where M (P) denotes the perfect model of P.

We now introduce some basic notions and notational conventions on con-
straint logic programs with negation. This is an extension of the material
presented in 2.1. For notions on logic programming with negation which are
not defined here the reader may refer to [6].

37
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3.1 Constraint Logic Programming with Negation

A negated atom is a formula of the form — A where A is an atom. A literal
is either an atom A, also called positive literal, or a negated atom — A, also
called negative literal. Literals are denoted by L, possibly with subscripts. A
constrained literal is the conjunction of a constraint and a literal. A goal is a
(possibly empty) conjunction of literals, and it is denoted by G, possibly with
subscripts. Clauses are of the form H « ¢, Ly,...,L,. A general constraint
logic program, simply called program in the following chapters, is a finite set
of clauses.

We now extend the domain of a valuation v to negative literals as follows:
if L is the negated atom —A, then v(L) is the ground literal —v(A). Given a
program P, we define ground(P) as the following set of ground clauses:

ground(P) = {v(H) < v(Ly),...,v(Ly,) | v is a valuation,
(H<c¢Ly,...,Ly) € P,and D = v(c)}

Given a D-interpretation I and a constraint-free, ground clause « of the form
H < Ly,...,Ly, we say that 7 is true in I, written I |= ~ iff one of the
following holds: (i) H € I, or (ii) there exists i € {1,...,m} such that L; is an
atom and L; ¢ I, or (iii) there exists 7 € {1,...,m} such that L; is a negated
atom —A; and A; € I.

Now we introduce the notions of local stratification and perfect model for
constraint logic programs. These notions are an extension of the similar notions
for logic programs [6, 65] and are parametric w.r.t. the interpretation of the
constraints |38, 39].

A local stratification is a function o: Bp — W, where W is the set of
countable ordinals. If A € Bp and 0(A) = a we say that the stratum of A
is a, or A is in stratum «. A clause 0 in P is locally stratified w.r.t. a local
stratification o iff for all clauses of the form A « Ly,..., Ly, in ground({d}) we
have that for alli = 1,...,m, if L; is an atom B then o(A) > o(B), otherwise,
if L; is a negated atom —B, then o(A) > o(B). Given a local stratification
o, we say that program P is locally stratified w.r.t. o iff every clause of P is
locally stratified w.r.t. o. A program P is locally stratified iff there exists a
local stratification o such that P is locally stratified w.r.t. o. We denote by P,
the set of clauses in ground(P) whose head is in stratum «.

A level mapping is a function from the set of predicate symbols to the
finite ordinals. Given a level mapping A, we extend it to literals as follows:
if L is an atom p(...) then A(L) = A(p), and if L is a negated atom —p(...)
then A(L) = A(p). A clause v of the form H « ¢, Ly,..., Ly, is stratified
w.r.t. a level mapping X iff for all 4 = 1,...,m, if L; is a positive literal then
AMH) > ML;) and, if L; is a negative literal then A(H) > A(L;). A program
P is stratified iff there exists a level mapping A such that every clause of P
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is stratified w.r.t. A. If a program P is stratified w.r.t. A, then there exists a
finite sequence Sy, . .., Sk of programs, called a stratification of P, such that (i)
P = S1U...USk, and (ii) for any two clauses a and 8 in P, A(hd(a)) < A(hd(B))
iff there exist 4, j such that: (a) ¢ < j, (b) @ € S;, and (c) f € S;. Si,...,Sk
are called the strata of P. Note that, as a consequence of the definition, the
strata of a program are pairwise disjoint and if a program is stratified then it
is locally stratified.

Similarly to the case of logic programs [6, 65|, we define the perfect model

M (P) of alocally stratified constraint logic program P as the D-interpretation
Usew Ma, where for every ordinal e in W, the set M, is constructed as follows:
(1) My is the empty set,
(2) if @ > 0, M, is the least D-model of the set of definite, constraint-free,
ground clauses derived from P, as follows: (i) every literal =A occurring in
the body of a clause in P, is deleted iff A is in stratum 7, with 7 < «, and
A ¢ M., and (ii) every clause 7 in P, is deleted iff there exists a literal = A in
bd(7y) such that A is in stratum 7, with 7 < @, and A € M.

Notice that the construction of the perfect model of a program presented
above is different from the construction of the perfect model presented in [65].
However, as the reader may verify, in the case of locally stratified programs
the two constructions yield the same model.

Similarly to the case of logic programs [6, 65|, we have the following result.

Theorem 3. Every locally stratified constraint logic program has a unique
perfect model.

As already mentioned, a program P with locally stratified negation has a
unique perfect model M (P) which coincides with its unique stable model, and
its total well-founded model.

3.2 Rules for Transforming General Constraint Logic
Programs

The following rules are an extension of the rules presented in Section 2.2 for
definite CLP programs to the case of CLP programs with locally stratified
negation. We want to point out that some of the rules presented here are
in fact identical to rules presented in Section 2.2, except for the fact that
they refer to general programs instead of definite programs. In particular, the
constrained atomic definition rule R1, the positive unfolding rule R2p, Case
(P) of the constrained atomic folding rule R3, the clause removal rules R4f,
R4s and R4u, and the constraint replacement rule R5r presented in this section
are identical to rules R1, R2, R3, R4f, R4s, R4u and Rbr, respectively, which
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have been presented in Section 2.2. We reproduce them below for the reader’s
convenience. The negative unfolding rule R2n, Case (N) of the constrained
atomic folding rule R3 and the conteztual constraint replacement rule R5n are
proper extensions of the rules for definite programs to general programs.

R1. Constrained Atomic Definition. By constrained atomic definition (or
definition, for short), we introduce the new clause

d: newp(X) <+ c A
which is said to be a definition, where: (i) newp is a predicate symbol not
occurring in Py, ..., Pg, (ii) X is a sequence of distinct variables occurring in
the constrained atom ¢, A, and (iii) the predicate symbol of A occurs in Py.
From program P, we derive the new program Py which is Py U {d}.
For 1 > 0, Defs; is the set of definitions introduced during the transformation
sequence Py, ..., P;. In particular, Defs, = ().

R2p. Positive Unfolding. Let v: H « ¢,Gr,A,Ggr be a renamed apart
clause of P and let {A; < ¢;,G;|j = 1,...,m} be the set of all clauses
in P such that the atoms A and A; have the same predicate symbol. For
j=1,...,m, let us consider the clause

Y- H + C, A:A]7 Gy, GLan’GR

where A = A; stands for the conjunction of the equalities between the corre-
sponding arguments. Then, by unfolding clause v w.r.t. atom A, from program
Py, we derive the new program Py which is (P, — {y}) U{v;|j =1,...,m}.

R2n. Negative Unfolding. Let v: H <+ ¢,Gr,—A,Gg be a renamed apart
clause of P;. The negative unfolding rule can be applied in the following two
cases.

(Case F) If A is failed in program Py then let 7, be the clause H + ¢, Gy, GR.
By unfolding clause v w.r.t. the negated atom —A, from program Pj we derive
the new program Py; which is (P, — {v}) U {m }.

(Case V) If A is valid in program Py then, by unfolding clause v w.r.t. the
negated atom —A, from program Py we derive the new program Py, which is
Py —{}.

R3. Constrained Atomic Folding. Let v: A « ¢,Gr,L,Gr be a clause
of P, where literal L is either the atom B or the negated atom —B. Let
d : newp(X) « d, B be a variant of a clause in Defs,. For the application of
the constrained atomic folding rule we can distinguish the following two cases
which depend on the form of the literal L.

(Case P) Literal L is the atom B .

Suppose that: (i) D = VY (¢ — d), where Y = FV(c,d), and (ii) no variable
in FV(§)— X occurs in FV(A,¢,Gr,Gr). Then, by folding clause v w.r.t. L
using 0, we derive the new clause
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vr: A ¢, Gr,newp(X),Gg

(Case N) Literal L is the negated atom —B.

Suppose that: (i) D = VY (¢ — d), where Y = FV/(c,d), and (ii) for each
variable Z in F'V(§)— X there exists t € D such that D = VW (d - Z = t),
where W = FV (d). Then, by folding clause v w.r.t. L using ¢, we derive the
new clause

vr: A+ ¢, Gr,—newp(X),Gr

In both cases, from program Py we derive the new program Pjy; which is
(Pe = {v}) U{vs}

In the following, we will also refer to Case (P) and Case (N) of rule R3 as
rule R3p and rule R3n, respectively.

R4f. Clause Removal: Unsatisfiable Body. Let v: A + ¢, G be a clause
of Py. If the constraint c¢ is unsatisfiable, that is, solve(c, ) = false, then from
program Py we derive the new program Py; which is P, — {v}.

R4s. Clause Removal: Subsumed Clause. Let v : p(X) < ¢, G with
(¢, G) # true, be a clause of Py. If Py contains a fact A of the form p(Y) «
then from program Py we derive the new program Pj,q which is P, — {v}.

R4u. Clause Removal: Useless Clauses. Let I' be the set of useless
clauses in Py. Then, by removing useless clauses from program P, we derive
the new program Pjy; which is P, — T'.

R5n. Contextual Constraint Replacement. Let C be a set of constrained
atoms. Let v be a renamed apart clause in Py of the form: p(U) « ¢1,G.
Suppose that for some constraint ¢y, and for every constrained atom ¢, p(V)
in C, we have that

DEVX (c,U=V) - (A1 ¢ 3Zc))

where: (1) Y = FV(¢1)—wvars(U,G), (ii) Z = FV(co)—wvars(U,G), and (iii)
X = FV(c,U =V,e1,¢9) — (Y U Z). Then, we derive program Py; from
program Py by replacing clause 7 by the clause: p(U) < ¢y, G. In this case we
say that Py has been derived from P by contextual constraint replacement

w.r.t. C.
The following rule is an instance of rule Ron for C = {true,p(U)}.

R5r. Constraint Replacement. Let v: A < ¢;,G be a renamed apart
clause of Pj. Assume that D = VX (3Y ¢; <> 3Z ) where: (1) Y = FV(ey)—
vars(A,G), (ii) Z = FV (co) —vars(A,G), and (iii) X = FV(c1,¢0)— (Y U Z).
Then from program Py, we derive the new program Py, which is (P, — {v}) U
{A < Ca, G}
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3.3 Correctness of the Transformation Rules

In this section we study the correctness w.r.t. the perfect model of the trans-
formation rules for general constraint logic programs presented in Section 3.2.

We show that for any transformation sequence Py,..., P, where (i) each
definition clause is unfolded w.r.t. the atom in its body and (ii) the contextual
constraint replacement rule Rbn is only applied in its restricted form Rb5r, we
have that the perfect model is preserved, in the sense that, M (Py U Defs,) =

. = M(P,) where Defs, denotes the set of definition clauses introduced
during the construction of the transformation sequence.

Without loss of generality, we may assume that the transformation sequence
is of the form Py,..., Py U Defs,,,..., P;,..., P, where (i) Defs,, is the set of
definition clauses introduced during the construction of the transformation
sequence, (ii) P; is derived from Py U Defs,, by unfolding each clause in Defs,,
w.r.t. the atom in its body, and (iii) for all ¢ = j,...,n — 1, program P;;
is not derived from program P; by an application of the constrained atomic
definition rule.

We now introduce some preliminary definitions which will be used in the
proofs.

Definition 3.3.1. A proof tree for a ground atom A in a CLP program P is
a finite tree T such that: (i) the root of T'is A, (ii) every internal node B of
T is a ground atom (iii) every leaf node of T is either the symbol ¢rue or a
negated ground atom —B such that there is no proof tree for B in P, (iv) if an
internal node B of T has children Lq,..., L, then B < Lq,..., L; is a clause
in ground(P).

The size of a proof tree T' is the number size(T') of internal nodes of 7.

The weight of a ground atom A is

p(A) = min{size(T) | T is a proof tree for A in P;}

A proof tree T is weight-consistent iff for all ground atoms A and B, if B is a
child of A in T then p(B) < u(A).

The proof of correctness proceeds as follows:

1. We show that the transformation rules preserve local stratification. Re-
call that the perfect model is defined for locally stratified programs.

2. We consider the transformation sequence Pj,..., P, and we show that
for all i = 5,...,n and for every ground atom A there exists a proof tree
for A in P; iff there exists a proof tree for A in Py U Defs,,.
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3. We establish a correspondence between proof trees in program P and the
perfect model of P.

Theorem 3.3.2. |Preservation of Local Stratification|. Let Py be a locally
stratified program and let P}, ..., P, be a transformation sequence which is ob-
tained by applying the transformation rules of Section 3.2 with the condition
that the contextual constraint replacement rule R5n is only applied in its re-
stricted form Rb&r. Then, there exists a function stratum such that for all
1=0,...,n program P is locally stratified w.r.t. stratum.

Proof. Let Py be locally stratified w.r.t. the function stratum’. Consider the
function stratum which is defined as follows. Let A be a ground atom in the
base Bp of Py U Defs,,.

if the predicate symbol of A occurs in Py then stratum(A) = stratum’(A)
else if there exists a clause 0 in ground(Defs,) such that A = hd(9)
then stratum(A) = max{stratum'(B) | B € bd(d)}.

The proof proceeds by induction on 3.

Base case (i = 0). Trivial.

Induction step. We assume that for all j <4, P; is locally stratified w.r.t. stra-
tum and we show that P;y; is locally stratified w.r.t. the same function. We
consider a clause v, € ground({v}) where v € P11, and v is a valuation such
that v, = v(y). We proceed by cases.

Case 1. Clause 7 is inherited from P;. Trivial.

Case 2. Clause 7 is obtained by constrained atomic definition (rule R1).
Straightforward from the definition of the function stratum.

Case 3. Clause 7y is obtained by positive unfolding (rule R2p). We assume,
with no loss of generality, that there exist (renamed apart) clauses « and § in
F; of the form H + ¢,Gp, A, G and B + d, G, respectively. Let clause 7 be of
the form H « ¢,d, A = B,Gy,,G,Gg. Since v, € ground(P;y1) we have that
D E=v(cAdANA = B) and thus, o, € ground(P;) and B, € ground(F;). By in-
duction hypothesis we have that «, and g, are locally stratified w.r.t. stratum.
Thus, clause v, is locally stratified w.r.t. stratum because stratum(v(A)) =
stratum (v(B)).

Case 4. Clause 7 is obtained by negative unfolding (rule R2n - Case F). Let
« be the clause in P; which has been replaced by clause . Let -, be of the
form H < Gr,Gg. Thus, there exists a clause 8 in ground({a}) of the form
H < Gr,—B,Gr. By induction hypothesis we have that § is locally stratified
w.r.t. stratum. Thus, so is 7,.

Case 5. Clause =y is obtained by folding (rule R3n). Let v be obtained by

folding a clause a in P; of the form H « ¢, Gy, L,Ggr by using a (variant of
a) definition clause 0 € Defs,, of the form newp(X) + d, B.
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(Case P) Literal L is the atom B and clause 7 is of the form H <
¢, Gr,newp(X),Gpg.

Thus, v, is of the form H' + G’ ,newp(t),G". By the conditions on
the applicability of case P of rule R3n we have: (i) D |= VY (¢ — d), where
Y = FV(e,d), and (ii) no variable in FV(0)—X occurs in FV(H,¢,Gr,GR).
Condition (i) ensures that there exists a clause newp(t) « B’ in ground({d})
such that stratum(newp(t)) = stratum(B’). By Condition (ii) we have that
in « there is no constraint on vars(B)— X, and thus clause H' «+ G, B',G",
is in ground(P;). Thus, by induction hypothesis we have that stratum(H') >
stratum (B') = stratum (newp(t)).

(Case N) Literal L is the negated atom —B and clause +y is of the form H «+
¢,Gp,—newp(X),Gpg.

By the conditions on the applicability of case N of rule R3n we have: (i)
D = VY (¢ = d), where Y = FV (¢, d), and (ii) for each variable Z in FV(§)—X
there exists s € D such that D = VW (d — Z = s), where W = FV(d).
Condition (i) ensures that there exists a clause newp(t) < B’ in ground({d})
such that stratum(newp(t)) = stratum(B’). By Conditions (i) and (ii) we
have that for each variable Z in FV(0) — X there exists s € D such that
D= VY (¢c - Z = s) where Y = FV(c). Thus, clause H' < G’ ,-B',G",
is in ground(P;) and by induction hypothesis we have that stratum(H') >
stratum (B') = stratum (newp(t)).

Case 6. Clause vy is obtained by constraint replacement (rule Rbr) from clause
« in P;. In this case the thesis follows from the inductive hypothesis because

ground ({~}) = ground ({a}). O

Proposition 3.3.3. Let Py be a locally stratified CLP program and let Py U
Defs,,, ..., Pj be a transformation sequence which is obtained by unfolding each
clause in Defs,, w.r.t. the atom in its body. Then, for any ground atom H we

have that: there exists a proof tree for H in Py U Defs,, iff there exists a proof
tree for H in Pj.

Proof. Let stratum be a stratification function for Py U Defs,,. By Theorem
3.3.2, all programs in the transformation sequence PyUDefs,,, ..., Pj are locally
stratified w.r.t. stratum.

In the proof of soundness (respectively, completeness), given a proof tree T
for H in P; (respectively, in Py U Defs,) we construct a proof tree 7" for H in
Py U Defs,, (respectively, in P;) by well-founded induction on the lexicographic
product of the well-founded order over stratum and the well-founded order over
size.

Let v, € ground({v}) be the ground clause of the form H < Lq,..., Ly
used at the root of T', where v is a clause in P; (respectively, in Py U Defs,,)
and v is a valuation such that -, = v(y). The inductive hypotheses are:
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(IHstratum) For all ground atoms A, if stratum(A) < stratum(H) then A has
a proof tree in P; iff A has a proof tree in Py U Defs,,.

(IHsize) For all ground atoms A, if stratum(A) < stratum(H) and A has a
proof tree Ty in P; (respectively, in Py U Defs,,) such that size(T4) < size(T),
then A has a proof tree T’ in Py U Defs,, (respectively, in P;).

We have the following property which holds for all nodes L of T'.

(Property 1). If L is an atom then let T7, be the subtree of T rooted at L.
We have that T7, is a proof tree for L in P; (respectively, in Py U Defs,,) and
size(Tr,) < size(T). Thus, by hypothesis (IHsize) we have that there exists a
proof tree for L in Py U Defs,, (respectively, in P;).
Otherwise, let L be a negated atom —B. Since T' is a proof tree for H in P;
(respectively, in Py U Defs,) we have that there is no proof tree for B in P,
(respectively, in Py U Defs,). Moreover, since program P; (respectively, Py U
Defs,,) is locally stratified w.r.t. stratum we have stratum(B) < stratum (H).
Thus, we can apply hypothesis (IHstratum) and we have that there is no proof
tree for B in Py U Defs,, (respectively, in P;).

Now we prove separately the soundness and completeness part.

(Soundness) For any ground atom H, if there exists a proof tree for H in P;
then there exists a proof tree for H in Py U Defs,,. We proceed by cases.

Case 1. Clause v € Py U Defs,,. We construct T" as follows: we use v, at the
root, and for all h =1,.... & such that Ly is an atom A we use 7" as subtree
of T" at A. By Property (1) we have that T" is a proof tree for H in PyU Defs,,.

Case 2. Clause v is obtained by positive unfolding (rule R2p). Thus, there
exist: a (renamed apart) clause « in Defs, of the form H < ¢, A and a
(renamed apart) clause § in Py of the form B <« d, G such that (i) A and B have
the same predicate symbol, and (ii) clause v is of the form H «+ ¢,d, A = B, G.
Since v, € ground({y}) we have that D = v(c Ad AN A = B) and thus,
a, € ground(Py U Defs,) and (3, € ground(Py U Defs,,).

We construct T” as follows: we use «,, at the root, then we use 3, at A. The
leaves of the current proof tree are Lq,..., L. We complete the construction
of T' by using T"; as a subtree of 7" at Ly, for all h = 1,..., k such that L, is
an atom A. By Property (1) we have that 7" is a proof tree for H in PyU Defs,,.
(Completeness) For any ground atom H, if there exists a proof tree for H in
Py U Defs,, then there exists a proof tree for H in P;. We proceed by cases.
Case 1. Clause v € P;. We construct T" as follows: we use 7, at the root, and
for all h = 1,...,k such that Lj is an atom A, we use 1", as a subtree of T" at
A. By Property (1) we have that T" is a proof tree for H in P;.

Case 2. Clause vy € Defs,, is removed by positive unfolding (rule R2p). Let ~y
be of the form H' + ¢, A’. Let R = {Ay < ¢, Gy |k = 1,...,m} be the set
of all clauses in Py such that A" and A; have the same predicate symbol. We
consider two cases.
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(R is empty) Since there is no clause of the form A’ «+ G’ in ground (PyUDefs,,)
there is no proof tree in Py U Defs,, which uses ,,.

(R is non-empty) Let 7, be of the form H < A and let A < G be the clause
in ground({vy,}) which is used at A in T', where ~y, € R. Thus, there exists a
clause v, in P; of the form H' < ¢ ¢, A" = Ap, Gy For all atoms B in G,
we have that stratum(B) < stratum(H) and there exists a proof tree T for
B in Py U Defs,, such that size(Tg) < size(T). Thus, by hypothesis (IHsize)
we have that there exists a proof tree T} for B in Pj. We construct 7" as
follows: we use H < G in ground({vy,}) at the root, and we use Tj as a
subtree at B, for all atoms B in G. For all negated atoms =B in G we have
that: (i) there is no proof tree for B in PyU Defs,, because T is a proof tree, and
(ii )stratum(B) < stratum(H) because program Py U Defs,, is locally stratified
w.r.t. stratum. Thus, by hypothesis (IHstratum) we have that there is no proof
tree for B in P;. Thus, T" is a proof tree for H in P;. O

Y

Lemma 3.3.4. If there emists a proof tree for H in P; then there exists a
weight-consistent proof tree for H in Pj.

Proof. Let T be a proof tree for H in P; of minimal size. Thus, for all atoms
A in T, size(Ta) = u(A), where T4 denotes the subtree of T rooted at A.
Thus, for all atoms A and B in T such that B is a child of A we have u(B) =
size(Tg) < size(Ta) = u(A), that is, T is weight-consistent. O

Proposition 3.3.5. Let Py be a locally stratified CLP program and let P;,. .., P,
be a transformation sequence which is obtained by applying the transformation
rules of Section 8.2 with the conditions that the constrained atomic definition
rule is not applied and the contextual constraint replacement rule Rdn is only
applied in its restricted form R5r. Then, for any ground atom H we have that:
foralli=y4,...,n,

(Soundness) if there exists a proof tree for H in P; then there exists a proof
tree for H in P;, and

(Completeness) if there exists a proof tree for H in P; then there exists a
weight-consistent proof tree for H in P;.

Proof. Let stratum be a stratification function for Py and for all the programs
in the transformation sequence PyU Defs,,,..., P;,..., P,. The proof proceeds
by induction on 1.

Base case (i = j). Trivial.

Induction step. The inductive hypothesis is the following:

(IHsoundness) if there exists a proof tree for H in P; then there exists a proof
tree for H in P;, and

(IHcompletenessl) if there exists a proof tree for H in P; then there exists a
weight-consistent proof tree for H in P;.
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By using Lemma 3.3.4 above, we have that (IHcompletenessl) is equivalent
to:

(IHcompleteness) if there exists a weight-consistent proof tree for H in P; then
there exists a weight-consistent proof tree for H in P;.

(Soundness) Given a proof tree T' for H in P;y; we construct a proof tree
T' for H in P; by well-founded induction on the lexicographic product of the
well-founded order over stratum and the well-founded order over size.

Let vy, € ground({v}) be the ground clause of the form H < Li,..., Ly
used at the root of T, where = is a clause in P, and v is a valuation such
that , = (7). The inductive hypotheses are:

(IHstratum) For all ground atoms A if stratum(A) < stratum(H) then A has
a proof tree in P; iff A has a proof tree in Pjy1.

(IHsize) For all ground atoms A, if stratum(A) < stratum(H) and A has a
proof tree T4 in P; such that size(T4) < size(T'), then A has a proof tree T"
in Pi+1 .

We proceed by cases.

Case 1. Clause v € P;. We begin the construction of 7" by using v, at the root.
For allh = 1,..., k such that Ly is an atom A we have that size(T4) < size(T).
By hypothesis (IHsize) there exists a proof tree T% for A in P; which we use
as subtree of 7' at A. For all h = 1,...,k such that Lj is a negated atom
—B we have that stratum(B) < stratum(H), because program P;; is locally
stratified w.r.t. stratum, and there is no proof tree for B in P;jy; because T is
a proof tree. By hypothesis (IHstratum) we have that there is no proof tree
for B in P;. Thus, T' is a weight-consistent proof tree for H in P;.

Case 2. Clause 7 is obtained by positive unfolding (rule R2p). Thus, there
exist (renamed apart) clauses « and S in P; of the form H «+ ¢, G, A,Gg
and B <« d, G, respectively, such that clause 7 is of the form H + ¢,d, A =
B,Gp,G,Gg. Since v, € ground({vy}) we have that D = v(cANd N A = B)
and thus, ay, € ground(P;) and (8, € ground(F;).

We construct T' as follows: we use «, at the root, then we use g, at v(A)
(which is equal to v(B)). The leaves of the current proof tree are Ly, ..., Lg.
For all h = 1,...,k such that Lj is an atom C and T¢ is the subtree of T
rooted at C, we have that stratum(C) < stratum (H) and size(T¢) < size(T).
By hypothesis (IHsize) there exists a proof tree T¢, for C in P; which we use
as a subtree of T" at C. For all h = 1,...,k such that Lj is a negated atom
-C', we have that stratum(C) < stratum(H), because program P;; is locally
stratified w.r.t. stratum, and there is no proof tree for C' in P;y; because T is
a proof tree. By hypothesis (IHstratum) we have that there is no proof tree
for C in P;. Thus, T" is a proof tree for H in P;.

Case 3. Clause 7 is obtained by negative unfolding (rule R2n - Case F). Let
clause  be of the form H' < ¢, L, ..., Lj.. Thus, there exists a clause « in P; of
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the form H' + ¢, L, ... ,L'f, -, L'f+1, ..., L}, such that there is no clause in
P; defining the predicate which occurs in C’. We begin the construction of T' by
using a ground instance of o, of the form H « Ly,..., Ly, ~C, Ly y,..., Ly at
the root. Forall h = 1,..., k such that Lj is an atom A and T is the subtree of
T rooted at A, we have that stratum (A) < stratum(H) and size(T4) < size(T).
By hypothesis (IHsize) there exists a proof tree T" for A in P; which we use
as a subtree of 7" at A. For all h = 1,...,k such that L is a negated atom
- B, we have that stratum(B) < stratum (H), because program P,y is locally
stratified w.r.t. stratum, and there is no proof tree for B in F;;| because T is a
proof tree. By hypothesis (IHstratum) we have that there is no proof tree for
B in P;. Moreover, since no clause in P; defines the predicate of C, we have
that there is no proof tree for C in P; and stratum(C) < stratum(H) because
program P;.q is locally stratified w.r.t. stratum. By hypothesis (IHstratum)
there is no proof tree for C' in P;, and thus, T" is a proof tree for H in P;.

Case 4. Clause v is obtained by folding (rule R3n). Let y be obtained by
folding a clause « in P; of the form H' «+ ¢, L’l,...,L’IL],L’,L’fH,... , L, by
using a (variant of a) definition clause § € Defs,, of the form A’ + d, B'.

(Case P) Literal L' is the atom B’ and clause v is of the form H' «+
CaLl]a---7L’f,]7A’7L’f+]7---aL;€-

Let 7, be of the form H < Ly,...,Ly_1,A,Lfq1,...,L;. By hypothesis
(THsize) there exists a proof tree for A in P;. Thus, by hypothesis (IHsound-
ness) there exists a proof tree for A in P;. By Proposition 3.3.3, there exists
a proof tree for A in Py U Defs, which uses a clause A < B in ground({0})
at the root. Thus, by Proposition 3.3.3, there exists a proof tree for B in
P;. By hypothesis (IHcompleteness) there exists a proof tree T for B in P;.
By the conditions on the applicability of rule R3n, there exist a clause «, in
ground({a}) of the form H < Ly,..., Ly 1,B,L¢41,..., L and a valuation
o such that a, = o(rv(a)). We begin the construction of 7" by using «,, at the
root. Forall h=1,...,f —1,f+1,...,k such that Lj is an atom C' and T¢
is the subtree of T rooted at C, we have that stratum(C) < stratum(H) and
size(Tc) < size(T). By hypothesis (IHsize) there exists a proof tree T;, for C
in P; which we use as a subtree of 7" at C. We complete the construction of 7"
by using T as a subtree at B. Forall h=1,...,f —1,f+1,...,k such that
Ly is a negated atom —C we have that stratum(C) < stratum(H), because
program P is locally stratified w.r.t. stratum, and there is no proof tree for
C in P,y because T is a proof tree. By hypothesis (IHstratum) we have that
there is no proof tree for C in P;. Thus, T" is a proof tree for H in P;.

(Case N) Literal L' is the negated atom —B’ and clause v is of the form
H ¢ L,..., ’JL],—|A’, ’f+1""’L;€'

Let v, be of the form H < Lq,...,Ly_y,=A,Ly4y,..., L. Since program

P, 1 is locally stratified w.r.t. stratum, we have that stratum(A) < stratum (H)



o.0. CORRLUINLESS OrF 10 1 RANSEFORMALTION RULEDS

and there is no proof tree for A in Pjy; because T is a proof tree. Thus, by
hypothesis (IHstratum) there exists no proof tree for A in P;,. By hypothesis
(IHcompleteness) there exists no proof tree for A in P;. By Proposition 3.3.3,
there exists no proof tree for A in Py U Defs,,. Thus, for all clauses A < D
in ground({0}) we have that there is no proof tree for D in Py U Defs,. By
Proposition 3.3.3, for all clauses A <= D in ground({d}) there exists no proof
tree for D in P; and, by hypothesis (IHsoundness), there exists no proof tree
for D in P;. By the conditions on the applicability of rule R3n, there exist a
clause o, in ground ({a}) of the form H < Ly,..., Ly_1,~B,Lyq,..., L; and
a valuation o such that o, = o(v(a)). We begin the construction of 7" by using
ay at theroot. Forallh=1,...,f—1,f+1,...,k such that Ly is an atom C
and T¢ is the subtree of T rooted at C, we have that stratum (C) < stratum (H)
and size(T¢) < size(T). By hypothesis (IHsize) there exists a proof tree T¢, for
C'in P; which we use as a subtree of 7" at C. Forallh =1,...,f—1, f+1,...,k
such that Ly is a negated atom —C we have that stratum(C) < stratum (H),
because program P;y; is locally stratified w.r.t. stratum, and there is no proof
tree for C' in P41, because T is a proof tree. By hypothesis (IHstratum) we
have that there is no proof tree for C in P;. Moreover, by the conditions
on the applicability of rule R3n, for every clause in ground({a}) of the form
H <« Ly,...,Ly_1,—B,Lyyq,..., Ly we have that A < B is in ground({é}),
and thus, there exists no proof tree for B in P;. Thus, 1" is a proof tree for H
in Pi-

Case 5. Clause 7y is obtained by constraint replacement (rule R5r). Let 7
be the clause in P; which has been replaced by 7. By the condition on the
applicability of rule R5r we have that ground({v}) = ground({n}). We begin
the construction of 7" by using «, at the root. For all h =1,...,f —1,f +
1,...,k such that Ly is an atom C and T¢ is the subtree of T rooted at C, we
have that stratum(C) < stratum(H) and size(T¢) < size(T). By hypothesis
(IHsize) there exists a proof tree T, for C' in P; which we use as a subtree of
T at C. Forall h=1,...,f —1,f+1,...,k such that L, is a negated atom
=C, we have that stratum(C) < stratum(H), because program Pj;; is locally
stratified w.r.t. stratum, and there is no proof tree for C' in P;;, because T is
a proof tree. By hypothesis (IHstratum) we have that there is no proof tree
for C in P;. Thus, T" is a proof tree for H in P;.

(Completeness) Given a weight-consistent proof tree T for H in P; we construct
a weight-consistent proof tree 7" for H in P,y by well-founded induction on
the lexicographic product of the well-founded order over stratum and the well-
founded order over size.

Let 7, € ground({v}) be the ground clause of the form H < Ly,..., Ly
used at the root of T', where 7y is a clause in P; and v is a valuation such that
v = v(y). The inductive hypotheses are:
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(IHstratum) For all ground atoms A if stratum(A) < stratum(H) then A has
a proof tree in P; iff A has a proof tree in Pj1.
(IHweight) For all ground atoms A such that stratum(A) < stratum(H) and
pu(A) < p(H), if A has a weight-consistent proof tree T4 in P; then A has a
weight-consistent proof tree T in P;yq.

We proceed by cases.

Case 1. Clause v € P;11. We begin the construction of T” by using -, at
the root. For all h = 1,...,k such that L, is an atom A, we have that
stratum (A) < stratum(H), because P; is locally stratified w.r.t. stratum, and
u(A) < u(H), because T is weight-consistent. By hypothesis (IHweight) there
exists a weight-consistent proof tree T% for A in P;y; which we use as subtree
of T" at A. For all h = 1,...,k such that L, is a negated atom —B, we
have that stratum(B) < stratum(H), because program P; is locally stratified
w.r.t. stratum, and there is no proof tree for B in P;, because T is a proof tree.
By hypothesis (IHstratum) we have that there is no proof tree for B in P .
Thus, T" is a weight-consistent proof tree for H in P, 1.

Case 2. Clause 7y is removed by positive unfolding (rule R2p). Let  be a
clause of the form H' < ¢, L},..., L}y 1,p(X), L} ,..., L such that there is
no clause in P; whose head has the predicate symbol p. Since there is no clause
of the form p(t) « G in ground(F;), there is no proof tree in P; which uses -, .

Case 3. Clause + is removed by negative unfolding (rule R2n - Case V). Let
clause v be of the form H' + ¢, Gy, —p(Y),Gr. By the conditions on Case V
of the negative unfolding rule, there exists a clause p(X) < in P;. Thus, every
ground instance of p(X) has a proof tree in P;. Thus, there is no proof tree in
P; which uses v,.

Case 4. Clause « is removed by folding (rule R3n). Let v be a clause of the
form H' <— ¢, L}, ... ,L’IL] L, L’f+1 ,--, L and let a be the clause in P; which
is obtained by folding v w.r.t. L', by using a (variant of a) definition clause

d € Defs,, of the form A’ «+ d, B'.
(Case P) Literal L' is the atom B’ and clause « is of the form H' +
(:,L’1,...,L’JLI,A’,L’JCH,...,L;C.

Let 7, be of the form H < Li,...,Ly 1,B,Ls41,...,Lg. By hypothe-
sis (IHsoundness), there exists a proof tree for B in P;. Let T be a proof
tree for B in P; of minimal size. Let A be an atom such that A <- B is a
clause in ground({d}). By construction of P;, we have that the tree which is
obtained from T by replacing the root B by A is a proof tree for A in P;.
Thus, we have that u(A) < u(B) and, by Lemma 3.3.4, there exists a weight-
consistent proof tree for A in P;. By hypothesis (IHcompleteness), there exists
a weight-consistent proof tree for A in P;. Since T is weight-consistent, we
have p(A) < u(B) < wu(H). Moreover, stratum(A) < stratum(H), because
P, 1 is locally stratified w.r.t. stratum. By hypothesis (IHweight), there exists
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a weight-consistent proof tree T for A in Pi4;. By the conditions on the
applicability of rule R3n, there exist a clause a, in ground({a}) of the form
H <« Li,...,Ly 1,A L¢iq,..., L, and a valuation o such that a, = o(v(a)).
We use «a, at the root of T'. Forall h=1,...,f—1,f+1,...,k such that L,
is an atom C, we have that stratum(C) < stratum(H), because P; is locally
stratified w.r.t. stratum, and p(C) < u(H), because T is weight-consistent. By
hypothesis (IHweight), there exists a weight-consistent proof tree T(, for C' in
P; 1 which we use as subtree of T” at C. We complete the construction of T"
by using T’ as subtree at A. For all h =1,...,f —1,f +1,...,k such that
Ly, is a negated atom —C, we have that stratum(C) < stratum(H), because
program FP; is locally stratified w.r.t. stratum, and there is no proof tree for
C in P;, because T is a proof tree. By hypothesis (IHstratum) we have that
there is no proof tree for C' in P,y 1. Thus, T" is a weight-consistent proof tree
for H in P;1.
(Case N) Literal L' is the negated atom —B’ and clause « is of the form
H' e, I, Ly ~AL Dy T

Let v, be of the form H <« Ly,...,Ly 1,-B,Lyy1,...,Lg. Since T is a
proof tree, there is no proof tree for B in P;. Thus, by hypothesis (IHcomplete-
ness), there exists no proof tree for B in P; and, by Proposition 3.3.3, there
exists no proof tree for B in PyU Defs,,. By the conditions on the applicability
of rule R3n, there exist a valuation o such that a, = o(r(a)) is a clause of the
form H < Ly,...,Ly_1,—-A, Lyyq,..., L, and a clause A < B in ground({6})
such that there exists no proof tree for A in Py U Defs,,. By Proposition
3.3.3, there exists no proof tree for A in P; and, by hypothesis (IHsoundness),
there exists no proof tree for A in P;. Since program P, is locally stratified
w.r.t. stratum, we have that stratum(A) < stratum(H). Thus, by hypothesis
(IHstratum) there exists no proof tree for A in P, ;. We begin the construction
of T" by using a, at the root. Forall h=1,...,f —1,f +1,....k such that
Ly, is an atom C we have that stratum(C) < stratum (H), because P; is locally
stratified w.r.t. stratum, and u(C) < pu(H), because T is weight-consistent. By
hypothesis (THweight) there exists a weight-consistent proof tree T¢, for C in
P; which we use as subtree of 7" at C. Forall h =1,...,f —1,f+1,...,k
such that Ly is a negated atom —C', we have that stratum(C) < stratum (H),
because program P; is locally stratified w.r.t. stratum, and there is no proof
tree for C' in P;, because T is a proof tree. By hypothesis (IHstratum) we have
that there is no proof tree for C'in P;y1. Thus, T” is a weight-consistent proof
tree for H in Pj4,.

Case 5. Clause v is removed by removal of clause with unsatisfiable body (rule
R4f). By the condition on rule R4f we have that ground({y}) = 0. Thus, there
is no v,.

Case 6. Clause + is removed by removal of subsumed clause (rule R4s). Let
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be of the form H < ¢, G. By the condition on rule R4s there exists a clause A
of the form p(X) < in P;;1 where p is the predicate symbol of H. Thus, there
exists H < in ground({\}) which we use to construct the weight-consistent
proof tree T for H in P ;.

Case 7. Clause v is removed by removal of useless clauses (rule R4u). If p is
a useless predicate of P; and H is an atom with predicate p, then there is no
proof tree for H in P;. The proof proceeds by contradiction. We assume that
there is a proof tree T for H in P;. By the definition of useless predicate, each
node in T has a son which is a positive literal of the form q(...), where ¢ is a
useless predicate of P;. Thus, there exists a leaf of the form ¢(...), and this
contrasts with the hypothesis that 7" is a proof tree.

Case 8. Clause 7y is removed by constraint replacement (rule R5r). Let n be
the clause in P;;; which replaces . By the condition on rule R5r we have
that ground({y}) = ground({n}). We begin the construction of 7" by using
v, at the root. For all h = 1,...,k such that Lj is an atom C, we have
that stratum(C) < stratum(H), because P; is locally stratified w.r.t. stratum,
and p(C) < u(H), because T is weight-consistent. By hypothesis (IHweight)
there exists a weight-consistent proof tree T/, for C' in P; which we use as
subtree of T" at C. For all h = 1,...,k such that Lj is a negated atom —C we
have that stratum(C) < stratum (H), because program P; is locally stratified
w.r.t. stratum, and there is no proof tree for C' in P;, because T is a proof tree.
By hypothesis (IHstratum) we have that there is no proof tree for C in Pj;q.
Thus, T" is a weight-consistent proof tree for H in P 1. O

Definition 3.3.6. [Depth of a Proof Tree| The depth of a proof tree T is
depth(T) = max{length(m) |7 is a path from the root of T' to a leaf of T'}.

Lemma 3.3.7. Let P be a definite constraint logic program. For all ground
atoms A and for all k > 1, we have
A has a proof tree T in P such that depth(T) < k iff A€ Tp 1 k.

Proof. By induction on k.

Base case (k = 1). There exists a proof tree T for A in P such that depth(T') =
1 iff there exists a clause of the form A < in ground(P) iff A € Tp 1 1.
Induction step.

(If part) Let v be a clause of the form A <+ A;,..., A, in ground(P) such
that A; € Tp T (k — 1), for all i = 1,...,n. Thus, by inductive hypothesis,
there exists a proof tree T; for A; in P such that depth(T;) < k — 1, for all
1 = 1,...,n. We construct 7" by using 7 at the root and by using 7; as a
subtree of T at A;. Thus, T is a proof tree for A in P and depth(T) < k.

(Only if part) Let T be a proof tree for A in P such that depth(T) = k, and
let A<« Aq,..., A, be the clause in ground(P) used at the root of T". For all
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1 =1,...,n, let T; be the subtree of T" rooted at A;. Since A; is an atom, T;
is a proof tree for A; in P and depth(T;) < k — 1, we can apply the inductive
hypothesis and we have that A; € Tp 1 (k — 1), for all 4+ = 1,...,n. Thus,
AeTptk. O

Corollary 3.3.8. [Proof Trees and Least D-model| Let P be a definite con-
straint logic program. For all ground atoms A, we have

A has a proof tree in P iff A € Im(P,D)

Proof. For all atoms A, we have A € Im(P,D) iff A € Tp T w iff there exists
k > 1 such that A € Tp T k. By using Lemma 3.3.7, A € Im(P, D) iff there
exists k > 1 such that A has a proof tree T in P and depth(T) < k iff A has a
proof tree in P. O

Theorem 3.3.9. |Proof Trees and Perfect Model| Let P be a constraint logic
program, which s locally stratified w.r.t. stratum. For all ground atoms A, we
have

A has a proof tree in P iff A€ M(P)

Proof. Let stratum(A) = « and let T be a proof tree for A in P. Thus, by
definition of perfect model, there exists a clause v € ground(P) of the form
A+ Ay,...,Ay,—By,....,7 By, with m.n > 0, which is used in 7T iff there
exists a ground clause ' € P/ of the form A < Ay,..., A,. The thesis follows
from Corollary 3.3.8. U

Theorem 3.3.10. [Correctness of the Transformation Rules| Let P,..., P,
be a transformation sequence. Let us assume that
(i) Py is locally stratified, and
during the construction of Py, ..., P,
(ii) each clause introduced by the constrained atomic definition rule and used
for constrained atomic folding, is unfolded w.r.t. the atom in its body,
(#3i) the contextual constraint replacement rule Ron is only applied in its re-
stricted form Rbr,
Then, there exists a function stratum such that programs Py and P, are locally
stratified w.r.t. stratum and

M (Py U Defs,) = M(Py)
where Defs, denotes the set of definitions introduced during the construction
OfP[],...,Pn.

Proof. Tt follows from Theorem 3.3.2, Proposition 3.3.3, Proposition 3.3.5 and
Theorem 3.3.9. O
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In order to state the theorem on the correctness of the contextual constraint
replacement rule R5n w.r.t. the perfect model we need to extend the definition
of call patterns of a clause presented in Section 2.3 to general constraint logic
programs.

Definition 3.3.11. [General Call Patterns| Given a clause v of the form
p(X) < d,Ly,..., L, with k > 0, the set of general call patterns of ~, which
is denoted by CP(v), is the set of triples (solve(d,Y), A,Y’) such that: either
(i) L; is the atom A, for some j = 1,...,k, and Y denotes the linking vari-
ables of A in 7, or (ii) L; is the negated atom —A, for some j =1,...,k, and
Y = wvars(A). (solve(d,Y), A,Y) is said to be the call pattern of «y for L.

General call patterns will be used in our contextual specialization strategy
below (see Section 3.4) for introducing new definitions and for applying the
contextual constraint replacement rule R5n.

Lemma 3.3.12. |[CCR| Let Py,. .., P, be a transformation sequence such that,
foralli =0,...,n—1, program Pjy; is derived from P; by applying the contex-
tual constraint replacement rule Ron w.r.t. a given set C of constrained atoms
such that C D {(c, A) | {c, A, X) € CP(P)}.
Then, for all constrained atoms c, A € C, for every valuation v and for every
clause v such that hd(y) = v(A), we have that if D |= v(c) then, for all i,

v € ground(Py) iff v € ground(F;).

Proof. By induction on 3.
Base case (i = 0). Trivial.
Induction step. We proceed by cases.

Case 1. 7y is a ground instance of a clause which is in P; and in Pjy;.
Trivial.

Case 2. ~y is a ground instance of a clause which is removed from F; by
contextual constraint replacement.

Let v € ground({a}) where « is a variant of a clause in P; of the form
A < d, G which is replaced by a clause 8 in P of the form A <+ d', G. From
the condition on rule R5n we have that D E VX (¢ — (3W d +» IW'd') where
Y =FV(A,G), W = FV(d)-Y and W' = FV(d')-Y. Thus, v € ground ({a})
iff v € ground({8}). The thesis follows by inductive hypothesis. O

Proposition 3.3.13. [CCR]| Let Py, ..., P, be a transformation sequence such
that, for all i =0,...,n — 1, program P11 is derived from P; by applying the
contextual constraint replacement rule Ron w.r.t. a given set C of constrained
atoms such that C D {(c, A) | (¢, A, X) € CP(P,)}.
Then, for all constrained atoms ¢, A € C, for every valuation v and for every
clause 7y such that hd(y) = v(A), we have that if D |= v(c) then, for all i,

T is a proof tree for v(A) in Py iff T is a proof tree for v(A) in P;
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Proof. By induction on 1.
Base case (i = 0). Trivial.
Induction step.

(Soundness) We proceed by well-founded induction on size(T"). The inductive
hypothesis is:

(IHsize) for all constrained atoms d, B € C and for every valuation 6 we have
that if D |= 6(d), T' is a proof tree for §(B) in P11 and size(T") < size(T)
then T" is a proof tree for #(B) in P;.

Let v be the clause used at the root of 7. By Lemma 3.3.12 above, v €
ground(Py). Thus, for all atoms B’ in bd(y) we have that there exist a call
pattern d, B in C and a valuation 6 such that D | 6(d) and B’ = 6(B),
because C contains all the call patterns of Py. Let T” be the subtree of T
rooted at B'. By hypothesis (IHsize), we have that T is a proof tree for B’ in
P;. Moreover, by Lemma 3.3.12, we have that v € ground(P;). Thus, T is a
proof tree for v(A) in P;.

(Completeness) We proceed by well-founded induction on size(T"). The induc-
tive hypothesis is:

(IHsize) for all constrained atoms d, B € C and for every valuation 6 we have
that if D = 60(d), T' is a proof tree for 6(B) in P; and size(T") < size(T') then
T" is a proof tree for (B) in P;y1.

Let « be the clause used at the root of 7. By Lemma 3.3.12 above, v €
ground(Py). Thus, for all atoms B’ in bd(y) we have that there exist a call
pattern d, B in C and a valuation 6 such that D | 6(d) and B’ = 6(B),
because C contains all the call patterns of Py. Let T” be the subtree of T
rooted at B'. By hypothesis (IHsize), we have that T is a proof tree for B’ in
P;+1. Moreover, by Lemma 3.3.12, we have that v € ground(P;y1). Thus, T
is a proof tree for v(A) in Pji4. O

Theorem 3.3.14. |Correctness of the Contextual Constraint Replacement
Rule R5n| Let Py,...,P, be a transformation sequence such that, for all
1=20,...,n—1, program P;y is deriwed from P; by applying the contextual
constraint replacement rule Ron w.r.t. a given set C of constrained atoms such
that C D {(c,A) | (¢, A, X) € CP(Py)}. Assume that programs Py and P, are
locally stratified w.r.t. stratum.

Then, for all constrained atoms ¢, A € C and for every valuation v we have
that:

if Dl=v(c) then v(A) € M(Fy) iff v(A) € M(FP,)

Proof. 1t follows from Proposition 3.3.13 and Theorem 3.3.9. O

Notice that if P, is derived from P, by applications of the contextual constraint
replacement rule, then it may be the case that M (Py) # M(P,), because
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Theorem 3.3.14 ensures the preservation of the perfect model only for atoms
whose arguments satisfy the constraints specified by C.

Notice also that, the contextual constraint replacement rule may not pre-
serve local stratification. For instance, let us consider the program

Py: p « false,—p

We have that ground(Py) = 0, and thus, P, is locally stratified w.r.t. every
local stratification function. Now, by applying the contextual constraint re-
placement rule w.r.t. {(false,p)} we get the program

P p—-p
which is not locally stratified.

However, all applications of the contextual constraint replacement rule pre-
sented in this thesis, do preserve local stratification. This is due to the fact that,
according to the specialization strategies presented in Sections 2.5.3, 3.4 and
4.4, we apply the contextual constraint replacement rule to stratified programs
only, and the contextual constraint replacement rule preserves stratification.
Indeed, let us consider a clause vy1: H < ¢1,G. If v, is stratified w.r.t. a level
mapping A, then also the clause H < ¢y, G, derived by replacing ¢; by ¢ in
v, is stratified w.r.t. A because the user defined predicates occurring in ; and

9 are the same. Thus, we have the following straightforward consequence of
Theorem 3.3.14.

Corollary 3.3.15. [Correctness of the Contextual Constraint Replacement
Rule for Stratified Programs| Let Py be a stratified program and let Py, ..., P,
be a transformation sequence where, for k =0,...,n — 1, program Py, is de-
rived from Py by applying the contextual constraint replacement rule R5 w.r.t. a
set C of constrained atoms such that C D {(c, A) | {c, A, X) € CP(Py)}. Then
(i) P, is stratified and (ii) for all constrained atoms ¢, A € C and for every
valuation v, we have that:

if D= v(e) then v(A) € M(Py) iff v(A) € M(P,)

3.4 An Automated Strategy for Contextual Special-
ization of General Constraint Logic Programs

We now describe a parameterized strategy for specializing CLP(D) programs
with locally stratified negation. This strategy is a proper extension of the
strategy for the specialization of definite constraint logic programs presented
in Section 2.5.

As in the definite case, the strategy for specializing general constraint logic
programs is divided into three phases and is parameterized by: (i) the function
solve which is used for the application of the constraint replacement rule, (ii)
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an unfolding function Unfold for guiding the unfolding process, (iii) a well-
quasi order =<, over constrained goals which tells us when to terminate the
unfolding process, (iv) a clause generalization function gen, with its associated
widening operator V, and (v) a well-quasi order <, over constrained atoms
which tells us when to activate the clause generalization process. Once the
choice of these parameters has been made, our strategy can be applied in a
fully automatic way.

We introduce a tree Defstree, called definition tree, whose nodes are the
clauses introduced by the definition rule during program specialization. More-
over, for each clause § in Defstree we introduce a tree Utree(d), called unfolding
tree. The root of Utree(d) is ¢ itself, and the nodes of Utree(d) are the clauses
derived from § by applying the positive unfolding and constraint replacement
rules.

The strategy for specializing general constraint logic programs can be pre-
sented in a way which is very similar to the presentation of the corresponding
strategy for the definite case. We now discuss on the similarities and the
differences between the two strategies, in each phase.

Phase A. We consider a general CLP program P and a constrained atom
¢, A and we iterate the procedures Unfold-Replace and Define-Fold as we now
explain.

During the Unfold-Replace procedure we apply the positive unfolding rule
according to a given unfolding function, and we solve the constraints in the
derived clauses by using the given function solve. During this phase, we never
apply the negative unfolding rule.

This procedure is very similar to the Unfold-Replace procedure presented in
the strategy for specializing definite CLP programs. In fact, we can even reuse
the same pseudo-code of Section 2.5.1 for (i) the Unfold-Replace procedure
and (ii) the Unfold and Replace functions by modifying the definition of clause
with non-failing body as follows. A clause of the form H «+ ¢, Ly,..., Ly, has
a non-failing body iff ¢ is satisfiable, and for ¢ = 1,...,n, if L; is A then
A is not failed, otherwise, if L; is =A then A is not valid. Notice that the
unfolding function is not defined on clauses of the form H < ¢, G where G is
a conjunction of negated atoms. The termination of this procedure is ensured
by the use of the well-quasi order <,,.

We then apply the Define-Fold procedure and we fold the clauses we have
derived during the Unfold-Replace procedure. For folding we make use of
already available definitions and, possibly, some new definitions introduced by
using the clause generalization function.

The definition to be used for folding is selected according to the definition
function Define of Section 2.5.2 where we replace the notion of call pattern
by the notion of general call pattern presented in Section 3.3. This is possible
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because the general call pattern of a clause for a negated atom —A is a triple of
the form (¢, A,Y), where A is an atom. Notice that (i) the clauses introduced
by the definition function are definite clauses, and (ii) when applying the con-
strained atomic folding rule of Section 3.2 w.r.t. a negated atom —A (see Case
(N)), we introduce a new clause where —A has been replaced by a negated
atom, and not by an atom, as illustrated by the following simple example.

Example. Let v be a clause of the form

(X, YY)« X>1Y > X,-pY)
and let d be a definition of the form

newp(Y) <Y > 0,p(Y)
then, by constrained atomic folding v w.r.t. —=p(Y’) using § we derive a clause
of the form

(X, YY)« X >1Y > X,-newp(Y)
Case (N) of our constrained atomic folding rule is not an instance of the folding
rule presented in [74] for general logic programs, where negated atoms are
replaced by atoms. Indeed, an instance of that rule would introduce a definition
8" of the form

newp2(Y) Y > 0,-p(Y)
for folding clause v above w.r.t. =p(Y’), thereby deriving a clause of the form

(X, YY)« X >1Y > X, newp2(Y)
Moreover, in order to unfold the literal =p(Y’) in ¢’ we would need to introduce
a negative unfolding rule with a much weaker applicability condition. Recall
that a negative unfolding rule was presented in Section 3.2, but it can only be
applied w.r.t. negated atoms of the form —A, where A is a valid atom.

Thus, for Define-Fold procedure, we use the same pseudo-code of Section
2.5.2, except for some minor differences which are highlighted below. (1) The
phrase ‘Let A be of the form Ay « d, Ay,..., A’ should be replaced by the
phrase ‘Let A be of the form Ay <« d, Lq,..., L because, in general CLP
programs the body of a clause contains literals, not only atoms. (2) The
phrase ‘Let cp; be the call pattern of ; for A;’ should be replaced by the
phrase ‘Let cp; be the general call pattern of 7; for L;’. (3) The phrase ‘Fold
~v; w.r.t. A;” should be replaced by the phrase ‘Fold v; w.r.t. L; .

Phase A terminates with output program P4 when no new definitions need
to be introduced for performing the folding steps. The termination of Phase A
is ensured by the properties of the generalization function and well-quasi order
=4 which guarantee that the set of generated definitions is finite.

Phase B. We consider program P4 and, by applying the contextual constraint
replacement rule, from each clause defining a predicate, say ¢, we remove the
constraints which hold before the execution of the clause. These constraints
can be determined by computing the least upper bound of the set of constraints
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which occur in the clauses containing a call of g. The presentation of this phase
is almost identical to that of Section 2.5.3 except for the fact that the notion
of call pattern has been replaced by the notion of general call pattern.

Phase C. If the output of Phase B is a program Pp which admits a finite strat-
ification {Sy,..., Sy}, then, during Phase C, we apply the following rules: (i)
positive and negative unfolding, (ii) removal of useless and subsumed clauses,
and (iii) constraint replacement. This phase differs from Phase C of Section
2.5.3 in that we apply also the negative unfolding rule and we iterate over the
strata Si,...,S, of program Pg.

We now present our strategy for contextual specialization of CLP(D) pro-
grams.

Contextual Specialization Strategy
Input: (i) A CLP(D) program P and

(ii) a constrained atom ¢, p(X) such that FV(c) C X.
Output: A CLP(D) program Py and an atom pg(X).

Phase A. By the definition rule introduce a clause dy of the form py(X)

e, p(X).

Ps:=0; NewDefs := {dy};

while NewDefs #0 do
Unfold-Replace( NewDefs, UForest);
Define-Fold(UForest, Defstree, NewDefs, FoldedCls);
Py := Py U FoldedCls

end-while

Let Defstree consist of clause dy only.

Phase B. [Conteztual Constraint Replacement]
Let Ps be a program of the form {v,...,v,} and
let C be the set {(solve(c, X),ps(X))} U{(d, A)|(d,A,Y) € CP(Fs)} of con-
strained atoms.
for:=1,...,pdo
Let v; be a clause of the form ¢(X) < e1,...,e,, G
where e1,..., e, are basic constraints with free variables in X U vars(G);
Let C, be the set {(di,q(X)),...,(dk,q(X))} of all renamed
constrained atoms d, ¢(X) in C;
Let f be the conjunction of all e;’s such that
D =V (d, — e;) does not hold;
Apply the contextual constraint replacement rule w.r.t. C,
thereby replacing ; by the clause ¢(X) « f, G;
endfor

Phase (. This phase is performed only if the program Pp admits a finite
stratification {Si,...,S,}. In this case, by working bottom-up on the strata
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S1,...,8n, we simplify the definition of every predicate p in Pp, with the aim
of deriving either the fact p(...) + or the empty definition. During this phase
we apply the following rules: (i) positive and negative unfolding, (ii) removal
of useless and subsumed clauses, and (iii) constraint replacement.

The algorithm for Phase C is as follows.
P, =1
fori:=1,...,n do
repeat
S = S;;
Apply to S;, as long as possible, the rule for removing subsumed clauses;
Apply to S;, as long as possible, the negative unfolding rule and
the positive unfolding rule w.r.t. valid and failed atoms in Sy U...U S;;
for all clauses in S; of the form H < ¢ do
if D =V(3Y¢) where Y = FV (¢) — vars(H)
then apply the constraint replacement rule R5r
and replace H < c¢ by the fact H «+
end-for
until §' = S,
Remove the useless clauses from S;;
P, .= P, US;;
end-for 0

3.5 Correctness of the Strategy

Theorem 3.5.1. [Correctness of the Contextual Specialization Strategy| Let
P be a locally stratified general CLP(D) program and c¢,p(X) be a constrained
atom with FV (¢) C X. Let Ps and ps(X) be the general CLP(D) program and
the atom obtained by the contextual specialization strategy. Let the output of
Phase B be a program Pp.

Then, if there exists a function stratum such that P and Pg are locally stratified
w.r.t. stratum, then program Ps is locally stratified w.r.t. stratum and for every
valuation v we have that:

if D |=v(c) then v(p(X)) € M(P) iff v(ps(X)) € M(Fy)

Proof. During the application of the contextual specialization strategy, folding
is applied only to clauses which have been derived by one or more applications
of the unfolding rule, followed by applications of the constraint replacement
rule. Thus, the thesis follows from Theorem 3.3.2, Theorem 3.3.10 and Theo-
rem 3.3.14 (see Section 3.3). O
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3.6 Termination of the Strategy

Theorem 3.6.1. |[Termination of the Contextual Specialization Strategy| Let
P be a general CLP(D) program, and c,p(X) be a constrained atom with
FV(c) C X. If the widening operator ¥V used for clause generalization agrees
with the well-quasi order <, then the contextual specialization strategy termi-
nates.

Proof. (Outline) It is similar to the proof of termination of the contextual
specialization strategy for definite constraint logic programs (see Theorem
2.7.2). O

3.7 Related Work

Tamaki and Sato’s unfold/fold transformation rules [80] have been extended
to logic programs with negation by Seki [74]. Seki’s rules have been proved
to preserve the perfect model of stratified programs [74] and the well-founded
model of general programs |73, 75]. A set of unfold/fold transformation rules
which preserve the perfect model of constraint logic programs with stratified
negation has been proposed by Maher in [51]. Other work (see, for instance,
[7, 33, 62, 68]) presents variants of the transformation rules, which preserve
various semantics of negation, including the semantics based on the Clark
Completion, the operational semantics based on SLDNF resolution, the per-
fect model semantics, the stable model semantics, and the well-founded model
semantics.

The rules considered in this chapter are adaptations, tailored to the task of
program specialization, of the transformation rules presented in the literature.
However, some of our rules are not simply instances or combinations of already
known transformation rules.

Let us examine our rules in more detail. The positive unfolding rule (R2p),
the rule for removal of clauses with unsatisfiable body (R4f), the rule for re-
moval of subsumed clauses (R4s), and the constraint replacement rule (R5r),
are identical to rules proposed by Maher [51]. The negative unfolding rule
(R2n) is a particular case of Seki’s reduction rule [73]. Case (P) of the rule
for constrained atomic folding (R3n) is an adaptation to the case of CLP pro-
grams of Seki’s folding rule |74], with the restriction that only one literal can
be folded. The rule for removing useless clauses (R4u) is a variant of the rule
bearing the same name presented in [62|. Finally, as already mentioned in
previous sections, the rules for folding negative literals (R3n, Case N) and for
contextual constraint replacement (R5n) are novel and they cannot be regarded
as instances of the folding and constraint replacement rules already considered
in the literature.
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We would like to stress the point that, to our knowledge, the contextual
specialization strategy presented in this chapter is the first technique explic-
itly designed for the specialization of constraint logic programs with negation.
Other program specialization techniques, based upon Lloyd and Shepherdson’s
partial evaluation approach [50], deal with general logic programs (see, for in-
stance, [32, 46]). Indeed, we have adapted from [46] the approach based on
well-quasi orders for controlling unfolding and generalization. However, we
would also like to notice that our strategy is particularly oriented to the treat-
ment of programs with negation and constraints (see, in particular, the use
of the constrained folding and contextual constraint replacement rules), and
thus, it is arguable that it will produce better results when specializing such
programs.



Chapter 4

Verifying CTL Properties of
Infinite State Systems

Model checking is a highly successful technique for the automatic verification
of properties of finite state concurrent systems [14]. In essence, it consists in:
(i) modeling the concurrent system as a binary transition relation formalized
as a Kripke structure over a finite set of states, (ii) expressing the property
to be verified as a propositional temporal formula ¢, and (iii) checking the
satisfaction relation I, s |= ¢, where s is an initial state of the system, that is,
checking that the formula ¢ holds in the state s of the structure K.

The relation K, s |= ¢ is decidable for various classes of formulas and, in
particular, there are very efficient algorithms for the case of formulas of the
Computation Tree Logic (CTL, for short). CTL is a very expressive branching
time temporal logic, where one may describe, among others, the so-called safety
and liveness properties of concurrent systems. A safety property states that
‘something (bad) may never happen’, while a liveness property states that
‘something (good) eventually happens’.

One of the most challenging problems in the area of verification of con-
current systems, is how to extend model checking to infinite state concurrent
systems (see, for instance, [52]). In this case, a concurrent system is mod-
eled by an Kripke structure whose transition relation is over an infinite set of
states. Several difficulties arise when considering model checking of infinite
state systems and, in particular, in that case for most classes of formulas the
satisfaction relation K, s |= ¢ is undecidable, and not even semidecidable.

In recent work three main approaches have been followed for dealing with
this undecidability limitation.

The first approach consists in considering decidable subclasses of systems
and formulas (see, for instance, [1, 24, 54]). By following this approach one
may provide fully automatic techniques, which however, are not applicable

63
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outside the restricted classes of systems and properties considered.

The second approach consists in enhancing finite state model checking with
more general deductive techniques (see, for instance, [55, 77, 78|). This ap-
proach provides a great generality, but it needs some degree of human guid-
ance, and this guidance may be difficult to provide when dealing with large
Systems.

The third approach consists in designing methods based on abstractions,
that is, mappings for reducing an infinite state system (or a large finite state
system) to a finite state one such that the properties of interest are preserved
(see, for instance, [15, 18]). The choice of the suitable abstraction is crucial
for the success of this kind of techniques. Once the abstraction is given, these
techniques are fully automatic.

We propose a verification method which combines the generality of the
approaches based on deduction with the mechanizability of the approaches
based on abstractions. Our method is automatic, but incomplete, and its
novelty resides in the idea of using: (1) constraint logic programs for specifying
concurrent systems and their properties, and (2) program specialization as an
inference mechanism for checking the properties of interest.

In our method, the transition relation which models the system of interest
is specified by a finite collection of constraints over the infinite set of states. For
any state s and CTL formula ¢, the satisfaction relation K, s |= ¢ is encoded
as a CLP program Px which defines a binary predicate sat(s, ). For encoding
negated CTL formulas, the program Py uses locally stratified negation. The
semantics of Py is given by the perfect model M (Px) (see Section 3.1), which
is equal to the unique stable model and the two-valued, well-founded model
[6]. Thus, we may check that IC, s |= ¢ holds by checking that sat(s, ¢) belongs
to M(P}C)

In order to check whether or not sat(s, ¢) belongs to M (Px) for all initial
states s, we propose a method based on the specialization of CLP programs.
In the case of CLP, program specialization can be defined as follows. We
are given a program P and a goal of the form ¢(X),p(X), where ¢(X) is a
constraint and p(X) is an atom defined by P. We introduce the clause §:
Pspec(X) < ¢(X),p(X), where pgpe. is a new predicate, and we want to derive
a new program Py, such that, for all ground terms d, if the constraint c(d)
holds then

pspec(d) € M(P u {6}) ift pspec(d) € M(Pspec) (T)
We also want that checking whether or not pye.(d) € M(Pgpe.) be more effi-
cient than checking whether or not py.(d) € M(P U {d}).
Our verification method uses program specialization as follows. We con-
sider the program Py and we introduce the clause d;,, of the form sat gpe.(X)
init(X), sat(X, ), where sat . is a new predicate and init(X) is a constraint



which characterizes the initial states of the system, that is, init(s) holds iff s is
an initial state. By program specialization, from Px U{d;,} we want to derive
a new program P gpe. which contains the clause o: satgpe.(X) <. Indeed, by
the equivalence (}), if 0 € Pk gpec then, for all initial states s, we have that
sat(s,p) € M(Px) (see Section 4.4).

The specialization technique we use for program verification follows the
approach based on transformation rules and strategies described in Chapter
3. We use the transformation rules of Section 3.2, which are variants of the
familiar unfolding, folding, clause deletion, and constraint replacement rules.
In Section 3.3 we showed that they preserve the perfect model semantics, and
thus, they ensure that the equivalence (f) holds. We will also present a trans-
formation strategy tailored to verification which guides the application of the
transformation rules with the aim of deriving the clause satgpe.(X) <. Our
strategy is fully automatic and it always terminates. However, due to the above
mentioned undecidability limitation, our strategy is incomplete, in the sense
that it may be the case that sat(s,p) € M(Px) for all initial states s, and
yet, our strategy terminates with a program Pk gy which does not contain
the clause satgpec (X) .

In order to ensure termination, our strategy uses a generalization technique
which plays a role similar to that of abstraction in other verification methods
such as [15, 18]. However, since generalization is applied during, and not before,
the verification process, generalization may be more flexible than abstraction.

The contributions of this chapter are the following ones. (i) We have shown
that the CTL properties of concurrent systems as defined in [76], can be ex-
pressed by using perfect models of locally stratified CLP programs. (ii) We
have proposed an automatic strategy for program specialization and, in partic-
ular, a technique for generalization which makes program specialization always
terminating. (iii) Finally, we have demonstrated that our technique is powerful
enough to automatically verify several infinite state systems considered in the
literature.

The structure of this chapter is as follows. In Section 4.1 we present an
introductory example to illustrate the basic ideas of our verification method.
In Section 4.2 we recall some preliminary notions concerning the CTL tempo-
ral logic. For notions concerning locally stratified constraint logic programs,
see Section 3.1. In Section 4.3 we consider a class of concurrent systems and
we show how CTL properties of systems in that class can be encoded by using
locally stratified CLP programs. In Section 4.4 we describe our specialization
strategy for verification, and we describe the technique for performing gen-
eralizations and ensuring the termination of the strategy. In Section 4.5 we
report on some experiments of automatic protocol verification we have done by
using a prototype implementation of our method on the MAP transformation
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system [26]. In particular, we have proved safety and liveness properties of the
Bakery protocol and the Ticket protocol for mutual exclusion. We have also
proved a safety property of the Bounded Buffer protocol for ensuring no loss of
messages. Finally, in Section 4.7 we compare our work with other verification
techniques proposed in the literature. Among them we have given special at-
tention to those techniques which use logic programming, constraints, tabled
resolution, program analysis, and program transformation |20, 30, 47, 67, 69].

4.1 A Preliminary Example

In this section we illustrate the basic ideas of our verification method by means
of a simple example. Let us consider a system Count consisting of an integer
counter X which is initialized to 1 and is incremented by 1 at each time unit.
The state of the system is the value of the counter X. We want to prove that
starting from the initial state it is impossible to reach a state where the value
of the counter is 0.

Our verification method starts off by: (i) expressing the property of interest
as a CTL formula ¢, and (ii) providing a CLP program Pggyy,; for the binary
predicate sat such that ¢ holds in state X iff sat(X, ) belongs to the perfect
model of Pgyyuni- This can be done by using the algorithm we will give in
Section 4.3. By doing so, we get for the system Count: (i) the CTL formula
—FEF null, where null is a property which holds in a state X iff X =0, and
(ii) the following CLP program Pgoynt:

1. sat(X,null) + X =0

2. sat(X, @) + —sat(X, p)

3. sat(X, EF ¢) < sat(X,p)

4. sat(X,EF ¢) « Y =X+1,sat(Y, EF )

As indicated in Section 4.2, =EF null expresses the fact that it is impossible
to reach a state where null holds, and this property can be shown to hold in
the initial state where X =1, by proving that sat(1, =EF null) € M(Pcoynt)-

Before making that proof, let us notice that by using SLDNF-resolution,
the program Pggy,: does not terminate for the goal sat(1, =EF null), because
clause 4 allows us to get an infinitely failed SLDNF-tree containing the follow-
ing infinite sequence of atoms:

sat(1, EF null), sat(2, EF null), sat(3, EF null), ...

Also by using tabled resolution [71], program Pgyypn fails to terminate because
in the above sequence no atom is an instance of a preceding one.

Now we present the proof that sat(1,—=EF null) € M(Pcoynt) by using
our verification method based on program specialization. We make use of the
transformation rules which we introduced in Section 3.2. These transforma-
tion rules are applied in an automatic way following the verification strategy
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described in Section 4.4. This strategy starts off by introducing the definition
(see rule R1):
5. satgpec(X) = X =1, sat(X, ~EF null)
Then we unfold clause 5 (see rule R2p) and we get:
6. satgpec(X) = X =1, =sat(X, EF null)
Now we introduce the following new definition:
7. newsatl(X) < X =1, sat(X, EF null)
and we fold clause 6 (see rule R3n) thereby deriving the clause:
8. satgpec(X) ¢ X =1, ~newsat1(X)
The verification process continues by considering the new definition clause 7

and performing a sequence of transformation steps similar to the one performed
starting from clause 5. By unfolding clause 7 we get:

9. mewsatl(X) + X=1, X=0
10. newsatl(X) «+ X =1, Y =X+1, sat(Y, EF null)

Clause 9 is deleted because its body contains an unsatisfiable constraint (see
rule R4f). In order to fold clause 10 we generalize the constraint X =1, Y =
X 41 to the constraint Y >1 and we introduce the following new definition:

11. newsat2(X) < X >1, sat(X, EF null)

whose body is obtained from the body of clause 10 by replacing X =1, Y = X+1
by Y >1 and applying a variable renaming. We fold clause 10 using clause 11
(see rule R3p) and we get:

12. newsatl(X) «+ X =1, Y =X+1, newsat2(Y)
Now we consider the new definition clause 11 and, similarly to the two deriva-
tions which start from clauses 5 and 7, respectively, we perform unfolding,

clause deletion, and folding steps as follows. We first unfold clause 11 and
then apply the clause deletion rule, thereby deriving the following clause:

13. newsat2(X) < X >1, Y =X+1, sat(Y, EF null)

No new definition is needed for folding clause 13. Indeed clause 13 can be
folded by using clause 11 thereby deriving:

14. newsat2(X) + X>1,Y=X+1, newsat2(Y)
This folding step concludes the first phase of our verification strategy (see

Phase A of the strategy described in Section 4.4). At the end of this phase we
have derived the following program:

8. Satgpec(X) +— X =1, -newsat1(X)

12. newsatl(X) «+— X =1, Y =X+1, newsat2(Y)

14. newsat2(X) «+ X >1, Y =X+1, newsat2(Y)
Now, since the bodies of the clauses which define the predicates newsatl and
newsat2, that is, clauses 12 and 14, have calls of newsat2, we deduce that for
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all integers m, all atoms of the form newsat1(n) or newsat2(n) are false in the
perfect model of the program. Thus, we delete clauses 12 and 14 (by using rule
R4u), and the literal =newsat1(X) (by using rule R2n) in the body of clause
8 and we derive a specialized program Pgp,. consisting of the following clause
only:
15. satgpec(X) +— X =1

Since we want to verify that —=EF null holds in the initial state, where the
constraint X =1 is true, we may replace clause 15 (by using rule R5) by the
following clause:

16. satspec(X)

Since clause 16 belongs to Py, we have that satgpe.(1) € M (Pspe.) and thus,
by the correctness of program specialization (see Property (1) at the beginning
of the chapter), we also have that satge.(1) € M (Pcount U {clauseb}). Since
M (Pgount U {clause5}) is a model of the completion of Pgoyn: U {clause5} [6]
and satgpe. is defined by clause 5 only, we get sat(1, 2 EF null) € M (Pcount)
and this concludes our proof.

Before ending this section we want to briefly discuss the following points
related to the proof we have done.
(1) The generation of a recurrent goal during the unfolding process (in our case,
the goal X >1, sat(X, EF null) which occurs both in clause 11 and clause 13)
determines after folding, the generation of recursive clauses (in our case, clause
14), and these recursive clauses allow us to infer that some atoms (in our case,
newsat2(X)) are false in the perfect model of the program because they are
infinitely failing.
(2) In order to perform the folding steps required for generating recursive
clauses as indicated in Point (1) above, we may need to introduce new defini-
tions by applying a generalization technique. In our case we have introduced
clause 11 by generalizing the body of clause 10, and indeed, by using clause 11
we were able to fold all sat atoms occurring in the program at hand.
(3) The choice of a suitable generalization technique plays a crucial role in
our verification method. Indeed, generalizations ensure termination of the
specialization strategy, as it has been the case for our proof above, but they
can also prevent the proof of the property of interest as we now indicate.

Indeed, if we had generalized the constraint X =1, Y = X +1 in the body
of clause 10 to true, instead of Y > 1, then, instead of clause 11, we would have
introduced the following clause:

11*. newsat2(X) < sat(X, EF null)
By unfolding clause 11* we would have derived the clause newsat2(1) < and
we could have not inferred that for all integers n, newsat2(n) is false in the
perfect model of the program. As already mentioned, we will describe our
generalization technique in Section 4.4.
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4.2 The Computational Tree Logic

In this section we briefly recall the syntax and the semantics of the Compu-
tational Tree Logic (CTL, for short), which is the logic we use for expressing
properties of concurrent systems. For a more detailed treatment of CTL the
reader may look at [14].

The Computation Tree Logic (CTL, for short) is a temporal logic for ex-
pressing properties of the evolutions in time of concurrent systems. These
evolutions are called computation paths. CTL formulas are built from a given
set Elem of elementary properties by using: (i) the following linear-time opera-
tors along a computation path: G (‘always’), F' (‘sometimes’), X (‘nexttime’),
and U (‘until’), and (ii) the quantifiers over computation paths: A (‘for all
paths’) and E (‘for some path’), as indicated by the following definition.

Definition 4.2.1. [CTL Formulas| A CTL formula ¢ has the following syntax:
pu=e| | o1 N2 | EXp | EU(p1,p2) | AF ¢
where e belongs to Elem.
The other combinations of temporal operators and quantifiers are assumed to
be abbreviations:
EF ¢ = EU(true,p)
EGyp = —AF —p
AX ¢ = -EX -y
AU(¢1,92) = —EU(~p2, ~p1Ap2) A (EG —gp2)
AGp = -EF —p
where {rue is the elementary property which holds in every state.

The semantics of CTL formulas is given by using a Kripke structure and
defining the satisfaction relation K,s = ¢, which denotes that a formula ¢
holds in a state s of . The context will disambiguate between the use of |=
for denoting the satisfaction relation in a Kripke structure and the use of the
same symbol for providing the semantics of constraint logic programs.

Definition 4.2.2. [Kripke Structure] A Kripke structure K is a 4-tuple
(S, I, R, L) where:

1. S is a set of states,

2. I C S is the set of initial states,

3. R C S x S is a total relation, that is, for every state s € S there exists a
state s’ € S such that (s,s’) € R. R is called a transition relation, and

4. L : S — P(FElem) is a function which assigns to each state s € S a subset
L(s) of Elem, that is, a set of elementary properties which hold in s.

A computation path, or path, in K from a state sy is an infinite sequence of
states sgs1 ... such that (s;, s;41) € R for every i > 0.
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Notice that if R is not total then we can make it total in the following way:
for all states s € S, if there is no state s’ € S such that (s,s’) € R then we
add the pair (s, s) to R.

Given a Kripke structure K = (S, I, R, L), the relation K, s = ¢ is induc-
tively defined as follows:

K,s = e iff eis an elementary property in L(s)
K,s = —¢ iff it is not the case that IC,s = ¢
K,sEp1 Aoy iff K,sE=@and K, s = g9
K,s E EX ¢ iff there exists a computation path sgsy ... in K such that
s=spand K,s1 = ¢
K,s |E EU(¢p1,p2) iff there exists a computation path sgsy ... in K such that
(i) s = sp and (ii) for some n > 0 we have that:
K,sn =92 and K, s; |= ¢y for all j € {0,...,n — 1}
K,s E AF ¢ iff for all computation paths sgsy... in K, if s = sg then
there exists n > 0 such that K, s, = ¢.

Notice that in the definition of the relation I, s = ¢, the set I of initial states
is not used. However, I has been introduced because it is often the case that
the system properties we want to express are properties of the initial states of
the system.

4.3 Expressing CTL Properties by Locally Stratified
CLP

In this section we present the class of concurrent systems which can be verified
by using our method. This class is very general, and includes the concurrent
systems defined in [76]. But, unlike [76], in order to specify these systems and
their temporal properties, we use constraint logic programs. In this respect
our approach is similar to the one presented in [20]. However, we use CLP
programs with negation and the perfect model semantics, while the authors of
[20] consider definite CLP programs and express temporal properties by means
of least and greatest fixpoints.

For reasons of simplicity, we will consider a one-sorted [23] constraint do-
main. However, the extension to the many-sorted case is straightforward. For
the treatment of many-sorted logic and its relation to one-sorted logic, we refer
to [23].

A concurrent system is modeled by a Kripke structure K [14] based on a
constraint domain D as indicated below. Then, starting from I we constructs
a locally stratified CLP program Px which encodes the temporal properties of
the system. The program Py defines a binary predicate sat such that, for all
states s and CTL formulas ¢, we have that K, s |= ¢ iff sat(s, p) € M(Px).
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A Kripke structure = (S,I,R,L) based on the constraint domain D, is
specified as follows. (We borrow some of the terminology from [76].)

1. The set S of states is the (possibly infinite) carrier D of the constraint
domain D.

2. The set I of initial states is specified by a constraint init(X), so that for
all states s € S, we have that: s € I iff D |= init(s),

3. The transition relation R is specified by a finite disjunction ¢;(X,Y) V
.. Vip(X,Y) of constraints, so that for all states s; and sy in S, we have
that: (81,82) e Rifft D |: t (S] , 52) V...V tk(S] , 82)

Each disjunct #;(X,Y), called an event, is a constraint of the form:
cond;(X) A act;(X,Y) such that

3.1 D =VX (cond;(X) — 3Y act;(X,Y)), and

32 DEVXY,Z(acti(X,Y)ANact;(X,Z) =Y = Z),

The constraint cond;(X) is called the enabling condition and the con-
straint act;(X,Y) is called the action. Condition (3.1) means that act;
is defined whenever the corresponding enabling condition holds, and Con-
dition (3.2) means that act; is a function of its first argument.

4. The function L : S — P(Elem), where Elem is the set of elementary
properties of IC, is specified by associating a constraint c¢.(X) with each
elementary property e, so that for all states s € S, we have that: e €
L(s) iff D |= ce(s).

For reasons of simplicity we assumed that the set of initial states and the set
of states satisfying an elementary property can be specified by a constraint.
However, the extension to the more general case, where these sets are specified
by using a disjunction of constraints, is straightforward.

The construction of the CLP programs corresponding to Kripke structures,
can be performed by using the Encoding Algorithm we now present.

The Encoding Algorithm.

Input: a Kripke structure K = (S, I, R, L) based on a constraint domain D.
Output: a locally stratified CLP program Py such that, for all states s € S
and for all CTL formulas ¢, K,s = ¢ iff sat(s,p) € M(Px).

Let us assume that R be specified by the disjunct: ¢;(X,Y) V... V#(X,Y).
Then the construction of Px is done by induction on the structure of ¢ as
follows.

(o is the elementary property e) We introduce the clause:
sat(X,e) < ce(X)
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where ¢.(X) is the constraint associated with the elementary property e.
(¢ is =1p) We introduce the clause:

sat(X, ) < —sat(X, )

(The symbol = in the head is a function symbol, while in the body — is the
negation connective.)

(¢ is 11 A 1py) We introduce the clause:
sat(X, 11 A hg) < sat(X, 1), sat(X,19)
(The symbol A in the head is a function symbol.)
(p is EX 1) For every i = 1,...,n, we introduce the clause:
sat(X, EX ) + t;(X,Y), sat(Y, )
(¢ is EU(41,19)) We introduce the clause:
sat(X, BEU (¢1,19)) < sat(X,1)2)
and, for every ¢ = 1,...,n, we introduce the clause:
sat(X, EU (¢1,19)) + t:(X,Y), sat(X,41), sat(Y, EU (¢1,2))

(pis AF 1) Let us consider the disjunction #1(X,Y)V...Vix(X,Y) of events,
where for every i = 1,...,k, t;(X,Y) is cond;(X)Nact;(X,Y). We first rewrite
that disjunction as a new disjunction 7 (X,Y) V...V r,(X,Y), such that:
(1) fori=1,...,n,r(X,Y) is a formula of the form cond;(X)A (acti1(X,Y)V
.V oactyn, (X,Y)), called a nondeterministic event, where for j = 1,...,m,

cond;(X) A act;j;(X,Y) is an event,
(2) for any two distinct ¢ and [ in {1,...,n}, cond;(X) and cond;(X) are
mutually exclusive, that is, D = —=3X cond;(X) A ('(mdl(X), and
(3) D E VXY (1(X,Y) V.V i6(X,Y)) & (1 (X,Y) V.-V ra(X,Y))).
We introduce the following clause.

sat(X, AF ) < sat(X, 1))
and, for 4 = 1,...,n, we introduce the clause,

sat(X, AF o) < cond;(X) A act;i (X, Yi) Ao A actim (X, Yim),

sat(Yi1, AF ), ..., sat(Yim, AF 1)

where X, Y1, ..., Y, are distinct variables.

The rewriting needed for the case where ¢ is AF 1) is always possible for
Kripke structures based on a constraint domain D which satisfies the following
property:

(Property P) For every constraint ¢(X), the formula —¢(X) is equivalent to a
finite disjunction ¢; (X)V... Ve, (X) of pairwise mutually exclusive constraints.

This Property P can be formally expressed as follows: for every constraint
¢(X) in D there exist the constraints ¢y (X), ..., ¢y (X) such that:
(i) D EVX (m¢(X) & (a(X)V...Vepn(X))), and
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(ii) for any two distinct ¢ and / in {1,...,m}, ¢;(X) A ¢(X) is unsatisfiable,
that is, D = =3X (¢;(X) A ¢(X)).

If Property P holds we also say that —¢(X) is partitioned into ¢ (X) V...V
¢m (X)), or equivalently, ¢1(X) V...V ¢, (X) is a partition of —¢(X).

Example 4.3.1. Let us consider the constraint domain R;, of linear equations
(=) and inequations (<, <) over real numbers. Without loss of generality, we
may assume that every constraint in Ry, is a conjunction of constraints of the
form t1 op to, where op € {=, <, <} and t; and {9 are terms built out of reals,
variables, and arithmetic operators. Then, the negation of any constraint in
Riin can be partitioned into a finite disjunction of constraints, because:

(1) Riin ‘: vX (—| t1=12 & (tl <to Vitg <t1))

(11) Riin ‘: VX (—. 11 <ty & 19 St]).
However, if we consider the domain F7T of equations between finite terms
which are built out of an infinite set of function symbols, then in F7T there
are constraints whose negation cannot be partitioned into a finite disjunction
of constraints. For instance, the negation of the constraint X =a, where a is
a ground term, can only be expressed by an infinite disjunction of constraints,
as follows:

FT=EVX (- X =a+ \/ter{a}X =)
where G denotes the infinite set of all ground terms. If we consider the domain
of equations between finite terms constructed from a finite set of function
symbols, then the negation of any constraint can be partitioned into a finite
disjunction of constraints. For instance, if the function symbols are 0 (nullary)
and s (unary), the negation of the constraint X =s(0) can be partitioned into
X=0Vv3IY X=s(s(Y)).

Given a constraint domain which satisfies (Property P) above, we show
how to perform the rewriting needed for introducing a set of locally stratified
clauses for the temporal operator AF'. Indeed, we give a procedure such that,
given as input a disjunction #1(X,Y) V... V#(X,Y) of events, produces as
output a disjunction r1 (X, Y)V...Vr,(X,Y) of nondeterministic events which
satisfies Conditions (1), (2) and (3) of the Encoding Algorithm.

Procedure Make ME(T, R)

Input: a disjunction T(X,Y) =#(X,Y) V... V(X,Y) of events.

Output: a disjunction R(X,Y) =r(X,Y) V... Vr,(X,Y) of nondeterministic
events.

Let t1(X,Y) be of the form cond(X) A act(X,Y);
R(X,Y) := cond(X) A act(X,Y);
for:=2,...,k do
Let t;(X,Y) be a formula of the form cond(X) A act(X,Y);
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Let —cond(X) be partitioned into ¢1(X) V...V cn(X);
Let R(X,Y) be of the form r(X,Y) V... Vr,(X,Y);
for j=1,...,h do
Let r7(X Y) be of the form ¢(X) A a( YY)
R;(X,Y) = ((¢(X) A cond (X)) A ((1 ) Voact(X,Y)))V
(e(X) Aer (X)) Aa(X,¥)) V.
(e(X) A em(X)) A a(X, V)
endfor
R(X,Y):= Vj_, Rj(X,Y)
endfor g

During the execution of the above procedure we arbitrarily manipulate formu-
las as specified by the following rules:

(1) replace a constraint ¢ by the constraint solve(c, X), where X denotes
the free variables of c,

(2) replace a formula of the form false A F' by the constraint false,

(3) replace a formula of the form F A false by the constraint false,

(4) replace a formula of the form false V F' by the formula F,

(5) replace a formula of the form F V false by the formula F.

The above Encoding Algorithm can easily be extended by considering the cases
where the outermost operator of the formula ¢ is one of the following: EF, EG,
AX, AU, and AG. In order to do so it is enough to express these operators in
terms of EX, EU, and AF. For instance, if ¢ is EF 1 we introduce the following
clause:

sat(X, EF 1) « sat(X,),
and for 4 = 1,...,n, we introduce the clause:

sat(X, EF ) < t;(X,Y), sat(Y, EF 1))

because: (i) EF ¢ stands for EU(true,v) and (ii) sat(X, true) is true for all
states X.

The program Py constructed by the Encoding Algorithm is locally strat-
ified w.r.t. the function o defined as follows: for every s € S and for every
CTL formulas ¢, o(sat(s,p)) = length(y), where length(y) has the following
inductive definition:

if ¢ € Elem then length(p) =1,

if p is =1 or EX @1 or AF ¢y then length(p) = length(p1) + 1,

if ¢ is 1 A g or EU (@1, ¢2) then length(p) = length(p1) + length(p2) + 1.

We have the following theorem.

Theorem 4.3.2. [Correctness of the Encoding Algorithm| Let X=(S,I, R, L)
be a Kripke structure and let P be the locally stratified program constructed
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from K by the Encoding Algorithm. For all states s € S and CTL formulas o,
we have that: IC,s = ¢ iff sat(s,p) € M(Px).

Proof. The proof is by structural induction on .

(p is e € Elem) For all states s € S we have that:
K,s |=eiff D |= c(s) (by the assumption on elementary properties)
iff sat(s,e) € M(Px) (by the Encoding Algorithm).

(p is —p) For all states s € S we have that:
K,s E - iff £, s =1 does not hold (by the semantics of CTL)
iff sat(s,1) ¢ M(Px) (by induction hypothesis)
iff sat(s, 1)) € M(Px) (by the Encoding Algorithm).

(p is 91 A1pg) For all states s € S we have that:
IC,s =11 Ao iff K, s =11 and K, s |= 9y (by the semantics of CTL)
iff sat(s, 1) € M(Px) and sat(s,12) € M(Px) (by induction hypothesis)
iff sat(s, 11 A1) € M(Px) (by the Encoding Algorithm).

(pis EX ¢) For all states s € S we have that:

K,s E EX 1 iff there exists a state s; € S such that (s,s1) € R and
K, s1 =9 (by the semantics of CTL)

iff 3s; € S and 35 € {1,...,k} such that D |= t;(s,s1) and sat(s1,9) €
M (Px) (by the assumption on the transition relation and induction hypothesis)

iff 957 € S and there exists a clause v € ground(Px) of the form:
sat(s, EX 1) < sat(s1,v) and sat(si,1p) € M(Px) (by the Encoding Algo-
rithm)

iff sat(s, EX 1) € M(Px) (by definition of M (Px)).
In the rest of the proof: (i) Ifp denotes the least fixpoint operator, and (ii)
given a formula ¢, we denote by [g] the set {s € S|K,s = ¢}, that is, the set
of states in which ¢ is true.
(p is BEU(91,v2)) From [22] we have that K,s |= EU (¢1,12) holds iff s €
Ifp(Try), where Ty = AL.[1h] U ([¢1] N EX 1(I)), and EX Y1) = {s €
S|3s" € I such that (s,s') € R}. Now let us consider the operator Try :
P(S) — P(S) defined as follows:

Teu(I)={se€S | sat(s,1p2) € M(Px) or
sat(s, 1) € M(Px) and 3s" € I such that (s,s’) € R}

By structural induction we have that, for i = 1,2, K, s |= ¢; iff sat(s,v;) €
M (Px) and, thus, we easily get that s € Ifp(7ry) iff s € Ifp(Tgy). It remains
to show that for all s € S, s € Ifp(Tgy) iff sat(s, EU(¢1,12)) € M(Px). This
proof, which is left to the reader, is similar to the one of Theorem 6.5 [49, page
38|, which states that the least Herbrand model of a definite logic program P
is the least fixpoint of its Tp operator.
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n:=n+2 n:=n+1

n>0
(a,n) ~ (b,n)

Figure 4.3.1: A simple concurrent system.

(p is AF ) From [22] K,s = AF 4 holds iff s € Ifp(7ar), where T4p =

M.[p]UAX 1(I) and AX (1) = {s € S|Vs' € Sif (s,8') € R then s' € T}.
Now let us consider the operator Tap : P(S) — P(S) defined as follows:

Tar(I)={s€S | sat(s,9) € M(Px) or
Vs' € Sif (s,5") € R then s' € T}

By structural induction we have that K,s = v iff sat(s,9) € M(Px), and
thus, we easily get that s € Ifp(tap) iff s € Ifp(T'ar). It remains to show that
for all s € S, s € Ifp(Tar) iff sat(s, AF 1)) € M(Px). Again, this proof is
similar to the one of Theorem 6.5 [49, page 38| and we leave to the reader.
Recall that, in this case, when writing the clauses for AF ¢ in Pi, we assume
that the relation R is specified by a disjunction of nondeterministic events as

indicated in the Encoding Algorithm. O

In the following example we consider a simple concurrent system modeled
by a Kripke structure X and we apply our Encoding Algorithm for generating
the corresponding program Px.

Example 4.3.3. Let us consider the concurrent system depicted in Figure 4.3.1.
A state of this system is a (control state, counter) pair. The control state is
either @ or b and the counter is real number. The Kripke structure K =
(S, I, R, L) which models that system can be defined as follows.
KC is based on the constraint domain D whose carrier is the set S = {a,b} xR,
where R is the set of real numbers. In D we have: (i) the addition between
real numbers, (ii) equations between elements in {a,b}, and (iii) equations
and inequations between reals. For equations between elements in {a,b} and
equations between reals we use the same symbol =.

The set I of the initial states is specified by the constraint init(X;, Xo) =
X1 =a, X9=0, that is, I is the singleton {(a,0)}. (Notice that to represent
states we use two variables, instead of a single variable ranging over pairs.)

The transition relation R is specified as the disjunction of the following
three events:
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tl(Xl,XQ,Yl,YQ) (Xlz(z)/\(le(L/\YQZX2+2)

tQ(Xl,XQ,Yl,YQ) = (Xl :(1,/\X2>0) A (Y1 :b/\YQZXQ)

tg(Xl, XQ, Yl, YQ) = (Xl :b) A (Yl =bAYo=X5 + 1)
where in each disjunct the parentheses are used to distinguish between the
enabling conditions and the actions.

We specify the elementary property neg which holds in a state (X5, Xy) iff

X5 < 0.
We want to verify that starting from the initial state (a,0), there exists a
computation path in IC such that for all states (X7, Xy) along that path we
have that X9 > 0. This property is expressed by the relation K, (a,0) &
—AF neg which asserts that the CTL formula —AF neg is true in the ini-
tial state (a,0). In order to verify this property, we first apply the En-
coding Algorithm thereby deriving the program Py such that K, (a,0) =
—AF neg iff sat(a,0,-AF neg) € M(Px).

Notice that the conditions occurring in the events #; (X7, X9, Y7,Ys) and
ta(X1, X9,Y7,Y,) are not mutually exclusive because D = 3X;3X5 ((Xy =
a) A (X1=aAX3>0)). Thus, in order to construct the clauses for the operator
AF we have to perform the rewriting described in the Encoding Algorithm.
This rewriting can indeed be performed because the constraint domain D sat-
isfies Property P (see also Example 4.3.1). In particular, we use the following
equivalences:

DEVX(-X>0)+ X<0)
DEVX(mX=a)+ X=b)
Thus, we specify the transition relation by using the disjunction of the following
three nondeterministic events:
r1(X1, X9, Y1,Y) = (X1=a A Xo<0) A (YVi=aAYo=Xy+2)
ro(X1,X9,Y7,Ys) = (X1=a A X9 >0)A
(Y1=aAYo=X,+2)V(Y1=bAYy=X>))
r3(X1, X9, Y1, Y0) = (X5=b)A(Y1=bAYo=X, + 1)
The application of the Encoding Algorithm produces a program Py containing

the following clauses (we do not list the clauses for the operators EX and EU
because they are not needed for verifying our property —AF neg):

sat(Xy, Xo,neg) + X9 <0

sat( X1, Xo, —@) + —sat(Xq, Xo, )
sat(X1, Xo, AF @) < sat(Xy, Xo, ¢)
sat(X1, X9, AF ¢) + X1=a, X9 <0, X3=Xy + 2, sat(Xy1, X3, AF )
sat(Xy1, X9, AF ) + X1=a, X3>0, X3=b, X4=Xo + 2,

sat(X1, X4, AF @), sat(X3, Xo, AF @)

sat(Xy1, X9, AF ¢) <+ X1=b, X3=Xo + 1, sat(X1, X3, AF @)
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4.4 The Verification Strategy

Now we present the verification strategy which we use for verifying CTL prop-
erties of concurrent systems.

Suppose that we are given a concurrent system modeled by a Kripke struc-
ture IC, and a CTL formula ¢. We want to verify that, for all initial states
s, the formula ¢ holds in state s, that is, K, s = ¢. By Theorem 4.3.2, in
order to do this verification it is enough to verify that, for all initial states s,
sat(s,p) € M(Px), where Py is the locally stratified CLP program constructed
according to our Encoding Algorithm.

We start off by introducing the clause 0;,,: sat gpec (X)  init(X), sat(X, ¢),
where satgpe. is a new predicate and init(X) is the constraint which specifies
the initial states of the system (see Section 4.3). Then we apply the transforma-
tion rules of Section 3.2, according to the verification strategy presented below,
with the aim of deriving a program Py spe. containing the fact satgpe. (X) <.
If we succeeds in doing so, we have that for all states s, if init(s) holds then
sat(s,p) € M(Px) (see Theorem 4.4.3).

Our verification strategy is divided into three phases, called Phase A, B,
and C, respectively.

Phase A starts off by unfolding the definition ¢ and then applying the con-
straint replacement rule for simplifying the constraints as much as possible.
By doing so, we derive a new set of clauses, say I'. Then we apply a general-
ization function and we introduce a (possibly empty) set of new definitions of
the form newp(X) < d(X), sat(X, ) such that we can apply the folding rule
w.r.t. each constrained literal sat(X, 1) or —sat(X, 1) occurring in the body of
a clause in I'. We iterate unfolding, generalization, and folding steps, for each
new definition introduced by generalization, and we stop this iteration when
no new definitions are necessary for applying the folding rule w.r.t. all (positive
or negative) occurrences of sat literals, because we can fold those occurrences
by using definitions which have been already introduced.

Below we will present the generalization function which ensures that a finite
set of definitions will be introduced and, thus, Phase A of the verification
strategy always terminates (see Theorem 4.4.4). At the end of Phase A we
derive a program P4 where the (positive or negative) dependencies among sat
atoms have been lifted to dependencies among newly introduced predicates.
In particular, due to the structure of the CTL formulas which occur as second
arguments of the predicate satf, we always derive a stratified program. This
property will be exploited during Phase C.

In order to derive a program Py spe. which contains the fact satgpe.(X)
that is, a program where satgye.(X) is valid, we may need to derive programs
where the atoms of the form newp(X) are either valid or failed. This can be
accomplished during Phases B and C of our verification strategy by applying
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the following rules: (i) positive and negative unfolding, (ii) removal of use-
less and subsumed clauses, and (iii) constraint replacement, as the following
example illustrates.

Example 4.4.1. Let us assume that the output of Phase A is the following
program Pjy:

L. satspec(X) < X =0, newsatl(X), ~newsat2(X)

2. newsatl(X) + X >0

3. newsatl(X) + X >0, Y=X+1, newsat1(Y)

4. newsat2(X) + X>0,Y=X—1, newsat2(Y)

Suppose that init(X) is the constraint X =0 in clause 1. From P4 we want
to derive a program containing the fact satge.(X) <. In order to do so, we
first derive a program where newsat1(X) is valid and newsat2(X) is failed.
We proceed as follows. We notice that the constraint X >0 in the body of
clause 2 is redundant because it is implied by the constraint which holds at
each call of newsat1(X). Indeed, for newsat1(X) in the body of clause 1 we
have that X =0 holds, and for newsat1(Y') in the body of clause 3, we have
that Y > 1 holds. Thus, by applying the contextual constraint replacement
rule we replace clause 2 by the fact:
5. newsatl(X) «

that is, we derive a program where newsat1(X) is valid. Thus, by applying rule
R4s we may delete clause 3. Next, we notice that clause 4 is useless and, by
applying rule R4u, we can delete it and we derive a program where newsat2(X)
is failed. Now, by positive and negative unfolding, from clause 1 we derive the
clause:

6. satgpec(X) — X =0.

Since we want to derive a fact which holds for the initial state where the
constraint X = (0 is true, by applying the contextual constraint replacement
rule we replace clause 6 by the fact:

7. satgpec(X)

During Phase B of the verification strategy described in Section 4.4, we delete
redundant constraints (in our example above, the constraint X >0 in the body
of clause 2 and the constraint X =0 in the body of clause 6), by using the
contextual constraint replacement rule Rb5.

During Phase C of the strategy, we derive valid and failed atoms (in our
example above, newsatl(X) and newsat2(X), respectively). In particular,
during that phase, we work bottom-up on the strata of the program (recall that
at the end of Phase A we always derive a stratified program), and we simplify
the definition of every predicate symbol newp occurring in the program, with
the aim of deriving either the fact newp(X) < or the empty definition.
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4.4.1 The Generalization Function

Now we present the generalization function gen used during Phase A of the ver-
ification strategy for introducing new clauses by using the constrained atomic
definition rule.

During the Generalization Step of Phase A, given a call pattern ¢p of the
form (¢(X), sat(X,),Y) where Y C X, we introduce a new definition n of the
form newp(X) < gen(c(X)), sat(X,1)) where gen(c(X)) is a constraint such
that D = VX (¢(X) — gen(c(X))). This condition ensures that the clause
where the call pattern ¢p occurs, can be folded by using 1. Moreover, we will
define gen(c(X))) so that it is the least constraint, in the sense specified below,
which makes it possible to fold. This minimality condition is motivated by the
fact that, as already remarked at the end of Section 4.1, generalization should
be applied with parsimony, because it may prevent the proof of the property
of interest.

An important feature of the gen function is that it has a finite codomain
and thus, for any CTL formula 1, a finite number of new definitions of the
form newp(X) < gen(c(X)), sat(X, 1) can be introduced. This fact ensures
that the verification strategy always terminates. As already mentioned, by
doing so we obtain a method which is incomplete, in the sense that there exist
properties of infinite state systems that cannot be proved. However, we will
show in Section 4.5 that several interesting properties can indeed be proved by
using the proposed generalization function.

The codomain of gen is the finite set C(E) of constraints constructed as
follows. Let X be a variable ranging over the states of K. We assume that
every clause in P U {d;,} is written by using X as the first argument of the
head. Thus, every clause in P U {d;,} is either of the form sat(X, ) < ¢,G
or of the form satspe.(X) < ¢, G. We consider the set Ex of constraints e such
that: (i) e is a basic constraint, (ii) there exists a clause H < ¢, G in PcU{d;, }
such that solve(c, X) = e A d for some constraint d. We assume that Property
P of Section 4.3 holds. Let us also consider the set F,, of basic constraints ¢’
such that there exists a basic constraint e € Ex such that the partition of —e
is of the form ¢; V...V (e Ad) V...V ¢y, for some constraint d. We define the
following set of basic constraints: E = Ex U E,.. We identify two elements
eand € in Eiff D |=V (e < ¢'). Let C(E) be the smallest set of constraints
including true, all constraints in E, and closed w.r.t. A. By construction, C(E)
is a finite set.

We define gen(c) as the least constraint in C(E) w.r.t. the implication
ordering, such that D =V (¢ — gen(c)). The constraint gen(c) can be com-
puted by applying the algorithm described below. This algorithm performs
a breadth-first visit of the directed acyclic graph G which is constructed as
follows: (i) the vertices of G are the constraints in F, and (ii) there exists an
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edge from e to €' iff (ii.1) e and €’ are distinct, (ii.2) D =V (e — ¢€'), and (ii.3)
there is no d € F, distinct from e and €', such that D =V ((e — d) A (d — ¢')).
Given a vertex e of G, we denote by Reach(e) the set of vertices which are
reachable from e.

The Algorithm for Constraint Generalization

Input: the constraint ¢ to be generalized and the graph G.

Output: a constraint d € C(E) such that (i) D |= V(¢ — d) and (ii) for all
e€C(E)if DEVY(c—e) then D EV(d— e).

d := true;

ToBe Visited := FE;

Let Current be the set of vertices of G with no incoming edges;

for each vertex e € Current do
if D=V (c— e) then

d:=dAe;

Current := Current — {e};

ToBe Visited := ToBe Visited — ({e} U Reach(e))
else

Current := (Current — {e})U
{e' € ToBeVisited | there is an edge from e to €'}
ToBeVisited := ToBeVisited — {e}
end-for

4.4.2 The Verification Strategy

Now we present the verification strategy which we use for verifying CTL prop-
erties of concurrent systems. Let I be a Kripke structure based on a constraint
domain D and let Px be the locally stratified program constructed by the En-
coding Algorithm described in Section 4.3.

The Verification Strategy

Input: (i) The program Pj and (ii) a constrained atom (init(X), sat(X, ¢)).
Output: (i) A specialized program Py g and (ii) a new predicate symbol
satspe. such that, for all states s € D, if D = init(s) then sat(s,¢) € M(Px)
iff satgpec(s) € M (Px,spec)-

Phase A. We use the following three variables: (1) P4, which denotes the
output program of this phase, (2) Defs, which denotes the set of definitions
introduced during the specialization process, and (3) NewDefs, which denotes
the set of definitions which have been introduced but not yet unfolded. Let
Elem be the set of elementary properties of the Kripke structure K.
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Introduce the clause i @ satgpec(X) « init(X), sat(X, ) by applying the
constrained atomic definition rule R1.
Py :=0; Defs:={din}; NewDefs = {d;n};
while there exists a clause v € NewDefs do
NewDefs := NewDefs — {v};

Step 1: Unfolding-Replacement.
Let A be the set of clauses derived by unfolding v w.r.t. the atom in bd(v);
while there exists a clause 7y in A of the form H «+ ¢, Gy, sat(X, ), Gy
where either 1) belongs to Elem or 1 is of the form —);
or 1) is of the form ¥ Ay do
replace 7 in A by the set of clauses derived by unfolding v w.r.t. sat(X, )
end-while
Let T" be the set of clauses obtained from A by: (i) applying rule R4f whereby
removing all clauses with an unsatisfiable constraint in the body, and
(i) applying rule R5r whereby replacing each clause of the form H + ¢, G
by H <« solve(c,Y), G, where Y = FV (c¢) Nwvars({H,G});

Step 2: Generalization.
for every (possibly renamed) call pattern (¢(X), sat(X,4),Y) € CP(T') do
if there is no clause in Defs whose body is (gen(c(X)), sat (X, 1))
then introduce the definition 7: newp(X) + gen(c(X)), sat(X, ) by
applying rule R1;
Defs := Defs U {n}; NewDefs := NewDefs U {n};
end-for
Step 3: Folding.
while there exists a clause 7 in I' of the form H + ¢, Gy, L, Gy, where L is
either an atom sat(X,1)) or a negated atom —sat(X,1)) do
replace v by the clause derived by folding v w.r.t. L using a clause in Defs
end-while
Py :=P4uUT
end-while

Phase B. This Phase of the verification strategy takes the output program Py
of Phase A as input and returns a new program Pg.
Pg =
Let C be {(init (X), sat see (X)) JU{(c(X), p(X)) | (e(X), p(X),Y) € CP(P4)},
where CP(P,) is the set of call patterns in Pjy;
for every renamed apart clause v in P4 of the form H < ¢,..., ¢y, G,
where ¢1, ..., ¢, are basic constraints do

apply the contextual constraint replacement rule w.r.t. C and derive

a new clause 7/ by deleting, for i = 1,...,n, the constraint ¢; if, for

every constrained atom (¢, Atom) in C, D =V ((c A Atom=H) — ¢;);
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Py := P U{y'};
end-for

Phase C. This Phase of the verification strategy takes as input the output
program Ppg of Phase B and returns the final, specialized program P g.. Let

Si,...,Sn be a stratification of program Pp (see Lemma 4.4.2 below).
PIC,spec = Q)
fori:=1,....ndo
repeat
S:=5;;

Apply to S;, as long as possible, the clause removal rule Rds;
Apply to S;, as long as possible, the positive unfolding rule R2p
and the negative unfolding rule R2n w.r.t. the valid and failed atoms
occurring in Sy U...US;;
for all clauses in S; of the form H < ¢ do
if D =V(3Y¢) where Y = FV (c) — vars(H)
then apply the constraint replacement rule R5r
and replace H < c¢ by the fact H «+
end-for
until S = S;;
Apply the clause removal rule R4u for removing the useless clauses from S;;
PIC,spec = PIC,spec usS;
end-for

The two Theorems 4.4.3 and 4.4.4 below, establish the correctness and the
termination of our verification strategy. We first need the following lemma.

Lemma 4.4.2. Let P4 and Pg the output programs of Phase A and Phase B,
respectively, of the verification strategy. Then P4 and Pg are stratified.

Proof. Program P, is stratified w.r.t. the level mapping A defined as follows:
A(newp) = length(y), where the definition of newp in Defs is newp(X) <+
sat(X, ).
Indeed, by construction, for every clause 7 in P4 of the form newp(X) < ¢,G
and for all literals L in G we have that:

(1) if L is of the form newq(Y) then A(newq) < A(newp), and

(2) if L is of the form —newq(Y) then A(newq) < A(newp).
Since in Phase B we use the contextual constraint replacement rule only, by
Corollary 3.3.15 program Pp is stratified. O

Theorem 4.4.3. [Correctness of the Verification Strategy| Let IC be a Kripke
structure based on a constraint domain D and let P be the locally stratified
program, constructed by the Encoding Algorithm. Let init(X) be the constraint
which specifies the set of initial states and let ¢ be a CTL formula. By applying
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the wverification strateqy to the input program Px and the constrained atom
init(X), sat(X, @), we obtain: (i) a specialized program Py spec and (ii) a new
predicate symbol satgpe. such that, for all states s € D, if D |= init(s) then
sat(s, 80) € M(PIC) Zﬁ satspec(s) € M(PIC,spec)-

Proof. Let d;, be the initial definition satgpe.(X) + init(X), sat(X, ¢) and let
s be a state such that D = init(s). Let us consider the final values of Defs
(i.e., the set of definitions introduced during Phase A), P4 (i.e., the output
program of Phase A), and Pp (i.e., the output program of Phase B). We have
that:
sat(s,p) € M(Px) iff satspec(s) € M(Px U {din})

(by the definition of M, because Def (satspec, Pic U {din}) ={din})
iff satgpec(s) € M (Px U Defs)

(because Def (satspec, Defs)={0in})
iff S(J,tspec(s) € M(P}C U PA)

(by Theorem 3.3.10)
iff satgpec(s) € M(Px) U M(Pa)

(because there is no predicate symbol occurring both in P¢ and in Py)
iff satgpec(s) € M(Pa)

(because sat is the only predicate symbol occurring in Py).
Now, we show that satsec(s) € M(Pa) iff satgpe.(s) € M(Pg). Let C be the
set of constrained atoms considered at the beginning of Phase B. Since: (i)
P, is stratified (by Lemma 4.4.2), (ii) C D {(c, A) | (¢, A, X) € CP(P4)}, (iii)
(init(X), sat spec (X)) € C, and (iv) D |= init(s), then by Theorem 3.3.15 we
have that, satgpec(s) € M (Pa) iff satspec(s) € M(Pg).
Finally, we have that satg.c(s,p) € M(Pg) iff satgpec(s) € M (P spec). In-
deed, during Phase C rule R1 is not applied and rule R5 is applied only in
its restricted form R5r and, thus, by Theorem 3.3.10, we have that M (Pg) =
M(PIC,spec)- O

Theorem 4.4.4. The verification strategy always terminates.

Proof. We prove the termination of Phase A, Phase B, and Phase C separately.
Termination of Phase A. Let us first show the termination of each application
of Steps 1, 2, and 3.

Termination of Step 1. Let us consider an application of Step 1 starting from
a definition v. Let T be the tree constructed as follows: (i) the root of T is the
definition v and (ii) for any two nodes 14 and vy in T', 15 is a child of vy iff vy
is obtained by unfolding v;. Since the input program Py constructed by the
Encoding Algorithm is finite, each application of the unfolding rule w.r.t. an
atom of the form sat(X, ) produces a finite number of clauses. Thus, every
node of T" has a finite number of children. Now, we show that every path in
T is finite. Let us consider the well-founded ordering >, over atoms defined
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as follows. For all atoms of the form sat(X, 1) and sat(Y,1)9), sat(X,11) >,
sat(Y, o) iff length(yn) > length(1s). Let >. be the well-founded ordering
over clauses defined as follows. For all clauses v1: Hy < ¢,G1 and vy: Hy
d,Go, 11 >, vy iff G9 can be obtained from (G by replacing a literal L of
the form A or —A by a conjunction of literals Ly,..., L, such that, for all
1 =1,...,n, L; is of the form A; or =A; and A >, A;. Now notice that,
the unfolding rule is applied w.r.t. atoms of the form sat (X, 1)), where either 1
belongs to Elem or 1) is of the form —); or % is of the form 1 As. Moreover, by
the construction of Py, this application of the unfolding rule replaces the atom
sat(X,1) by a constrained goal of the form ¢, sat(Xy,41),...,sat(Xk, ¥k),
where k£ > 0 and, for ¢ = 1,...,k, 1; is a proper subformula of . Thus, if
V9 is a child of v4 in T then v >, 9. This proves that there exist no infinite
paths in T" and therefore the set of nodes of T is finite. Thus, also the set of
clauses derived by applications of the unfolding rule during Step 1 is finite.
Since we perform at most one application of the clause removal rule or the
constraint replacement rule to the clauses derived by unfolding, we have that
Step 1 terminates.

Termination of Steps 2 and 3. Tt is guaranteed by the following two facts: (i)
the set I of clauses is finite, and (ii) every clause contains a finite number of
literals in its body, and thus, there is only a finite number of call patterns.
Now we prove the termination of Phase A. The number of iterations of the
outermost while-loop is equal to the number of definitions introduced during
the applications of Step 2. Thus, the termination of Phase A follows from
the fact that only a finite number of definitions are introduced. Indeed, every
application of the constrained atomic definition rule performed at Step 2 intro-
duces a clause v of the form newp(X) < gen(c(X)), sat(X, 1) where: (i) gen
is a function with a finite codomain (see Section 4.4.1), (ii) ¢ is a subformula
of the initial CTL formula ¢, and (iii) the body of v is not a variant of the
body of any clause introduced by previous applications of the definition rule.
Termination of Phase B. Phase B terminates because the input program Py
is finite and in every clause there is a finite number of basic constraints.
Termination of Phase C. It follows from the following facts: (i) the input
program Ppg is stratified (see Lemma 4.4.2), and (ii) each application of a
transformation rule in the repeat-loop removes either a clause or a constraint
or a literal. U

Now, we can prove the soundness of our verification method based on pro-
gram specialization.

Theorem 4.4.5. [Soundness of the Verification Method| Let K be a Kripke
structure whose initial states are specified by the constraint init(X), and let ¢
be a CTL formula. Let Px be the locally stratified CLP program constructed by
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using the Encoding Algorithm. Let the predicate satspe. and the program Px spec
be the output of the verification strategy. If the fact satgpec(X) < occurs in
Px spec then KC,s = ¢ holds for all initial states s of K.

Proof. Let s be an initial state of IC, that is, D |= init(s). Since the fact
satspec(X) < occurs in Py gpec then satgpec(s) € M(Px gpec) and, by the
correctness of the verification strategy (see Theorem 4.4.3), we have that
sat(s,p) € M(Px). Thus, by the correctness of the Encoding Algorithm (see
Theorem 4.3.2), K, s = ¢ holds. O

4.4.3 An Example of Application of the Verification Strategy

Let us consider the Kripke structure K presented in Example 4.3.3 and let P
be the program constructed by using the Encoding Algorithm. We will verify
that I, (a,0) = —AF neg, where neg holds in a state (X7, Xy) iff Xy < 0,
by proving that sat(a,0,—AF neq) € M(Px). We will do so by applying
the verification strategy to the input program Py and the constrained atom
X1 =a,X9=0,sat(Xq, X9, 7AF neg). The verification strategy will start off
by introducing the clause:

1. satspec(X] s XQ) +— X4 =a, Xy :0, sat(X1 s XQ, -AF neg)
The proof of the property of interest will consist in deriving the clause:
Satspec(Xla XQ) —

The generalization function gen to be used during the application of the strat-
egy is defined as follows. The set Ex of constraints computed from PcU{1} as
indicated in Section 4.4.1 is {X9 <0, X1 =a, X9 <0, X9 >0, X; =5, X9=0}.
The partition of = X5 < 0 is X9 > 0 and the partitions of the negations of
the other constraints in Ex generate constraints in Fx. Thus, the set E of
constraints is defined as follows:

E:EKU{XQZO}

Let C(E) be the closure of {#rue} U E w.r.t. conjunction (see Section 4.4.1).
Then, given a constraint ¢(Xq, X3), gen(c(X1, X2)) is the least constraint in
C(E) w.r.t. the implication ordering, such that D | VX VX3 (¢(X1, X2) —
gen(c(X1, X2))).

Let us now describe how the verification strategy works in our example.

Phase A.
We start off by introducing the definition clause 1 in Defs and NewDefs.

First iteration.
Step 1: Unfolding-Replacement. We apply the unfolding rule to clause 1
w.r.t. the atom in its body and we derive:

2. sat gpec (X1, X2) <= X1 =0, X2=0, =sat(X1, Xo, AF neg)
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Step 2: Generalization. The only call pattern in clause 2 is:
X1=a,X9=0,sat(X1, X9, AF neg)
Since, the generalization of X1 =a, X9 =0 is X; =a, Xo =0 itself, we introduce
the following new definition:
3. newsatl(Xy, Xy) + X1=a,X2=0, sat(X1, Xo, AF neg)
Thus, Defs is {d1, d3}.
Step 3: Folding. By folding clause 2 using clause 3, we derive:
4. satgpec(X1, X2) < X1 =0, Xo=0, ~newsat1 (X, X>)
Now, NewDefs = {3} and we iterate the specialization process as follows.
Second iteration.

Step 1: Unfolding-Replacement. We apply the unfolding and constraint re-
placement rules to clause 3 and we derive:

5. newsatl(Xy, X9) « X1=a, Xo=2, sat(Xq, X9, AF neg)

Step 2: Generalization. The only call pattern in clause 5 is:
X1=a,X9=2, sat(X1, X9, AF neg)
The generalization of the constraint X; =a A X9 =2 is X; = a, Xo > 0 and,
thus, we introduce the following new definition:
6. newsat2(Xy, Xy) + X1=a, X2 >0, sat(Xy, Xo, AF neg)
Defs is {1, 3, 6}.
Step 3: Folding. By folding clause 5 using clause 6, we derive:
7. newsatl(Xy, Xo) + X1=a,Xo=2, newsat2(Xy, Xs)

Since NewDefs = {6} we iterate the specialization process as follows.

Third iteration.
Step 1: Unfolding-Replacement. By unfolding and constraint replacement,
from clause 6 we derive:

8. newsat2(Xy, X9) + X1=0a,X9>0, X3=X, + 2, X, =0,

sat(Xy, X3, AF neg), sat(X4, Xo, AF neg)

Step 2: Generalization. The call patterns in clause 8 are (after variable renam-
ing):

X1=a,X9>2, sat(X1, X9, AF neg)

X1=b, X9>0, sat(X] , X9, AF neg)
We consider the first call pattern. The generalization of the constraint X; =
a, X9 > 2 is the constraint X; = a, X9 > 0 and, since the constrained atom
X1 = a, X9 > 0, sat(X;y, X9, AF neg) is the body of clause 6 in Defs, we
do not introduce a new definition for this constrained atom. Now we con-
sider the second call pattern in clause 8. Since the generalization of X; =
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b, X5 >0 is X =b, X5 >0 itself and no clause in Defs has body X; =5, X9 >
0, sat(X1, X9, AF neg), we introduce the definition:

9. newsat3(Xy, Xo) + X1=0,X9>0, sat(X1, X9, AF neg)
Thus, Defs is {1, 3, 6, 9}.

Step 3: Folding. By folding using clauses 6 and 9, from clause 8 we derive:
10. newsat2(X1, X9) «+ X1=0a,X9>0,X3=X9 + 2, X4=b,
newsat2( Xy, X3), newsat3( X4, Xs)
Now, NewDefs = {9} and we perform one more iteration of the specialization
process.

Fourth iteration.
Step 1: Unfolding-Replacement. We now proceed by applying the unfolding
and constraint replacement rules to clause 9 and we derive:

11. newsat3(Xq1, Xs) <+ X1=0b,X2>0, X5=X5 + 1, sat(Xy, X3, AF neg)

Step 2: Generalization. The only call pattern in clause 11 is (after variable
renaming): X1 =b, X9 > 1, sat(Xq, X9, AF neg). The generalization of X; =
b,XQ >11s Xy = b, X9 >0. Since X; = b, X9 > 0, sat(X1,X2,AF neg) is the
body of clause 9 in Defs, we need not introduce any new definition.

Step 3: Folding. By folding clause 11 using 9, we derive:

12. newsat3 (X1, X9) < X1=0b,X2>0, X3=X5 + 1, newsat3(Xy, X3)
Since there are no definitions in NewDefs we conclude Phase A with the fol-
lowing program Pj:

4. satgpec(X1, X2) < X1=0a, Xo=0, “newsatl(X;, Xs)

7. newsatl(Xy, Xo) + X1=a,X9=2, newsat2(Xy, Xs)

10. newsatQ(X1,X2) — X1=a,X2>0,X3=Xy + 2, X4y=0,

newsat2( Xy, X3), newsat3(Xy4, Xs)

12. newsat3 (X1, X9) < X1=0b,X2>0, X3=X5 + 1, newsat3(Xq, X3)

Phase B.
We consider the set C consisting of the following constrained atoms:
cpl. Xy =a,X9=0, satspec(X1,X2)
cp2. Xy=a,X9=0, newsatl(Xy, Xs)
cp3. Xy =a,X9=2, newsat2(Xy, Xs)
cpd. Xy =a, X9>2, newsat2(Xq, Xs)
cp5. X1=b,X5>0, newsat3(Xy, Xs)
cpb. X1=0b,X9>1, newsat3(X;, Xy)
where the constraint in cpl is init(X;, X2) and {cp2, cp3, cp4, cpb, cpb} is
the set CP(P,4) of the call patterns in Py (after variable renaming). We apply
the contextual constraint replacement rule for deleting redundant constraints
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from the clauses of P4 as follows. We delete the constraint X; = a, X9 =0
from clause 4, because it is implied by the constraint in cpl, and we derive the
following clause:

13. satgpec(X1, X2) « —newsat1(X;, Xo)

We also delete the constraint X >0 from clause 10, because it is implied by
the constraints of the call patterns cp3 and cp4 of newsat2(X;, X9). We derive
the following clause:

14. newsat2(X1,Xs) + X1=a,X3=Xo+ 2, X4 =b,
newsat2( Xy, X3), newsat3(Xy4, Xs)

Similarly, we remove the constraint Xo >0 from clause 12 thereby obtaining
the clause:

15. newsat3(X1, Xo) + X1=b, X3=X9 + 1, newsat3(X1, X3)

Thus, we end Phase B with program Pp consisting of clauses 13, 7, 14, and
15.

Phase C.

We compute a stratification of the program Pp and we get Pg = S; U Sy,
where S; = {7,14,15} and Sy = {13}. Then, we process the two strata of Pg
as follows.

Stratum S;. Since the predicates newsatl, newsat2, and newsat3 are useless
in S1, we remove their definitions and we derive S; = ().

Stratum So. The atom newsat1(X;, X3) is failed in the program S; US,, which
contains clause 13 only. Thus, by applying the negative unfolding rule R2n to
clause 13, we derive our final, specialized program Py .. which consists of the
following clause:

16. satspec()ﬁ s XQ) —
Thus, as desired, we have proved that K, (a,0) = —AF neg holds.

4.5 Examples of Protocol Verification via Specializa-
tion

Now we present the verification of three protocols by using our method based
on program specialization: (i) the Bakery Protocol [42], (ii) the Ticket Proto-
col [4], and the Bounded Buffer Protocol [12].

The Bakery Protocol and the Ticket Protocol ensure mutual exclusion be-
tween two concurrent processes A and B trying to access a shared resource. We
verified that either of these protocols: (i) indeed guarantees mutually exclusive
accesses to the resource, and (ii) will eventually serve a process requesting the
resource.
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a:=0

a:=b+1 a<b V b=0

(think, a) > (wait,a) | »  (use,a)

Figure 4.5.1: Process A of the Bakery Protocol.

The Bounded Buffer Protocol governs the interaction between two message
producers and two message consumers communicating through a shared buffer
of limited size. We verified that no message is lost during communications.

The verification of all the temporal properties was performed automati-
cally by using the experimental constraint logic program transformation sys-

tem MAP [26].

4.5.1 The Bakery Protocol

The state s 4 of process A is represented by a pair (¢4, a) where ¢4 is an element
of the set {think, wait, use} of control states, and a is a counter which takes as
value a non negative real number (we could have used natural numbers instead,
but real numbers allow us a simpler constraint solver for Ry;,). Analogously,
the state sp of process B is represented by a pair (cg,b).

The evolution over time of process A is modeled by the transition relation
R4 (depicted in Figure 4.5.1) which also uses the counter b associated with
process B:

Ry = {((think,a),(wait,b+ 1))} U
{({wait,a) , (use,a))|a <borb=0}U
{((use,a) , (think,0))}

The evolution over time of process B is modeled by an analogous transition
relation Rp, where a and b are interchanged.

The state of the system resulting by the asynchronous parallel composition
of processes A and B, is represented by the 4-tuple (c4,a,cp,b). Thus, the
transition relation of the system is (here and in the following examples, for
reasons of simplicity, we will feel free to omit some angle brackets):

R = {(sAasBaslAasB) ‘ (sAa QIA) € RA}U{(SAasBa SAasIB) ‘ (SB’ QIB) € RB}

This system has an infinite number of states, because counters may increase
in an unbounded way, as the following computation path illustrates:

(think, 0, think,0), (wait, 1, think,0), (wait, 1, wait,2), (use, 1, wait,2),
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(think,0, wait, 2), (think, 0, use, 2), (wait, 3, use,2), (wait, 3, think,0), ...
The set I of initial states is the singleton {(think,0, think,0)}.

We have applied our specialization method to the verification of two prop-
erties of the Bakery Protocol: (i) the mutual exclusion property, and (ii) the
starvation freedom property. The mutual exclusion property is a safety prop-
erty which says that ‘the system will never reach a state where both processes
are using the shared resource’. The starvation freedom property is a liveness
property which says that ‘if a process wants to use a resource then it will even-
tually get it’. The mutual exclusion property can be expressed by the CTL
formula —EF unsafe, where unsafe is an elementary property which holds iff
both processes are in control state use, that is,

for all states s € S, unsafe € L(s) iff s is of the form (use, a, use, b)
where a and b are non negative real numbers.

The starvation freedom property for a process, say process A, can be ex-
pressed by the CTL formula = EF(wait A—AF use). The elementary properties
wait and use hold are defined as follows:

for all states s € S, wait € L(s) iff s is of the form (wait, a, cp,b), and
for all states s € S, use € L(s) iff s is of the form (use,a,cp,b)

where a and b are non negative real numbers and cp € {think, wait, use}.

4.5.2 The Ticket Protocol

The Ticket Protocol [4] provides an alternative solution to the mutual exclusion
problem. The interaction of the two processes A and B is controlled by a
process C' which assigns tickets to A and B.

The states of the processes A and B are represented as for the Bakery
Protocol. The state s¢ of process C' is represented by a pair (¢,n) of non
negative real numbers, where ¢ is used for assigning a new ticket to A or B,
and n provides an upper bound for the value of the tickets required for accessing
the critical section.

The overall system is (A|C) || (B|C) where | denotes the synchronous
parallel composition and || denotes the asynchronous one. The transitions for
(A|C) are specified by the following relation R4 ¢ (see also Figure 4.5.2):

Rayje = {((think,a,t,n),(wait,t,t +1,n))} U
{({wait, a,t,m) , (use,a, t,n)) [ < n} U
{((use,a,t,n),(think,(],t,n—i—l))}

The transitions for (B |C) can be specified by a relation Rp|¢, which is ob-
tained replacing a by b in Ry |c.
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n:=n+l

t
t+1 / \ a<n

> (wait,a,t,n)

Figure 4.5.2: The Ticket Protocol: (A4]|C).

a
t:

(think,at,n) (use,a,t,n)

The state of the overall system is represented by the 6-tuple (ca,a,cp,b,t,n)
and its transition relation is the following:

R ={(s4,5B,580,84,8B,5¢) | (84,5¢,5),5¢) € Rajc}U
{(sa,sB,8¢,54,5%,s:) | (sB,sc, s, s¢) € RB‘C}
This system has an infinite number of states, because there is no upper bound
to the values of ¢ and n.

The set I of the initial states is {(think,0, think,0,t,n) |t=n}.

We have applied our verification method for proving the mutual exclusion
property and the starvation freedom property of the Ticket Protocol. The
mutual exclusion property can be expressed by the CTL formula —EF unsafe.
The elementary property unsafe is defined as follows:

for all states s € S, unsafe € L(s) iff s is of the form (use, a, use,b,t,n)

where a,b,t and n are non negative real numbers.

The starvation freedom property for a process, say process A, can be ex-
pressed by the CTL formula =EF(wait A =AF use). The set of states where
the elementary properties wait and use hold can be defined as follows:

for all states s € S, wait € L(s) iff s is of the form (wait, a,cp,b,t,n), and
for all states s € S, use € L(s) iff s is of the form (use,a,cp,b,t,n)

where a, b, t, and n are non negative real numbers and cg € {think, wait, use}.

4.5.3 The Bounded Buffer Protocol

The Bounded Buffer Protocol governs the interaction of five processes: two
producers Py, Py, two consumers Cy,(Cy and the buffer B.

The state sp; of process P;, where i € {1,2}, is represented by a real number
p; which is the number of messages produced by P; during the protocol run.
Analogously, the state sc¢; of process Cj, where i € {1,2}, is described by a
real number ¢; which is the number of messages consumed by C; during the
protocol run. The state b of the buffer B is described by a pair (S, A) of real
numbers where S denotes the buffer size (which does not change over time)
and A denotes the number of available locations.
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The overall system is (Py | B) || (P2 | B) || (C1| B) || (C2 | B) where the tran-
sitions for (P;| B), where i € {1,2}, are specified by the following relation:

Rp, g ={((pi. S, A),(p; +1,5,A—1))| A >0}
and the transitions for (C; | B), where i € {1,2}, are specified by the following
relation:

RCZ\B:{(<C77’S’7A>ﬂ<c’l+1757A+1>)|A<S}

The state of the overall system is represented by the 5-tuple (sp1, $po, sc1, s¢2, b)
and its transition relation is the following;:

R = (Uie{]g}{(spla Sp2, SC1, SC2, b) ‘ (spia ba sp;a b’) € RPZ' | B}) U

(Uie{hg}{(SP]75;02,501,50275) | (sci, b, scj,b') € Rcim})
This system has an infinite number of states, because sp1, spg, sc¢; and scy do
not have an upper bound.

The set Sy of initial states is {(0,0,0,0, (S, A)) | A=S}.

We have applied our verification method for proving that no message is lost
during the evolution of the system, that is, ‘the number of non empty locations
in the buffer is equal to the number of messages produced and not consumed’.

This property can be expressed by the CTL formula —EF lost, where lost
is defined as follows:

for all states s € S of the form (sp1, sp2, sc1, sca, (S, A)),
lost € L(s) iff (S—A > sp1+spa—sc1—sca) V (S—A < sp1+spa—sc1—5¢3).

4.6 Extending the Verification Method

We now present two extensions of our Verification Method. The first extension
allows us to extend the applicability of our Verification Method to a larger class
of concurrent systems, by restricting the class of CTL formulas which can be
used for specifying the property to be verified. The second extension allows us
to prove the truth of some CTL formulas by performing a backward traversal
of the state space.

Let us consider the proper subset CTLg of CTL formulas generated by the
following grammar:

pu=p| 0| o1 Aoa | EX@ | EU(pr1, )
which consists of all the CTL formulas constructed without using the operator
AF.

We now modify some of the assumptions of Section 4.3 which were needed
for expressing the transition relation by using constraints.
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A relational event is a formula of the form cond(X) A act(X,Y), such
that, D |= VX cond(X) — 3Y act(X,Y), where cond(X) and act(X,Y) are
constraints whose free variables are X and X UY, respectively.

Notice that the above definition differs from the definition of event pre-
sented in Section 4.3. Indeed, in the definition of event, we require that action
act is a functional relation, that is, D = VX,Y, Z act(X,Y) A act(X,Z) —
Y = Z, thus disallowing actions of the form X > Y. This condition can now
be relaxed because it was only needed for introducing the clauses which specify
the truth of CTL formulas of the form AF ¢ which are not present in CTLpg.

We assume that there exists a disjunction ¢1(X,Y) V... V#(X,Y) of re-
lational events satisfying the following condition:

(TR) for all states s; and s2 in S we have

(31, 82) €eR iff D ‘: tl(Sl, SQ) V...V tk(Sl, 82)

The class of concurrent systems which can be specified by using the definitions
presented above allow us to specify a concurrent system K = (S, I, R, L) such
that, for some state s € S, the set {s'|(s,s’) € R} is infinite, and thus it is
strictly larger than the class of concurrent systems of [76].

The following theorem states the correctness of the method presented in
Section 4.3 with the modified definitions above.

Theorem 4.6.1. |Correctness of the Encoding| Let K = (S, I, R, L) be a con-
current system satisfying the conditions presented above and let P be a locally
stratified program constructed by applying the Encoding Algorithm. Then, for

all states s € S and for all formulas ¢ in CTLE, we have that
K,s=¢ ff sat(s,p) € M(Px)

Proof. (Outline) The proof is similar to the proof of Theorem 4.3.2. O

We now describe the second extension of our Verification Method which
allows us to prove the truth of CTL formulas of the form —EFp or =EX p,
where p is an elementary property, by exploring the state space backwards.
This extension can be applied to the extended class of concurrent systems
described above.

Let £ = (S,I,R, L) be a concurrent system and let p be an elementary
property such that the set S, = {s € S|p € L(s)} of states in which p is true
can be expressed by a constraint ¢(X) over the system variables, that is, for
all states s we have

se Sy, iff Dl=c(s)

Moreover, we assume that the set I of initial states can be expressed by a
constraint nit(X), that is, for all states s we have

sel iff D= init(s)
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Let init be an elementary property and let X' = (S, S,, R', L) be a concurrent
system where:

o R'={(s,s)](s,s') € R} is the inverse of the transition relation R,
e L' is a labeling function such that, for all s’ € S, init € L'(s) iff s € I.

Then we have that

K',s' |= =EF init holds for all s' € S, iff K,s|=-FEFp holds for all s € I
and

K',s" = =EX init holds for all s' € S, iff K,s|=-EX pholds for all s € T

Thus, in order to prove the truth of the CTL formula —EF p (respectively,
- FEX p) in system K we can apply our verification method to the CTL formula
- FEF init (respectively, =E X init) and the system K'.

For reasons of simplicity in this section we assumed that the set I of initial
states and the set S, can be expressed by a constraint over the system variables.
However, the extension to the more general case, where the sets I and S, are
specified by using disjunctions of constraints, is straightforward.

4.7 Related Work

In recent years many logic-based techniques have been developed for auto-
matically verifying properties of concurrent systems, the most successful of
them being model checking [14]|. The success of model checking is also due to
the use of Binary Decision Diagrams which provide a very compact symbolic
representation of a possibly very large, but finite, set of states. In order to
overcome this finiteness restriction, some efforts have recently been devoted
for dealing with infinite state systems by incorporating into model checking
some abstraction and deduction techniques (see |77] for a brief survey).

Recent papers also demonstrate the usefulness of logic programming and
constraint logic programming as a basis for the verification of finite or infinite
state systems.

In [67] the authors present XMC, a model checking system implemented in
the tabulation-based logic programming language XSB[71]. XMC can verify
temporal properties expressed in the alternation-free fragment of the p-calculus
of finite state concurrent systems specified in a CCS-like language. The XMC
implementation contains many source-level optimizations which take advan-
tage of the tabulation-based execution mechanism of XSB, thereby achieving
performances comparable to those of state-of-the-art model checkers.

A method for the verification of some CTL properties of infinite state con-
current systems using constraint logic programming is described in [20]. De-
pending on the formula and the system being verified, suitable CLP programs
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are introduced. The truth of CTL properties is then verified by computing
exact and approximated least and greatest fixed points of those programs, but
unfortunately there is no guarantee of termination.

In |45] the authors show that a restricted form of partial deduction of logic
programs, augmented with abstract interpretation, is sufficient to solve all
coverability problems of infinite state Petri nets. Moreover, it is shown how it
is possible to compute the Karp-Miller tree and Finkel’s minimal coverability
set, by using partial deduction algorithms.

In [58] a model checker is presented for verifying CTL properties of finite
state systems, by using CLP programs over finite constraint domains which
are closed under conjunction, disjunction, variable projection and negation.
The verification process is performed by executing a CLP program encoding
the semantics of CTL in an extended execution model which uses constructive
negation and tabled resolution.

In [30] an automatic method for verifying safety properties of infinite state
Petri nets with parametric initial markings is presented. The method tries
to construct the reachability set of the Petri net being verified by computing
the least fixpoint of CLP with Presburger arithmetic constraints. Invariant
checking and transformations of Petri nets are used for improving performance.

A method for proving safety and liveness properties for parameterized fi-
nite state systems with various network topologies is presented in [69]. The
verification process is carried out by proving goal equivalence in logic programs
using unfold/fold based program transformation.

This chapter presents a systematic method for verifying CTL properties
of infinite state concurrent systems based on a variant of the techniques de-
veloped in [27] for specializing constraint logic programs. The main features
by which our method may show some advantages w.r.t. the above-mentioned
approaches are: (i) we consider infinite state concurrent systems [76] whose
transitions can be specified by constraints over a generic domain, (ii) we ver-
ify properties specified by using any CTL formula, and (iii) our verification
method terminates in all cases.

We have applied our verification method to the familiar examples of: the
Bakery Protocol [42], the Ticket Protocol [4], and the Bounded Buffer Protocol
[12]. We have proved that the first two protocols ensure mutual exclusion
and starvation freedom. We have also proved that no message is lost when
complying with the Bounded Buffer Protocol.

We believe that the use of CLP as modeling language together with pro-
gram specialization as inference system, provides a very flexible and powerful
tool for the verification of infinite state systems. Indeed, constraints allow sim-
ple representations of infinite sets of values, and the declarativeness of logic
programming makes it easy to model a large variety of systems and properties.

Future work on the application of specialization of CLP programs for the
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verification of infinite state systems will include: experimentation with different
choices of constraint domains and generalization operators, and experimenta-
tion with different classes of systems and properties.



Jo coAririv 4. VordfICATION OF INFINILE STALTE SYS1TRIMDS




Chapter 5

Systems with an Arbitrary
Number of Infinite State
Processes

In this chapter we present a method for the verification of safety properties
of concurrent systems which consist of finite sets of infinite state processes.
This method is an enhancement of the method proposed in Chapter 4. Sys-
tems and properties are specified by using constraint logic programs, and the
inference engine for verifying properties is provided by a technique based on
unfold/fold program transformations. We deal with properties of finite sets of
processes of arbitrary cardinality, and in order to do so, we consider constraint
logic programs where the constraint theory is the Weak Monadic Second Order
Theory of k Successors. Our verification method consists in transforming the
programs that specify the properties of interest into equivalent programs where
the truth of these properties can be checked by simple inspection in constant
time. We present a strategy for guiding the application of the unfold/fold rules
and realizing the transformations in a semiautomatic way.

5.1 Introduction

As already mentioned, model checking can be used for the verification of tem-
poral properties of concurrent systems consisting of a fixzed number of finite
state processes [14]|. In Chapter 4 we have presented a technique for extending
model checking to concurrent systems consisting of a fized number of infinite
state processes. Recently, there have been various proposals to extend model
checking for verifying properties of systems consisting of an arbitrary num-
ber of infinite state processes (see, for instance, [56, 63, 77]). The verification
problem addressed by these new proposals can be formulated as follows: given

99
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a system Sy consisting of N infinite state processes and a temporal property
©n, prove that, for all N, the system Sy verifies property .

The main difficulty of this verification problem is that most properties of
interest, such as safety and liveness properties, are undecidable for that class
of concurrent systems, and thus, there cannot be any complete method for
their verification. For this reason, all proposed methods resort to semiau-
tomatic techniques, based on suitable abstractions, reduction to finite state
model checking, and mathematical induction.

This chapter describes a method for verifying safety properties of systems
consisting of an arbitrary number of infinite state processes. Our method
avoids the use mathematical induction by abstracting away from the number
N of processes actually present in the system. Indeed, this parameter does not
occur in our encodings of the systems and the safety properties to be verified.
These encodings are expressed as constraint logic programs, whose constraints
are formulas of the Weak Monadic Second-order Theory of k Successors, de-
noted WSKS [82]. These programs will be called CLP(WSkS) programs. By
using these encodings, the actual cardinality of the set of processes in the sys-
tems is not needed for the proofs of the formulas expressing the properties of
interest.

Our method uses the transformation rules of Section 3.2 as inference rules
for constructing proofs. Other verification methods proposed in the literature
are based on CLP and/or program transformation |20, 28, 29, 47, 58, 67, 70].
However, those methods deal either with: (i) finite state systems [58, 67],
or (ii) infinite state systems where the number N of infinite state processes is
fixed in advance [20, 28, 29, 47|, or (iii) parameterized systems, that is, systems
consisting of an arbitrary number of finite state processes [70]. A more detailed
discussion of these methods can be found in Section 5.6.

In the concurrent systems we consider, every process evolves according to
its local state, called the process state, and the state of the other processes.
Correspondingly, the whole system evolves and its state, called the system
state, changes.

We assume that each process state consists of a pair (n,s) € IN x CS,
where IN denotes the set of natural numbers and CS is a finite set. n and s
are called the counter and the control state of the process, respectively. Notice
that, during the evolution of the system each process may reach an infinite
number of distinct states.

Since two distinct processes in a given system may have the same (counter,
control state) pair, a system state is a multiset of process states.

As usual in model checking, a concurrent system is viewed as a Kripke
structure K = (S, I, R, L), where: (i) S is the set of system states, that is, the
set of the multisets of (control state, counter) pairs, (ii) I C S is a set of initial
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system states, (iii) R C Sx .S is a transition relation, and (iv) L : S — P(Elem)
is a function which assigns to each state s € S a subset L(s) of Elem, that is,
a set of elementary properties which hold in s.

We also assume that for all (X,Y) € R, we have that Y = (X —{z}) U {y}
for some process states x and y, where obviously, the difference and union
operations are to be understood in the multiset sense. Thus, a transition from
a system state to a new system state consists in replacing a process state by a
new process state. This assumption implies that: (i) the number of processes
in the concurrent systems does not change over time, and (ii) the concurrent
system we are modeling is asynchronous, i.e., the processes of the system do
not necessarily synchronize their actions.

We will address the problem of proving safety properties of systems. A
safety property is expressed by a formula of the Computational Tree Logic (see
Section 4.2) of the form —EF (unsafe), where unsafe is an elementary property
and EF is a temporal operator. The meaning of any such formula is given via
the satisfaction relation K, X |= =EF (unsafe) which holds for a system K and
a system state Xy iff there is no sequence of states Xg, X1, ..., X, such that:
(i) fori =0,...,n— 1, (X;, Xit1) € R and (ii) X, € unsafe.

We may extend our method to prove more complex properties, such as
those which can be expressed by using, in addition to — and EF, other logical
connectives and CTL temporal operators. However, for simplicity reasons, in
this chapter we deal with safety properties only, and we do not consider nested
temporal operators.

Now we outline our method for verifying that, for all initial system states
X of a given system /C, the safety property ¢ holds. For the notions of locally
stratified program and perfect model we refer to Section 3.1.

Verification Method.

Step 1. (System and Property Specification) We introduce: (i) a WSkS formula
init(X) which characterizes the initial system states, that is, X is an initial
system state iff init(X) holds, and (ii) a locally stratified CLP(WSkS) program
Px which defines a binary predicate sat such that for each system state X,

K, X E ¢ iff sat(X,p) € M(Px)
where M (Px) denotes the perfect model of the program P.

Step 2. (Proof Method) We introduce a new predicate satgpe. defined by the
CLP(WSKkS) clause F: sat g (X) < init(X), sat(X, ), where X is a variable.
We then apply the transformation rules of Section 3.2, and from program
P U {F} we derive a new program P gpec.

If the clause satgpe.(X) « init(X) occurs in Pk gpe. then for all initial system
states X, we have that I, X = ¢ holds.
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The choice of the perfect model as the semantics of the program Py requires a
few words of explanation. By definition, I, X |= —¢p holds iff £, X = ¢ does
not hold, and this fact can be expressed by the clause:

C: sat(X,—p) + —sat(X,p)

where — in the head of C is interpreted as a function symbol, while — in
the body of C' is interpreted as negation by (finite or infinite) failure. Now,
since clause C is locally stratified and the other clauses for sat do not contain
negated atoms (see Section 5.2.2), the semantics of negation by failure is the
one captured by the perfect model (recall that for locally stratified programs
the perfect model is identical to the stable model and the well-founded model

[6])-

This chapter is structured as follows. In Section 5.2 we describe Step 1
of our verification method and we introduce CLP(WSkS) programs, that is,
constraint logic programs whose constraints are formulas in the WSkS theory.
In Section 5.3 we illustrate our specification method by considering the case
of a system of N processes which use the bakery protocol for ensuring mutual
exclusion [42]. In Section 5.4 we show how Step 2 of our verification method
is realized by applying a semiautomatic strategy for guiding the application of
the transformation rules presented in Section 3.2 and constructing the proofs
of the properties of interest. In Section 5.5, we will see our strategy in action
for the verification of the N-process bakery protocol. Finally, in Section 5.6
we compare our method with the current literature in the field and we discuss
possible enhancements of our method.

5.2 System and Property Specification using Weak
Monadic Second Order Theories and CLP

In this section we describe Step 1 of our verification method and, in particular,
we indicate how to specify a system consisting of a set of infinite state processes
and how to specify its safety properties.

In order to specify a system K = (S,I,R, L), we use the WSKS theory
[82]. This theory is decidable [81] and it allows us to express properties of
finite sets of finite strings over an alphabet of k£ symbols. In order to use
WSKS, we represent a process state as a finite string and a system state, that
is, a finite multiset of process states, as a finite set of finite strings. S is the
set of system states. The set I C S of initial system states is specified by a
WSKkS formula init(X), where X is a variable ranging over finite sets of finite
strings. Similarly, the transition relation R and the elementary properties in
Elem (and, as a consequence, the labeling function L) are specified by formulas
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of the form r(X,Y) and e(X), respectively, where X and Y range over finite
sets of finite strings.

In order to specify safety properties, that is, the sat relation indicated at
Step 1 of our verification method, we now introduce CLP programs whose
constraints are WSkS formulas, denoted CLP(WSkS).

5.2.1 Constraint Logic Programs over WSkS

The syntax of WSKS is defined as follows. Let us consider a set ¥ = {s1,..., s}
of k symbols, called successors, and a set Ivars of individual variables. An
individual term is either a string o or a string xo, where x € Ivars and o € 3%,
i.e., the set of the finite strings of successor symbols. By € we denote the empty
string.

Let us also consider a set Svars of set variables ranged over by X,Y, ...

WSKS terms are either individual terms or set variables.

Atomic formulas of WSKS are either (i) equalities between individual terms,
written ¢ =t9, or (ii) inequalities between individual terms, written #; <ts, or
(iii) membership atomic formulas, written ¢ € X, where ¢ is an individual term
and X is a set variable.

The formulas of WSkS are constructed from the atomic formulas by means
of the usual logical connectives and the quantifiers over individual variables
and set variables. Given any two individual terms, ¢; and to, we will also write
t1 # to and t; < t9, as a shorthand for — (t; = t3) and t; <ty A = (1 = t2)
respectively.

The semantics of WSkS formulas is defined by considering the interpre-
tation W with domain »* such that = is interpreted as string equality, < is
interpreted as the prefix ordering on strings, and € is interpreted as member-
ship of a string to a finite set of strings. We say that a closed formula ¢ of
WSKS holds iff W = ¢. The relation W |= ¢ is recursive [81].

A CLP(WSKS) program is a set of many-sorted first order formulas [23].
There are three sorts: string, stringset, and tree, interpreted as finite strings,
finite sets of strings, and finite trees, respectively. We use many-sorted logic to
avoid the formation of meaningless program clauses such as p(X, s1) + X =91,
where X is a set variable of sort stringset and s; is a constant in Y of sort
string.

CLP(WSKkS) terms are either WSkS terms or ordinary terms (that is, terms
constructed out of variables, constants, and function symbols distinct from
those used for WSKS terms). The WSkS individual terms are assigned the
string sort, the WSKS set variables are assigned the stringset sort, and ordinary
terms are assigned the tree sort. Each predicate of arity n is assigned a unique
sort which consists of an n-tuple (iq, ..., iy,) of sorts. For instance, the predicate
€ is of sort (string, stringset). We assume that CLP(WSKkS) programs are

Y
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constructed by complying with the sorts of terms and predicates.

An atom is an atomic formula whose predicate symbol is not in {<,=, €}.
As usual, a literal is either an atom or a negated atom. A CLP(WSKkS) clause
is of the form A < ¢, L1, ..., L,, where A is an atom, c¢ is a formula of WSkS,
and Ly,...,L, are literals. We extended to constraint logic programs the
definitions of locally stratified program and perfect model, by adapting the
corresponding definitions relative to logic programs (see Section 3.1). Given a
locally stratified CLP program P, M (P) denotes the perfect model of P.

5.2.2 System and Property Specification Using CLP(WSkS)

Now we present our method for specifying systems and their safety properties
by using CLP(WSKkS). A system K will be specified as a tuple (S,I, R, L).
Recall that a system state consists of a multiset of process states, that is, a
multiset of pairs (n, s) where n € IN is a counter and s € CS is a control state.
We assume that CS is the finite set {s1,...,s,} of symbols.

We consider the following set of successor symbols: ¥ = {1,2} U CS.

A process state is represented as a term of the form 17s2™, where: (i) 17
and 2™ are (possibly empty) strings of 1’s and 2’s, respectively, and (ii) s is
an element of CS. For a process state 1"s2™ we have that: (i) the string 1"
represents its counter (the empty string e represents the counter 0), and (ii)
the symbol s represents its control state. The string 2™, with different values
of m, is used to allow different terms to represent the same (counter, control
state) pair, so that a set of terms each of which is of the form 1"s2™ can be
used to represent a multiset of process states.

Thus, a system state in S, which is a multiset of process states, is repre-
sented as a set of terms each of which is of the form 17s2™.

Now we will show that process states and system states are definable by
formulas in WSkS. First we need the following definitions (here and in the
sequel between parentheses we write the intended meanings):

e is-cn(z) = IX (Vyye X — (y=eV Iz (y=2z1AzeX))) NzeX)
(z is a term of the form 1" for some n >0, i.e., z is a counter)

e iscs(z) = x=s51V...VI=s
(z€ 09, i.e., z is a control state)

Here are the WSkS formulas which define process states and system states:

e ps(z) = 3X (VyyeX — (Indsy=ns A is-cn(n) A is-cs(s)) V
Jz (y=22 N zeX))) NzeX)
(z is a process state, that is, a term of the form 1"s2™ for some n,m >0

and s€ CS5)
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o 5s(X) =V (xreX — ps(z)) (X is a system state, that is, a set of terms
of the form 17s2™)

Now we describe the general form of the WSkS formulas which can be used
for defining the transition relation of a system. We need the following two
definitions:

e cn(z,n) = ps(z) A is-en(n) An<xz A Vy (y<z A is-cn(y)) = y<n)
(n is the counter of process state x)

o cs(x,s) = ps(z) Ais-cs(s) A (3y Fz (y<z Ais-en(z) N y=zs)
(s is the control state of process state x)

We recall that a transition is the replacement of a process state in a system
state by a new process state. The replacement relation is defined as follows
(the angle brackets (, ) are used to improve readability and they are not part
of the syntax of WSkS):

e replace((ny,s1), X, (n9,s2),Y) = ss(X) A ss(Y) A
dz(z€X A en(x,n1) Acs(x,s1))A
Jy(yeY A en(y,na) A es(y,s2)) A
Vz((z€X N z#1z) & (2z€Y A z#y))
(Y = (X—{z})U{y} for some process states z € X and y € Y such that:
(i) = has counter n; and control state s; and (ii) y has counter ng and
control state s9)

Since any transition relation R can be viewed as the union of a finite number,
say k, of relations, without loss of generality, we may assume that R is specified
by a disjunction of formulas, that is, 7(X,Y) = r(X,Y) V... Vr(X,Y) and,
foris=1,...,k:

e 7(X,Y) = 3Iny sy Ing sy (replace({ny, s1), X, (na, $2),Y) A
event;({n1, s1), X, (na, s2))

where event;((n1,s1), X, (ng, $2)) is any WSkS formula which specifies the
transition relation of the system under consideration. Thus, we stipulate that
(X,)Y)e Riff WEr(X,Y).

The set I of initial system states is specified by a WSkS formula init(X)
where the set variable X is the only free variable. Similarly, an elementary
property of system states is specified by a formula e(X) where the set variable
X is the only free variable.

Finally, the safety properties of the system /C are specified by means of the
following CLP(WSkS) program Pg:
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sat(X,el) +— e1(X)

sat(X, em) — en(X)

X, @) « - sat(X, )
() « sat(X, @)

X, EF
X, EF(yp)) « r1(X,Y), sat(Y, EF ()

£

sat(

sat(

sat(
sat(X, EF(p)) «+ r(X,Y), sat(Y, EF (¢))

where eq,..., e, are the elementary properties of system states.

For any system IC = (S, I, R, L), program Py is locally stratified w.r.t. the
size of the second argument of saf, and thus, it has a unique perfect model
M (Px). By Theorem 4.3.2 we have that, for any system state X in S and
safety property ¢ of the form —EF(e), where e is an elementary property, we
have that:

K, X =¢ iff sat(X,p) € M(Px)

5.3 An Example of System and Property Specifica-
tion: The N-Process Bakery Protocol

In this section we illustrate our method for specifying systems and properties
in the case of the N-process bakery protocol. This protocol ensures mutual
exclusion in a system made out of N processes which use a shared resource.
Mutual exclusion holds iff the shared resource is used by at most one process
at a time.

Let us first give a brief description of the protocol [42]. In this protocol each
process state is a (counter, control state) pair (n, s), where the control state s
is an element of the set CS = {t,w,u}. The constants t, w, and u stand for
think, wait, and use, respectively. The transition relation from a system state
X, which is a multiset of process states, to a new system state Y is specified
as follows (recall that the — and U operations refer to multisets).

(T1: from think to wait) if there exists a process state (n,t) in X, then
Y = (X — {(n,6)}) U{(m+1,u)}

where m is the maximum value of the counters of the processes states in X,

(T2: from wait to use) if there exists a process state (n, w) in X such that, for
any process state (m, s) in X — {(n,w)}, either m = 0 or n<m, then

V=X —{(nw}) U{{nu)}

(T3: from use to think)

V= (X ={(n,uw)}) U{{0,t)}
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An initial system state is any multiset of process states each of the form
(0,t).

The mutual exclusion property can be specified by using the CTL formula
- FEF(unsafe), where unsafe is an elementary property which holds in a system
state X iff there are at least two distinct process states in X with control state
u.

In order to give a formal specification of our N-process bakery protocol we
use the 5 successor symbols: 1, 2, t, w, and u. Thus, we consider the WS5S
theory. For specifying the transition relation in cases (T1) and (T2) above, we
define the following predicates maz and min:

e maz(X,m) = Iz (r€X A en(z,m)) A
Yy Vn (e X A en(y,n)) = n<m)
(m is the maximum counter in the system state X)

e min(X,m) = Jz (x€X A en(z,m)) A
Yy Vn ((yeX A y#z A en(y,n)) = (n=¢e V m<n))
(In the system state X there exists a process state  with counter m such
that the counter of any process state in X — {z} is either 0 or greater
than m. Recall that the term ¢ denotes the counter 0.)

The transition relation between system states is defined as follows: (X,Y) € R
it W= tw(X,Y)Vwu(X,Y)Vut(X,Y), where the predicates tw, wu, and ut
correspond to the transition of a process from think to wait, from wait to use,
and from wuse to think, respectively.

e tw(X,Y) = InImreplace((n,t), X, (m1,w),Y) A mazx(X,m)
(Y = (X—{z}) U{y}, where z is a process state in X with control state
t, and y is a process with control state w and counter m+1 such that m
is the maximum counter in X. Notice that the term m 1 represents the
counter m+1)

e wu(X,Y) = Inreplace((n,w), X, (n,u),Y) A min(X,n)
(Y = (X —{z}) U{y}, where z is a process state in X with counter n
and control state w such that the counter of any process state in X —{z}
is either 0 or greater than n, and y is a process state with counter n and
control state u)

e ut(X,Y) = Inreplace((n,u), X, (e, t),Y)
(Y = (X—{z}) U{y}, where z is a process state in X with control state
u, and y is a process state with counter 0 and control state t)

The initial and the unsafe system states are expressed by the following formu-
las:
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o init(X) = Vr (z€X — (en(z,e) A cs(z,t)))
(all process states in X have counter 0 and control state t)

e unsafe(X) = Ixy(x e X Nye X ANz #y A cs(z,u) Aces(y,u))
(there exist two distinct process states in X with control state u)

The following locally stratified CLP(WSkS) program Ppgpery specifies the pred-
icate sat of Step 1 of our verification method.
sat(X, unsafe) « unsafe(X)
sat(X,—F) « = sat(X, F)
sat(X EF( )) < sat(X,p)
sat(X, EF (p)) «+ tw(X,Y), sat(Y, EF(y))
sat(X, EF(p)) < wu(X,Y), sat(Y, EF(y))
sat(X, EF(p)) + ut(X,Y), sat(Y, EF (p))

Thus, in order to verify the safety of the bakery protocol we have to prove
that, for all system states X, if init(X) holds then sat(X,—EF (unsafe)) €

M(Pbakery)-

5.4 A Strategy for Verification

In this section we show how our verification method is performed by using the
unfold/fold rules of Section 3.2 for transforming CLP(WSkS) programs. In
particular, we present a semiautomatic strategy for guiding the application of
the transformation rules. We will see this strategy in action for the verification
of a safety property of the N-process bakery protocol (see Section 5.5).

Suppose that we are given a system K and a safety formula ¢, and we want
to verify that K, X |= ¢ holds for all initial system states X. Suppose also that
K and ¢ are specified by a CLP(WSkS) program Py as described in Section
5.2.2. We proceed as follows. First we consider the clause:

F. satgpec(X) < init(X), sat(X, @)

where: (1) satgpe is a new predicate symbol, and (ii) W = init(X) iff X is an
initial system state.

Then we apply the following verification strategy which uses a general-
1zation function gen. Given a WSkS formula ¢ and a literal L which is
the atom A or the negated atom —A, the function gen returns a definition
clause newp(vy,...,v,) « d, A such that: (i) newp is a new predicate sym-
bol, (ii) FV(d, A) = {v1,...,v,}, and (iii) W |= Vwn,...,w, (¢ = d), where
FV(c—d) ={wi,...,wy}.
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The Verification Strategy

Input: (i) Program Px, (ii) clause F': satgpe(X) « init(X), sat(X, ¢), and
(iii) generalization function gen.

Output: A program Py spec such that for every system state X, satgpe.(X) €
M (P U{F}) iff satgpec(X) € M(Px spec)-

Phase A. Defs := {F'}; NewDefs := Defs; P := Px;
while NewDefs # (0 do

1. from P U NewDefs derive P U Cy,s by unfolding once each clause in
NewDefs;

2. from P U Cyys derive P U C), by removing all clauses with unsatisfiable
body;

3. NewDefs := ();
for all clauses v € C, of the form H < ¢,G and for all literals L in G
such that « cannot be folded w.r.t. L using a clause in Defs do

NewDefs := NewDefs U {gen(c, L)};
Defs := Defs U NewDefs;

4. fold each clause in C, w.r.t. all literals in its body and derive P U Cpq;

5. P::PUCﬂd

end-while
Phase B.

1. from P derive P, by removing all useless clauses in P;

2. from P, derive Px g, by unfolding the clauses in P, w.r.t. every negative
literal occurring in them.

Our verification method ends by checking whether or not clause sat spe.(X)
init(X) occurs in program Py spec. If it occurs, then for all initial system states
X, we have that IC, X = .

The correctness of our verification method is a consequence of the following
two facts: (i) the transformation rules preserve perfect models, and (ii) perfect
models are models of the completion of a program.

Theorem 5.4.1. [Correctness of the Verification Method| Given a system K
and a safety property ¢, if satgpec(X) < init(X) occurs in Py gpec then for all
initial system states X, we have that K, X |= ¢.
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Proof. Let us assume that satspe.(X) < init(X) occurs in Py gpee and let
us consider an initial system state I. Thus, W |= init(I) and satge.(I) €
M (Px spec). By the correctness of the transformation rules (see Theorem
3.3.10), we have that satgpe.(I) € M(Pc U{F}). Since: (i) M(PcU{F})isa
model of the completion comp(Px U {F}), (ii) the formula VX (satspec(X) <
(init(X) A sat(X, ¢)) belongs to comp(Px U {F}), and (iii) W = init(I) we
have that sat(I,p) € M (P U{F}). Now, since no sat atom in M (P U {F})
can be inferred by using clause F', we have that sat(I,p) € M(Px) and, by
Theorem 4.3.2, K, I = ¢ . O

The automation of our verification strategy depends on the availability of
a suitable generalization function gen. In particular, our strategy terminates
whenever the codomain of gen is finite. Suitable generalization functions with
finite codomain can be constructed by following an approach similar to the one
described in Chapter 4. More remarks on this issue will be made in Section 5.6.

5.5 Verification of the N-Process Bakery Protocol
via Program Transformation

In this section we show how our verification strategy described in Section 5.4
is applied for verifying the safety of the N-process bakery protocol.

As already remarked at the end of Section 5.4, the application of our strat-
egy can be fully automatic, provided that we are given a generalization function
which introduces new definition clauses to allow folding steps (see Point 3 of
the verification strategy). In particular, during the application of the strat-
egy for the verification of the bakery protocol, we have that: (i) all formulas
to be checked for applying the transformations rules are formulas of WS5S,
and thus, they are decidable, and (ii) the generalization function is needed for
introducing clauses d3, d9, and d16.

We start off the verification of the N-process bakery protocol by introducing
the following new definition clause:
dl. satspec(X) < init(X), sat(X, ~EF (unsafe))

Our goal is to transform the program Ppper/U{d1} into a program Ppgery,spec
which contains a clause of the form sat gpe.(X) < init(X).
We start Phase A by unfolding clause 1 w.r.t. the sat atom, thereby obtaining

2. sat gpec(X) < init(X), = sat(X, EF (unsafe))

The constraint nit(X) is satisfiable and clause 2 cannot be folded using the
definition clause d1. Thus, we introduce the new definition clause

d3. newpl(X) « init(X), sat(X, EF (unsafe))

By using clause d3 we fold clause 2, and we obtain
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4. satgpec(X)  init(X), = newpl(X)

We proceed by applying the unfolding rule to the newly introduced clause d3,
thereby obtaining

5. newpl(X) < init(X) A unsafe(X)

6. newpl(X) < init(X) A tw(X,Y), sat(Y, EF (unsafe))

7. newpl(X) « nit(X) A wu(X,Y), sat(Y, EF (unsafe))

8. newpl(X) « init(X) A ut(X,Y), sat(Y, EF (unsafe))
Clauses 5, 7 and 8 are removed, because their bodies contain unsatisfiable con-
straints. Indeed, the following formulas hold: (i) VX —(init(X) A unsafe(X)),
(ii) VX VY —(init(X) A wu(X,Y)), and (iii) VX VY =(init(X) A ut(X,Y)).

Clause 6 cannot be folded using either d1 or d3, because VX VY (init(X) A
tw(X,Y) — init(Y)) does not hold. Thus, in order to fold clause 6, we intro-
duce the new definition clause

d9. newp2(X) < ¢(X), sat(X, EF (unsafe))
where ¢(X) is a new constraint defined by the following WS5S formula:

Ve (z € X — ((en(x,e) A es(x,t)) V (Fe (en(x,¢) A e<e) A es(z,w))))
denoting that every process state in the system state X is either (0,t) or (¢, w)

for some ¢>0. We have that VX VY (init(X) A tw(X,Y) — ¢(Y)) holds and
thus, we can fold 6 using d9. We obtain

10. newpl(X) « nit(X) A tw(X,Y), newp2(Y)
By unfolding the definition clause d9 we obtain

11. newp2(X) « ¢(X) A unsafe(X)

12. newp2(X) < ¢(X) A tw(X,Y), sat(Y, EF (unsafe))

13. newp2(X) « ¢(X) AN wu(X,Y), sat(Y, EF (unsafe))

14. newp2(X) < ¢(X) A ut(X,Y), sat(Y, EF (unsafe))
Clauses 11 and 14 have unsatisfiable constraints in their bodies and we remove
them. Indeed, the following formulas hold: (i) VX —(c¢(X) A unsafe(X)), and
(i) VX VY —(e(X) A ut(X,Y)).

We fold clause 12 by using the already introduced definition clause d9,
because VX VY (¢(X) A tw(X,Y) — ¢(Y)) holds. We obtain

15. newp2(X) « ¢(X) A tw(X,Y), newp2(Y)

However, clause 13 cannot be folded by using a definition clause introduced so
far. Thus, in order to fold clause 13, we introduce the following new definition
clause

d16. newp3(X) < d(X), sat(X, EF (unsafe))
where the constraint d(X) is the WS5S formula:
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Vr (r € X — ((en(z,e) A es(z,t)) V
(Fe (en(z,¢) Ne<e ) A es(z,w)) V
(Fn (en(z,n) A min(X,n) A e<n) A cs(z,u)))
denoting that every process state in the system state X is either (0, t), or (¢, w)
for some ¢ >0, or (n,u) for some n >0 such that no process state in X has

a positive counter smaller than n. We have that VX VY (¢(X) A wu(X,Y) —
d(Y')) holds, and thus, we can fold clause 13 using clause d16. We obtain

17. newp2(X) < ¢(X) AN wu(X,Y), newp3(Y)

We now proceed by applying the unfolding rule to the definition clause d16
and we obtain

18. newp3(X) < d(X) A unsafe(X)

19. newp3(X) < d(X) A tw(X,Y), sat(Y, EF (unsafe))
20. newp3(X) « d(X) AN wu(X,Y), sat(Y, EF (unsafe))
21. newp3(X) « d(X) A ut(X,Y), sat(Y, EF (unsafe))

We remove clause 18 because its body contains an unsatisfiable constraint
because VX =(d(X) A unsafe(X)) holds. Then, we fold clauses 19, 20, and
21 by using the definition clauses d16, d16, and d9, respectively. Indeed, the
following three formulas hold:

VX VY (d(X)ANtw(X,Y) — d(Y))

VX VY (d(X) ANwu(X,Y) — d(Y))

VX VY (d(X) A ut(X,Y) — ¢(Y))
We obtain

22. newp3(X) + d(X) A tw(X,Y), newp3(Y)
23. newp3(X) « d(X) A wu(X,Y), newp3(Y)
24. newp3(X) « d(X) A ut(X,Y), newp2(Y')

Since these last folding steps were performed without introducing new defini-
tion clauses, we terminate Phase A of our transformation process. The program
derived so far is Pyopery U {4,10,15,17,22,23,24}.

Now we proceed by performing Phase B of our verification strategy. We
remove the useless clauses 10, 15, 17, 22, 23, and 24 defining the predicates
newpl, newp2, and newp3. Therefore, we derive the program Ppgper, U {4}.
Then we apply the unfolding rule to clause 4 w.r.t. the literal —newp1(X),
where newpl(X) is a failed atom (see Point R2n of the unfolding rule). We
obtain

25. sat gpec(X) « init(X)

Thus, we derive the final program Ppopery, spec Which is Pyagery U{25}. According
to our verification method, the presence of clause 25 in Ppgery, spec PrOVES, as
desired, the mutual exclusion property for the N-process bakery protocol.
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5.6 Related Work

Recently there have been several proposals of verification methods for param-
eterized systems, that is, systems consisting of an arbitrary number of finite
state processes. Among them the method described in [70] is closely related
to ours, in that it uses unfold/fold program transformations for generating in-
duction proofs of safety properties for parameterized systems. However, our
method differs from the method presented in [70] because we use constraint
logic programs with locally stratified negation to specify concurrent systems
and their properties, while [70] uses definite logic programs. Correspondingly,
we use a different set of transformation rules. Moreover, we consider systems
with an arbitrary number of infinite state processes which are more general
than parameterized systems.

Now we recall the main features of some verification methods based on

(constraint) logic programming, which have been recently proposed in the lit-
erature. For a more detailed discussion on these methods, see Section 4.7.
(i) The method described in [47] uses partial deduction and abstract interpre-
tation of logic programs for verifying safety properties of infinite state systems.
(ii) The method presented in [29] uses logic programs with linear arithmetic
constraints and Presburger arithmetic to verify safety properties of Petri nets.
(iii) The method presented in [20] uses constraint logic programs to represent
infinite state systems. This method can be applied to verify CTL properties of
those systems by computing approximations of least and greatest fixed points
via abstract interpretation. (iv) The method proposed in [67] uses tabulation-
based logic programming to efficiently verify p-calculus properties of finite
state transitions systems expressed in a CCS-like language. (v) The method
described in [58] uses CLP with finite domains, extended with constructive
negation and tabled resolution, for finite state local model checking.

With respect to these methods (i)—(v), the distinctive features of our method
are that: (1) we deal with systems consisting of an arbitrary number of infinite
state processes, (2) we use CLP(WSKS) for their description, and (3) we apply
unfold/fold program transformations for the verification of their properties.

Verification techniques for systems with an arbitrary number of infinite
state processes have been presented also in the following papers.

In [56] the authors introduce a proof technique which is based on induction
and model checking. Proofs are carried out by solving a finite number of
model checking problems on a finite abstraction of the initial system and they
are mechanically checked. The technique is illustrated by proving that the
N-process bakery protocol is starvation free.

In [63] the author presents a proof of the mutual exclusion for the N-process
version of the ticket protocol which is uniform w.r.t. N and it is based on the
Owicki-Gries assertional method. The proof has been mechanically checked by
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using the Isabelle theorem prover.

In |77] the author presents a proof of the mutual exclusion for the N-
process bakery protocol. This proof is based on a combination of theorem
proving, model checking, and an abstraction of the protocol itself so to reduce
it to the case of two processes only.

Similarly to the techniques presented in the above three papers [56, 63, 77],
each step of our verification method can be mechanized, but the construction
of the whole proof requires some human guidance. However, in contrast to |56,
63, 77| in our approach the parameter N representing the number of processes
is inwisible, no explicit induction on N is performed, and no abstraction of the
set of processes is needed.

More recently, in [11] the authors have presented an automated method for
the verification of safety properties of parameterized systems with unbounded
local data. The method, which is based on multiset rewriting and constraints,
is complete for a restricted class of parameterized systems.

The verification method presented in this chapter is an enhancement of
the rules+ strategies transformation method proposed in Chapter 4 for veri-
fying CTL properties of systems consisting of a fixed number of infinite state
processes. In Chapter 4 we proved the mutual exclusion property for the 2-
process bakery protocol by using CLP programs with constraints expressed by
linear inequations over the reals. That proof can easily be extended to the
case of any fixed number of processes by using CLP programs over the same
constraint theory. Here, however, we proved the mutual exclusion property for
the N-process bakery protocol, uniformly for any N, by using CLP programs
with constraints over WSKkS.

The proof of the mutual exclusion property for the N-process bakery proto-
col presented in Section 5.5, was done by applying under human guidance the
verification strategy of Section 5.4. However, our verification method can be
automated by integrating our CLP program transformation system MAP [26]
with: (i) a solver for checking WSkS formulas, and (ii) suitable generalization
functions for introducing new definition clauses. For Point (i) we may adapt
existing implementations, such as, the MONA system [41]. Point (ii) requires
further investigation but we believe that the approach presented in Chapter 4
in the case of systems consisting of a fixed number of infinite state processes
can serve as a good starting point.

As already mentioned, the verification method we proposed is tailored to
the verification of safety properties for asynchronous concurrent systems, where
each transition is made by one process at a time. This limitation to asyn-
chronous systems is a consequence of our assumption that each transition from
a system state X to a new system state Y is of the form Y = (X —{z}) U {y}
for some process states z and y. In order to model synchronous systems, where
transitions may involve more than one process at a time, we may relax this
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assumption and allow transitions of the form Y = (X —A) U B for some mul-
tisets of process states A and B. Notice that, however, these more general
transitions whereby the number of processes may change over time, can be
defined by WSkS formulas, and thus, it is arguable that our approach can also
be used to verify properties of synchronous systems.
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Appendix A

The MAP Transformation
System

We now present the MAP system [26] which supports interactive and auto-
mated transformation of constraint logic programs.

The MAP system consists of two parts: a transformation engine, written
in SICStus Prolog 3.8.5 [37] and a graphical user interface (GUI, for short)
written in Tcl/Tk [59]. The interface between the transformation engine and
the GUI is implemented by using SICStus’s tcltk library.

A.1 The Transformation Engine

The transformation engine contains code for implementing (i) the transforma-
tion rules of Section 3.2 and (ii) the transformation strategies of Sections 2.5,
3.4 and 4.4. The transformation engine is located in the src_sics/ subdirec-
tory of the MAP installation directory and contains the following files:

e definition_rule.pl: contains code for implementing the constrained
atomic definition rule R1;

e unfolding_rule.pl: contains code for implementing the positive un-
folding rule R2p and the negative unfolding rule R2n;

e caf.pl: contains code for implementing the constrained atomic folding
rule R3;

e solve_clauses.pl: contains code for implementing the constraint re-
placement rule Rbr;

e ccr.pl: contains code for implementing the contextual constraint re-
placement rule R5n;
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e contextual_specialization.pl: contains code which implements
Phase A and Phase B of the transformation strategies of Sections 2.5,
3.4 and 4.4.

e bup.pl: contains code for implementing Phase C of the transformation
strategies of Sections 2.5, 3.4 and 4.4. This file also contains code for the
clause removal rules R4s and R4u.

The code for the transformation rules whose applicability conditions require
tests for constraint satisfiability or entailment is parametric in the choice of
the predicates which actually perform those tests. The implementation of the
constraint solving algorithms can be found in file solvers.pl which contains
the definitions of the following predicates. In the following, we will feel free to
confuse a mathematical entity with the data structure used for representing it.

e is_a_solver(Solver) Solver is a ground term representing the constraint
domain;

e is_a_constraint_predicate(Solver, Pred, A): Pred is a constraint pred-
icate of arity A for Solver;

e solve(Solver, C, X, D) This predicate implements the solve function
of Section 2.1.2 for the constraint domain Solver. The arguments C, X
and D are lists representing the input constraint, the set of variables of
interest, and the the output constraint, respectively.

If solve(Solver, C, X, D) holds then Solver = VX ((3Y C) <> D) where
Y =FV(C)-—X and FV(D) C FV(IY C).

e entails(Solver,C,D) This predicate implements the entailment test for
the constraint domain Solver.
If entails(Solver,C,D) holds then Solver = V(C — D).

The code for the transformation strategies of Sections 2.5 and 3.4 is indepen-
dent from the definition of the predicates implementing the parameters of the
strategies: the unfolding function, the widening operator for realizing clause
generalization, and the well-quasi orders for controlling the unfolding process
and the generalization process. The definition of these predicates can be found
in the following files:

e uf.pl: contains the following predicates for realizing the unfolding func-
tion:

— is_a_uf(Unfold, S) Unfold is a ground term representing an un-
folding function which is compatible with the constraint domain

S;
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— uf(Unfold, CIl, Utree, S, I) This predicate realizes the unfolding
function Unfold such that, given a constraint domain S, a term CI
representing a clause of the form H < ¢,Ly,..., Ly, and a term
Utree representing an unfolding tree, selects the positive literal Lj.
This predicate must succeed if Utree consists of the root clause only
and it must fail if there is no positive literal in the body of the
considered clause.

e widening.pl: contains the following predicates for realizing the widening
operator used in the clause generalization process:

—is_a_widening( W, S) W is a ground term representing a widening
operator which is compatible with the constraint domain S;

— widening(W, S, C1, C2, C3) This predicate holds if and only if
C3 — C1 W C2, where W is a widening operator and C1, C2 and
C8 are constraints over S.

e wgounf.pl: contains the following predicates for realizing the well-quasi
order for controlling the unfolding process:

—is_a_wqounf(Wgqo, S) Wyo is a ground term representing a well-
quasi order over constrained goals which is compatible with the
constraint domain S’

— embeds(Wgqo, S, K1, K2) This predicate holds if and only if K2
Wqo K1, that is, K2 is embedded in K1 according to Wgqo, where
Wqo is a well-quasi order and K1 and K2 are terms representing
constrained goals with constraints over S.

e wqgogen.pl: contains the following predicates for realizing the well-quasi
order for controlling the generalization process:

— is_a_wqogen(Wqo, S) Wgqo is a ground term representing a well-
quasi order over constrained atoms which is compatible with the
constraint domain S;

— embeds(Wqo, S, K1, K2)  This predicate holds if and only if
K2 Wgqo K1, that is, K2 is embedded in K1 according to Wyo,
where Wgo is a well-quasi order and K1 and K2 are terms repre-
senting constrained atoms with constraints over S.

— agrees_with(W, Wqo) This predicate holds if and only if the widen-
ing operator W agrees with the well-quasi order Wgqo (see Definition
2.7.1 for details).
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X MAP [BIEIE|
Options
Derivation | Rules cSs VS Help | Save| Show | Quit
= Program 1: Y
il e 1. =at(siu,2,u,B),unsafe).
2. =at(s(w,a,B,C),wait).
pntold 3. gatis(u,A,B,C),use).
e 4. zat(d,or(B,C)) :- sat(a,B).
5. sat(d,or(B,C)) :— sat(A,C).
6. sat(d,and(B,C)) :- =at(A,B), sat(d,C).
deleteclauses | 9 " <ot (A not(B)) :- \+sat(A,B).
l 8. sati(A,ef(B)) :- sat(A,B).
e 9. sat(s(t,a,B,0),ef(D)) :— E=:=C+l, A>=0, C>=0,
sat(s(w,E,B,C) ,ef(D)).
S 0w 0. sat(s(w,A,B,C),ef(D)) :- &<C, B>=0,
5 ) = sat(s(u,A,B,C),ef(D)).
D ;i grams — | 1. sat(=(w,2,B,C),ef(D)] :- C=:=0, a>=0,
= t(s(u,a,B,C),ef(D)).
El CTLbakery.pl El CTLexd.pl B sS4 8,800,
B CTLhak:?fZ-salsp\ El CTLex2pl B (2. sat(s(u,’, B,C),ef(D)) :- E=:=0, B>=0, C>=0,
Bl CTLbakerye-starepl Bl CTLex3-deriv-clppl B sat(s(t,E,B.C) ,ef(D)).
E) CTLbakeryz-starve.pl Bl CTLex3-derivpl g (3. sat(s(A,B,t,C),ef(D)) :- E=:=B+l, B>=0,
B CTLbbufierpl El CTLexa-derivepl B sat(s(A,B,w,E) ,ef(D)).
B CTLberkeley.pl Bl CTLex3-derivapl B 4. =at(s(a,B,w,C),ef(D)) :- C<B, C>=0,
B CTLdragon.pl Bl CTLexdpl B ¢ ;
B CTLexi-deny pl Bl CTLex3terms pl B (= sabis 2B, B0 eE IR . - /
B CTLexi-startpl El CTLexd-deriv.pl B
N ] s —
File name: [CTLbakery.pl Open
Files of type: Prolog files {*.p1) —|  cancer |

Figure A.2.1: Starting a new derivation in MAP.

The parameters for the specialization strategies can be selected through the
GUI, as shown in the following section.

A.2 The Graphical User Interface

The graphical user interface provides the user a friendly way of interacting with
the transformation engine by means of mouse clicks. It is implemented in the
interpreted scripting language Tcl and it uses the Tk extension for managing
creation, deletion and configuration of graphical objects, called widgets, like
windows, buttons and menus.

When the MAP system starts up, the GUI creates a main window, called
the MAP window, which contains menus and buttons for allowing the user
to start a new derivation and to interact with the transformation engine. A
derivation can be started by selecting one of the following items in the Deriva-
tion menu:

New opens a dialog box for selecting the file which contains the ini-
tial program of the derivation. By default, program files are located in the
Programs/ subdirectory.

Load opens a dialog box for selecting the file corresponding to a previously
saved derivation. By default, derivation files are located in the Sessions/
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Derivation | Rules | Css | vs | Help | Save | Show| Quit |
: 1. sm_sp(A,B,C,D) :— A+B+C=<5, A>=0, B>=0, C>=0, Y
define | A,B,C],0)0
2. sm(A,B) :- C=:=D, E=:=F, mylength(a,C),
unfold | sum(&,E), myprefix(G,B), mylength(G,D),
sum(G,F) .
fold | 3. sm(a,[B|C]) :- B»=0, sm(&,C).
4. =um([],2) :- Aa=:=0.
deleteclausesl 5. sum([A|B],C) :- A»=0, D>=0, C=:=A+E, sum(B,E].
6. mylength([],2) :— 2&=:=0.
solve | 7. mylength([&|B],C) :— a»=0, C>0, C=:=D+1,
mylength(B,D) .
cer 8. myprefiz([],A].
9. myprefiz([A|B],[C|D]) :- &=:=C, myprefixz(B,D).
by unfolding 1:
10. sm =p(a&,B,C,D) :— A+B+C=<5, A»=0, B>=0, C>=0,
E=:=F, G=:=H, mylength([&,B,C],E),
sum( [&,B,C],G), myprefix(I,D), mylength(I,F),
sum (I, H).
11. am =p(&,B,C,[D|E]) :- A+B+C=<5, A>=0, B>=0, |
C>=0, D»=0, sm([&,B,C],E). .

Figure A.2.2: Applying transformation rules interactively.

subdirectory.

In both cases, if no error occurs, the current program is displayed in a text
area, called the Program window, which is contained in the MAP window (see
Figure A.2.1).

Once a derivation is started, the user can either (i) apply the transformation
rules interactively, or (ii) apply one of the automatic transformation strategies
provided by the MAP system.

In interactive mode, the user selects the arguments of the transformation
rule she wants to apply by clicking on them. Arguments can be literals and
clauses from the Program window and, for applying the constrained atomic
folding rule, definitions from the Init+ Defs window. Once the arguments
have been selected, the user presses the button corresponding to the chosen
transformation rule (see Figure A.2.2 for an example). If the conditions of
applicability of the rule are not satisfied, then an error message is displayed,
otherwise the corresponding transformation is performed and the content of
the Program window is updated by showing an informative message and the
derived clauses, if any. Clauses displayed in the Program window are numbered
and the number of a clause is in boldface style iff it belongs to the current
program (see Figure A.2.2).
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X MAP [BIEIE|

Options
Derivation | Rules | €SS V_SI Help §a_ve| Show | Quit
|

define Program 1: ~
1. sm spia,B,C,D) :— A+B+C=<5, A>=0, B>=0, C>=0,
sm([A,B,C],D).
anisle 2. sm(A,B) :- C=:=D, E=:=F, mylength(a,C),
sum(&,B), myprefiz(G,B), mylength(G,D),
fold sum{G,F) .
sm(k, [B|C]) : 0, smi(A,C).
delete clauses gum([],2) :
solve

sumi([&|B],C) :
[~ =+ Contextual Specialization Stralegy Paramelers

mylength([],2)
mylength{[&|B],C

~1C U1 By

Step 1! choose the parameters for the Contextual Specialization Strategy. refix (B,D).
Constraint solver Unfaleling function Wgjo unfolding Wejo generalization Widening
@ clpy « €L  Always - Aways - Simple
~ Mone - Leftmost ~ CIL - Homeomorfic embedding
+ Leftmost i ~ i 0 ~ Leftmost h.e. 14
- Leftmost predicate ~ Leftmost predicate
~ None - Hone

Step 2; select definitions Definitions:
Step 3: specialize program Specialize

A constraint solver based on Holzbaur's cip(Q,R) solver.

Figure A.2.3: Applying an automatic strategy.

In order to apply an automatic strategy, the user must activate the corre-
sponding window which gives the possibility of selecting the required param-
eters and to start the automatic transformation process. Figure A.2.3 shows
the window for applying the specialization strategy presented in Section 3.4.

Moreover, from the MAP window the user can activate some subsidiary
windows such as (i) the Init+Defs window which displays the set of clauses
introduced by using the constrained atomic definition rule R1, and (ii) the
History window which contains a summary of the transformation rules which
have been applied for transforming the initial program into the current one.



Appendix B

Benchmark Programs

B.1 The CLP Program Mmod

In this section we present the source code for program Mmod of Section 2.8 and
for the programs generated by applying the Contextual Specialization Strat-
egy to program Mmod with the constrained atom I=0,J>=0,mmod (I, J, M) as
input.

Program Mmod.
mmod(I,J,M) :- I>=J, M=0.
mmod(I,J,M) :- I<J, I1=I+1, M=M1+L, mymod(I,L), mmod(I1,J,M1).
mymod (X,M) :- X>=0, M=X.
mymod (X,M) :- X<0, M=(-X).

The program obtained after Phase A.
mmod_pe(I,J,M) :- I=0, J=<0, M=0.
mmod_pe(I,J,M) :- I=0, J>0, I1=1, genp_pe(I1l,J,M).
genp_pe(I,J,M) I>=J, M=0.
genp_pe(I,J,M) :- I>=0, I<J, I2=I+1, genp_pe(I2,J,M2), M=M2+I.

The program obtained after Phase C.
mmod_s_ccr(I,J,M) :- J=<0, M=0.
mmod_s_ccr(I,J,M) :- J>0, Il=1, genp_ccr(I1,J,M).
genp_ccr(I,J,M) :- I>=J, M=0.
genp_ccr(I,J,M) :- I<J, I2=I+1, genp_ccr(I2,J,M2), M=M2+I.

B.2 The CLP Program SumMatch

In this section we present the source code for program SumMatch of Section
2.9 and for the programs generated by applying the Contextual Specialization
Strategy to program SumMatch with the constrained atoms

131
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(1) E1+E2+E3=<5,E1>=0,E2>=0,E3>=0,sm([E1,E2,E3],X)
and
(2) A1+A2+A3+A4+AB+A6+AT+A8+A9+A10=<5,
A1>=0,A2>=0,A3>=0,A4>=0,A5>=0,A6>=0,A7>=0,
A8>=0,A9>=0,A10>=0,sm([A1,A2,A3,A4,A5,A6,A7,A8,A9,A10],X)
as input.

Program SumMatch

sm(P,S) :- LP=LQ,N=M,prefix(Q,S),length(P,LP),length(Q,LQ),
sum(P,N) ,sum(Q,M) .
sm(P, [X|Xs]) :- X>=0,sm(P,Xs).

sum([],N) :- N=0.
sum([X|Xs],N) :- X>=0,N>=0,N=X+N1,sum(Xs,N1).

length([],N) :- N=0.
length([X|Xs],N) :- X>=0,N>0,N=N1+1,length(Xs,N1).

prefix([],_).
prefix([X|Xs],[YIY¥s]) :- X=Y, prefix(Xs,Ys).

Let us first consider the specialization of program SumMatch w.r.t the
constrained atom (1).
The program obtained after Phase A.
sm_pe3(A,B,C, [D,E,F|S]) :- A+B+(C=<5,A>=0,B>=0,C>=0,
A+B+C=D+E+F ,D>=0,E>=0,F>=0.
sm_pe3(A,B,C,[DIS]) :- D>=0,sm_pe3(A,B,C,S).

The program obtained after Phase C.

sm_c3(A,B,C,[D,E,F|S]) :- A+B+C=D+E+F,D>=0,E>=0,F>=0.
sm_c3(A,B,C,[D|S]) :- D>=0,sm_c3(A,B,C,S).

Let us now consider the specialization of program SumMatch w.r.t the
constrained atom (2).

The program obtained after Phase A.
sm_pelO(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,

[D1,D2,D3,D4,D5,D6,D7,D8,D9,D10(S]) :-

A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=<5,A1>=0,A2>=0,A3>=0,

A4>=0,A5>=0,A6>=0,A7>=0,A8>=0,A9>=0,A10>=0,

A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10,

D1>=0,D2>=0,D3>=0,D4>=0,D5>=0,D6>=0,

D7>=0,D8>=0,D9>=0,D10>=0.
sm_pe10(A1,A2,A3,A4, A5, A6,A7,A8,A9,A10, [DIS]) :-
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D>=0,sm_pelO(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,S).

The program obtained after Phase C.
sm_c10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,
[D1,D2,D3,D4,D5,D6,D7,D8,D9,D10(|S]) :-
A1+A2+A3+A4+A5+A6+A7+A8+A9+A10=D1+D2+D3+D4+D5+D6+D7+D8+D9+D10,
D1>=0,D2>=0,D3>=0,D4>=0,D5>=0,D6>=0,D7>=0,D8>=0,D9>=0,D10>=0.
sm_c10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,[D|S]) :-
D>=0,sm_c10(A1,A2,A3,A4,A5,A6,A7,A8,A9,A10,9).

B.3 The CLP Program Cryptosum

In this section we present the source code for program Cryptosum of Section
2.9 and for the programs generated by applying the Contextual Specialization
Strategy to program Cryptosum with the constrained atom

Cry([[D’N’E’S] b [E’R’O’M] b [Y’E’N’D’M]] 3 [S)E)N)D)M)U)R‘)Y])

as input.

Program Cryptosum.

cry([Xs,Ys,Zs] ,Diff):-
solve(Xs, Ys, Zs, [0],Carries),
last(Xs,LXs), LXs>0,
last(Ys,LYs), LYs>0,
last(Zs,LZs), LZs>0,
bits(Carries),
gendiff (Diff,[0,1,2,3,4,5,6,7,8,9]).

solve([], [1, [I, [CarrylCs],[Carryl|Cs]) :- Carry=0.
solve([], [1, [ZlZs], [CarrylCs],0Cs) :-

Carry = Z + Carrylx10,

solve([], [1, Zs, [Carryl,Carry|Cs],0Cs).
solve([], [Y], [Z]|Zs], [Carry|Cs],OCs) :-

Y + Carry = Z + Carrylx10,

solve([], [1, Zs, [Carryl,Carryl|Cs],0Cs).
solve([X], [1, [ZlZs], [Carryl|Cs],0Cs) :-

X + Carry = Z + Carrylx10,

solve([], [1, Zs, [Carryl,Carryl|Cs],0Cs).
solve([X|Xs], [YIYs], [ZIZs], [Carryl|Cs],OCs) :-

X+ Y + Carry = Z + Carryl1*10,

solve(Xs, Ys, Zs, [Carryl,Carry|Cs],0Cs).

bits([]).
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bits([D|Ds]) :- member(D,[0,1]), bits(Ds).

member (X, [Y]|_]) :- X=Y.
member (X, [_|Ys]) :- member(X,Ys).

last ([X],X).
last([X,Y|L],Z) :- last([YIL],Z).

gendiff ([],Dom) .
gendiff ([X|Xs],Doml) :- del(X,Doml,Dom2), gendiff(Xs,Dom2).

del (X1, [X2]|Xs],Xs) :- X1=X2.
del(X,[Y|Ys],[Y|Zs]) :- del(X,Ys,Zs).

The program obtained after Phase C (which is equal to the program ob-
tained after Phase A).
nc(A,B,C,D,1,F,G,H) :- D+B=H+I*10,

C+G+I=B+J*10, B+F+J=C+Kx*10,

A+K=F+9,

A>0,

member (K, [0,1]),

member(J,[0,1]), member(I,[0,1]),

ndell(A,K1),

ndel2(B,K1,L),

del(C,L,M), del(D,M,N),

ndel3(N,0),

del(F,0,P), del(G,P,Q), del(H,Q,R).

ndell(A,[2,3,4,5,6,7,8,9]) :- A=1.
ndel1(A,[1|B]) :- newdell(B,A).

newdel1([3,4,5,6,7,8,9],A) :- A=2.
newdel1([2|A],B) :- newdel2(A,B).

newdel2([4,5,6,7,8,9],A) :- A=3.
newdel2([3|A],B) :- newdel3(A,B).

newdel3([5,6,7,8,9]1,A) :- A=4.
newdel3([4]A],B) :- newdel4d(A,B).

newdel4([6,7,8,9],A) :- A=5.
newdel4 ([5|A],B) :- newdel5(A,B).
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newdel5([7,8,9],A) :- A=6.
newdel5([6|A] ,B) :- newdel6(A,B).

newdel6([8,9],A) :- A=7.
newdel6([7|A],B) :- newdel7(A,B).

newdel7([9],A) :- A=8.
newdel7([8|A],B) :- newdel8(A,B).

newdel8([],A) :- A=9.

ndel2(A,B,B) :- A=0.
ndel2(A,B,[0[C]) :- newdell_1(C,A,B).

newdell_1(A,B,[CIA]) :- C=B.
newdell_1([A|B],C,[AID]) :- newdell_1(B,C,D).

ndel3([AIB],B) :- A=1.
ndel3([A|B],[A|C]) :- ndel3(B,C).

B.4 The CLP Program for the 2-Process Bakery Pro-
tocol

The CLP program, written in a Prolog-like syntax, generated by the Encod-
ing Algorithm for the concurrent system described by the bakery protocol of
Section 4.5.1.

sat(s(u,A,u,B) ,unsafe).
sat(s(w,A,B,C) ,wait).
sat(s(u,A,B,C),use).

sat(A,or(B,C)) :- sat(A,B).
sat(A,or(B,C)) :- sat(A,C).
sat(A,and(B,C)) :- sat(A,B), sat(A,C).
sat(A,not(B)) :- \+ sat(A,B).

sat(A,ef(B)) :- sat(A,B).

sat(s(t,A,S,B),ef(C)) :- D=B+1, A>=0, B>=0,
sat(s(w,D,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- A<B, A>=0, sat(s(u,A,S,B),ef(C)).

sat(s(w,A,S,B),ef(C)) :- B=0, A>=0, sat(s(u,A,S,B),ef(C)).
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sat(s(u,A,S,B),ef(C)) :- D=0, A>=0, B>=0, sat(s(t,D,S,B),ef(C)).
sat(s(S,A,t,B),ef(C)) :- D=A+1, A>=0, sat(s(S,A,w,D),ef(C)).
sat(s(S,A,w,B),ef(C)) :- B<A, B>=0, sat(s(S,A,u,B),ef(C)).
sat(s(S,A,w,B),ef(C)) :- A=0, B>=0, sat(s(S,A,u,B),ef(C)).
sat(s(S,A,u,B),ef(C)) :- D=0, B>=0, A>=0, sat(s(S,A,t,D),ef(C)).

sat(A,af(B)) :- sat(A,B).

sat(s(t,T1,t,T2),af (P)) :- T3=T2+1, T4=T1+1,
sat(s(w,T3,t,T2),af(P)), sat(s(t,T1,w,T4),af(P)).

sat(s(t,T1,u,T2),af(P)) :- T3=T2+1, T4=0,
sat(s(w,T3,u,T2),af(P)), sat(s(t,T1,t,T4),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T2<T1,
sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af(P)) :- T3=T2+1, T1=0,
sat(s(w,T3,w,T2),af(P)), sat(s(t,T1,u,T2),af(P)).

sat(s(t,T1,w,T2),af (P)) :- T3=T2+1, T1>0, T1=<T2,
sat(s(w,T3,w,T2),af(P)).

sat(s(u,T1,u,T2),af(P)) :- T3=0, T4=0,
sat(s(t,T3,u,T2),af(P)), sat(s(u,T1,t,T4),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T2<T1,
sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af(P)) :- T3=0, T1=0,
sat(s(t,T3,w,T2),af(P)), sat(s(u,T1,u,T2),af(P)).

sat(s(u,T1,w,T2),af (P)) :- T3=0, T1>0, T1=<T2,
sat(s(t,T3,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- Ti1<T2, T1=0,
sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(w,T1,w,T2),af (P)) :- T1<T2, T1>0,
sat(s(u,T1,w,T2),af(P)).

sat(s(w,T1,w,T2),af(P)) :- T2=0, T1=0,
sat(s(u,T1,w,T2),af(P)), sat(s(w,T1,u,T2),af(P)).

sat(s(u,T2,t,T1),af(P)) :- T3=T2+1, T4=0,
sat(s(u,T2,w,T3),af(P)), sat(s(t,T4,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T2<T1,
sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af(P)) :- T3=T2+1, T1=0,
sat(s(w,T2,w,T3),af(P)), sat(s(u,T2,t,T1),af(P)).

sat(s(w,T2,t,T1),af (P)) :- T3=T2+1, T1>0, T1=<T2,
sat(s(w,T2,w,T3),af(P)).

sat(s(u,T2,u,T1),af(P)) :- T3=0, T4=0,
sat(s(u,T2,t,T3),af(P)), sat(s(t,T4,u,T1),af(P)).

sat(s(w,T2,u,T1),af (P)) :- T3=0, T2<Ti,
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sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1=0,
sat(s(w,T2,t,T3),af(P)), sat(s(u,T2,u,T1),af(P)).

sat(s(w,T2,u,T1),af(P)) :- T3=0, T1>0, T1=<T2,
sat(s(w,T2,t,T3),af(P)).

sat(s(w,T2,w,T1),af(P)) :- Ti1<T2, T1=0,
sat(s(w,T2,u,T1),af(P)),
sat(s(u,T2,w,T1),af(P)).

sat(s(w,T2,w,T1) ,af(P)) :- T1<T2, T1>0,
sat(s(w,T2,u,T1),af(P)).

sat(s(w,T2,w,T1),af(P)) :- T2=0, T1=0,
sat(s(w,T2,u,T1),af(P)), sat(s(u,T2,w,T1),af(P)).
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