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We present a method for verifying the correctness of an imperative program with respect to a spec-

ification defined in terms of a set of possibly recursive Horn clauses. Given a program prog, we

consider a partial correctness specification of the form {ϕ} prog {ψ}, where the assertions ϕ and ψ
are predicates defined by a set Spec of Horn clauses. The verification method consists in: (i) encoding

the function computed by the program prog (according to the semantics of the imperative language)

as a set OpSem of clauses, and then (ii) constructing a set PC of Horn clauses and a predicate p

such that if p is false in the least model of PC, that is, M(PC) 6|= p, then {ϕ} prog {ψ} is valid.

We also present an extension of the verification method for showing total correctness of programs.

Then we present a general proof technique based on unfold/fold transformations of Horn clauses, for

checking whether or not M(PC) |= p holds. We also outline a strategy for guiding the application of

the unfold/fold transformation rules and performing correctness proofs in an automatic way. Finally,

we show some experimental results based on a preliminary implementation of our method.

Keywords: Program verification, Horn clauses, Partial and total correctness specifications, Constraint

Logic Programming, Program transformation.

1 Introduction

The main objective of program verification is to prove in a systematic, computer-aided way that programs

are correct or, in other words, that programs meet their specifications. In this paper we deal with the

problem of automatically proving the correctness of sequential, imperative programs.

One of the most established methodologies for specifying and proving program correctness is based

on the Floyd-Hoare axiomatic approach (see [16] and also [4] for a recent presentation dealing with

both sequential and concurrent programs). By following this approach, one can express partial or total

correctness properties. The partial correctness of a program prog is formalized by a triple {ϕ} prog {ψ},
where the precondition ϕ and the postcondition ψ are assertions in first order logic, meaning that if

the input values of prog satisfy ϕ and program execution terminates, then the output values satisfy ψ .

Total correctness holds if, in addition to being partially correct, prog terminates for all input values

satisfying ϕ .

It is well-known that the problem of verifying whether or not a program is (partially or totally) correct

with respect to a given specification is undecidable. In particular, the undecidability of partial correctness

is due to the fact that in order to prove the validity of a triple {ϕ} prog {ψ} using Hoare logic, we have to

look for suitable auxiliary assertions, the so-called invariants, in an infinite space of formulas. Moreover,

logical consequence is undecidable.
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Thus, the best way we can address the problem of automating program verification is to design

incomplete methods that work well in many practical cases. Some of these methods are based on tech-

niques based on abstract interpretation [6], whereby the search for invariants is restricted to a finitely

generated set of formulas where logical consequence is decidable. The most popular invariant generation

techniques for programs manipulating integer variables restrict the search to the set of linear arithmetic

constraints [7].

In recent years, several techniques for verifying programs that manipulate integers by generating

linear arithmetic assertions, have been proposed (see, for instance, [1, 5, 8, 18, 15, 27, 28, 32]). Some of

them use a representation of the program logic based on Horn clauses and linear arithmetic constraints

that enables the use of very effective reasoning tools, such as constraint solvers [10] or Constraint Logic

Programming (CLP) systems [17]. However, a strong limitation of these techniques is that they cannot

be used to prove partial correctness specifications where either the precondition or the postcondition is

not a linear arithmetic constraint.

One approach that has been followed for overcoming the linearity limitation is to devise methods for

generating polynomial invariants and proving specifications with polynomial arithmetic constraints (see,

for instance [30, 31]). This approach also requires the development of solvers for polynomial constraints,

which is a very complex task on its own, as in general the satisfiability of these constraints on the integers

is undecidable [24].

In this paper we propose an approach to proving specifications of the form {ϕ} prog {ψ} where

the assertions ϕ and ψ are predicates defined by a set Spec of Horn clauses with linear constraints,

that is, by a CLP program over linear arithmetics. Thus, Spec can specify any computable function.

Then we translate the problem of proving the validity of {ϕ} prog {ψ} into the problem of answering

suitable queries to a CLP program. Hence, we can use known techniques based on CLP systems for

linear constraints for answering those queries. Indeed, to this purpose we apply the technique based on

transformations of CLP programs presented in [8]. Clearly, by the incompleteness limitations mentioned

above, in general we do not have any guarantee of success of our technique.

The main contributions of this paper are the following.

(1) We consider partial correctness specifications of the form {ϕ} prog {ψ}, where ϕ and ψ are pred-

icates defined by a CLP program over linear arithmetics, and prog is a program written in a C-like

imperative language. We show how to construct a CLP program PC and a query p, starting from the

assertions ϕ and ψ and the definition of the operational semantics of the imperative language, such that,

if M(PC) 6|= p, then {ϕ} prog {ψ} is valid. We also present a similar construction of a CLP program

when we are given a total correctness specification.

(2) We define a proof technique that can be applied to prove that M(PC) 6|= p, hence proving the partial

correctness of prog with respect to ϕ and ψ . Our proof technique is based on suitable transformations of

the CLP program PC. In particular, our technique makes use of the unfold/fold transformation strategies

presented in [8].

(3) We have implemented our proof technique on the VeriMAP transformation-based verifier [9] and we

show that the verifier proves partial correctness of some programs whose specifications are not express-

ible by linear arithmetic constraints.

2 Transformation of Constraint Logic Programs

In this section we recall the basic notions of Constraint Logic Programming and program transformation

that will be used in this paper.
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A CLP program is a finite set of clauses of the form A← c,B, where A is an atom, c is a constraint

(that is, a possibly empty conjunction of linear equalities and inequalities over the integers), and B is a

goal (that is, a possibly empty conjunction of atoms). The conjunction (c,B) is called a constrained goal.

A clause of the form A← c is called a constrained fact. The semantics of constraints is defined by the

usual interpretation based on linear integer arithmetic. The semantics of a CLP program P is defined as

its least model, denoted M(P). For other notions of CLP with which the reader is not familiar, we refer

to [17].

Given a first order formula ϕ , we denote by ∃(ϕ) its existential closure and by ∀(ϕ) its universal

closure.

Our verification method is based on an encoding of the verification problem by using CLP programs,

and on the application of transformation rules that preserve the least model of CLP programs [12]. In par-

ticular, we apply the following transformation rules, collectively called unfold/fold rules: (i) definition,

(ii) unfolding, (iii) clause removal, and (iv) folding.

Let P be a CLP program and Defs be a set of definition clauses.

Definition Rule. By this rule we introduce a new definition clause of the form newp(X)← c,G, where

newp is a new predicate symbol, X is a tuple of variables occurring in (c,G), c is a constraint, and G is a

non-empty conjunction of atoms.

Unfolding Rule. Given a clause C of the form H← c,L,A,R, where H and A are atoms, c is a constraint,

and L and R are (possibly empty) conjunctions of atoms, let us consider the set {Ki← ci,Bi | i= 1, . . . ,m}
made out of the (renamed apart) clauses of P such that, for i= 1, . . . ,m, A is unifiable with Ki via the

most general unifier ϑi and (c,ci)ϑi is satisfiable. By unfolding C w.r.t. A using P, we derive the set

{(H ← c,ci,L,Bi,R)ϑi | i = 1, . . . ,m} of clauses.

Folding Rule. Given a clause E of the form: H← e,L,Q,R and a clause D in Defs of the form K← d,D

such that: (i) for some substitution ϑ , Q = Dϑ , and (ii) ∀(e→d ϑ) holds, then by folding E using D we

derive H← e,L,Kϑ ,R.

Removal of Useless Clauses. The set of useless predicates in a given program Q is the largest set U

of predicates occurring in Q such that p is in U iff every clause with head predicate p is of the form

p(X)← c,G1,q(Y ),G2, for some q in U . A clause in a program Q is useless if the predicate of its head

is useless in Q.

The transformation rules are applied according to the Transform strategy outlined in Figure 1 below.

The Transform strategy is executed in a fully automatic way if we first provide a procedure for the

UNFOLDING steps and a procedure for the DEFINITION & FOLDING steps. Both the termination of the

Transform strategy and its output program depend on these two procedures. There is a vast literature

on the problems of (i) controlling the unfolding steps, and (ii) determining the new predicates to be

introduced for performing the subsequent folding steps (see, for instance, [11, 14, 21, 26]). In Section 5

we will return to this point and we will consider suitable UNFOLDING and DEFINITION & FOLDING

procedures that will be used for the purposes of this paper.

By an instance of the Transform strategy we mean the Transform strategy that uses some fixed UN-

FOLDING and DEFINITION & FOLDING procedures.

The correctness of the strategy with respect to the least model semantics directly follows from the

fact that the application of the transformation rules complies with some suitable conditions that guarantee

the preservation of that model [12].

Theorem 1 (Correctness of the Transform strategy) Suppose that an instance of the Transform strat-

egy terminates for a given input program P and input clause p(X)←B belonging to P. Let TransfP be the

program that is the output of the strategy. Then, for all ground terms t, p(t)∈M(P) iff p(t)∈M(TransfP).
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Input: (i) Program P, and (ii) clause C of P of the form: p(X)← B, where p does not occur in P−{C}.
Output: Program TransfP such that, for all ground terms t, p(t)∈M(P) iff p(t)∈M(TransfP).

INITIALIZATION:

TransfP := /0; InDefs := {p(X)← B}; Defs := InDefs;

while in InDefs there is a clause C do

UNFOLDING: Apply the unfolding rule at least once, thereby deriving from C a set U(C)
of clauses;

DEFINITION & FOLDING: Introduce a (possibly empty) set NewDefs of new predicate

definitions and add them to Defs and to InDefs;

Fold the clauses in U(C) that are different from constrained facts by using the clauses in

Defs, thereby deriving a set F(C) of clauses;

InDefs := InDefs−{C}; TransfP := TransfP∪F(C);

end-while;

REMOVAL OF USELESS CLAUSES:

Remove from TransfP all clauses whose head predicate is useless.

Figure 1: The Transform strategy.

3 Translating Imperative Programs and Specifications into CLP

We consider a C-like imperative programming language with integer variables, assignments (=), condi-

tionals (if else), while loops (while), and jumps (goto). A program is a sequence of labeled com-

mands, and in each program there is a unique halt command that, when executed, causes program

termination.

The semantics of our language is defined by a transition relation, denoted =⇒, between configu-

rations. Each configuration is a pair 〈〈ℓ : c,δ 〉〉 of a labeled command ℓ : c and an environment δ . An

environment δ is a function that maps every integer variable identifier x to its value v in the integers Z.

The definition of the relation =⇒ is similar to the ‘small step’ operational semantics given in [29], and

is omitted. Given a program prog we denote by ℓ0 :c0 its first labeled command.

We assume that all program executions are deterministic in the sense that, for every environment δ0,

there exists a unique, maximal (possibly infinite) sequence of configurations, called computation se-

quence, of the form: 〈〈ℓ0 : c0, δ0〉〉 =⇒ 〈〈ℓ1 :c1, δ1〉〉 =⇒ ··· . We assume that every finite computation

sequence ends in the configuration 〈〈ℓh :halt, δn〉〉, for some environment δn. We say that a program

prog terminates for δ0 iff the computation sequence starting from the configuration 〈〈ℓ0 : c0, δ0〉〉 is a

finite sequence.

3.1 Specifying Program Correctness

We address the problem of verifying the partial or the total correctness of an imperative prog with respect

to a precondition ϕ and a postcondition ψ [16]. The partial correctness specification is given by the Hoare

triple {ϕ} prog {ψ} and the total correctness specification is given by the Hoare-like triple [ϕ ] prog [ψ ]
(see, for instance, [29]). On the partial or the total correctness specifications we make the assumptions

listed in the following definition.
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Definition 1 (Functional Horn Specification) A partial correctness triple {ϕ} prog {ψ}, or a total cor-

rectness triple [ϕ ] prog [ψ ], is said to be a functional Horn specification if the following assumptions

hold.

(1) The predicates occurring in the formulas ϕ and ψ are defined by a CLP program Spec;

(2) ϕ is a formula of the form z1 = p1∧ . . .∧ zs = ps∧pre(p1, . . . , ps), where z1, . . . ,zs are the variables

occurring in prog, the symbols p1, . . . , ps are variables (distinct from the zi’s), called parameters,

and pre(p1, . . . , ps) is a predicate defined by Spec (informally, the predicate pre determines the initial

values of the zi’s);

(3) ψ is a formula of the form f(p1, . . . , ps,zk), where zk is a variable in {z1, . . . ,zs}, and f is a predicate

defined by Spec (informally, zk is the variable whose final value is the result of the computation

of prog);

(4) f is a functional relation which is total on the predicate pre, in the sense that the following two

satisfiability relations hold:

(4.1) M(Spec) |= ∀p1, . . . , ps,y1,y2. f (p1, . . . , ps,y1)∧ f (p1, . . . , ps,y2)→ y1=y2 (functionality)

(4.2) M(Spec) |= ∀p1, . . . , ps. pre(p1, . . . , ps)→∃y. f (p1, . . . , ps,y) (totality on pre)

Note that Condition (4) is not restrictive, as every program, being deterministic, computes a functional

relation, that is, a function from the inputs of the program to the output of the program. Note also that

our definition of a functional Horn specification can easily be extended to the case of postconditions of

the more general form: f(p1, . . . , ps,y1, . . . ,yq) with {y1, . . . ,yq} ⊆ {z1, . . . ,zs}.
Now let us introduce the notions of partial and total correctness. These notions are instances of the

standard ones.

We say that a functional Horn specification {ϕ} prog {ψ} satisfying Conditions (1–4) of Definition 1

is valid, or prog is partially correct with respect to ϕ and ψ , iff for all environments δ0 and δn,

if M(Spec)|= pre(δ0(z1), . . . ,δ0(zs)) holds (in words, δ0 satisfies pre) and 〈〈ℓ0 :c0,δ0〉〉=⇒
∗ 〈〈ℓh :halt,δh〉〉

(in words, prog terminates for δ0) holds, then M(Spec) |= f (δ0(z1), . . . ,δ0(zs),δn(zi)) holds.

We say that a functional Horn specification [ϕ ] prog [ψ ] is valid, or prog is totally correct with respect

to ϕ and ψ , iff for all environments δ0 and δn,

if M(Spec) |= pre(δ0(z1), . . . ,δ0(zs)) holds, then both 〈〈ℓ0 :c0, δ0〉〉 =⇒
∗ 〈〈ℓh :halt, δh〉〉 and M(Spec) |=

f (δ0(z1), . . . ,δ0(zs),δn(zk)) hold.

The relation computed by prog according to the operational semantics of our imperative language, is

denoted by the predicate rprog defined by a CLP program OpSem as follows (as usual, variables in CLP

programs are denoted by upper-case letters):

R. rprog(P1, . . . ,Ps,Zk)← initConf(Cf0,P1, . . . ,Ps), reach(Cf0,Cfh), finalConf(Cfh,Zk)

where:

(1) initConf(Cf0,P1, . . . ,Ps) represents the initial configuration Cf0, where the variables z1, . . . ,zs are

bound to the values P1, . . . ,Ps, respectively, and P1, . . . ,Ps satisfy the property pre(P1, . . . ,Ps);
(2) reach(Cf0,Cfh) represents the transitive closure =⇒∗ of the transition relation =⇒, which in turn is

represented by a predicate tr(C1,C2) that encodes the operational semantics of our imperative lan-

guage, that is, the interpreter of the language, by relating an old configuration C1 to a new configura-

tion C2;

(3) finalConf(Cfh,Zk) represents a final configuration Cfh, where the variable zk is bound to the value Zk.

(Obviously, also the clauses for the predicates pre(P1, . . . ,Ps) and tr(C1,C2) are included in OpSem.) The

clauses defining the predicate tr(C1,C2) for our imperative language can be found in [8]. As an example,

here we only show the clause for tr in the case of a labeled assignment command of the form ℓ : x = a,

where a is an expression:
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tr(cf(cmd(L,asgn(X,expr(A))),E), cf(cmd(L1,C),E1)) :-

eval(A,E,V), update(E,X,V,E1), nextlab(L,L1), at(L1,C).

The term cf(LC,E) encodes the configuration consisting of a labeled command LC and an environ-

ment E. The term cmd(L,C) encodes the command C with label L. The term asgn(X,expr(A)) encodes

the assignment of the value of the expression A to the variable X. The predicate eval(A,E,V) computes

the value V of the expression A in the environment E. The predicate update(E,X,V,E1) updates the envi-

ronment E by binding the variable X to the value V, thereby deriving a new environment E1. The predicate

nextlab(L,L1) states that L1 is the label of the command that immediately follows the command with

label L. The predicate at(L,C) binds to C the command with label L.

Due to the fact that, by definition, the execution of the program prog is deterministic, the predicate

rprog defined by OpSem is a functional relation (which is not necessarily a total relation on pre).

Moreover, a program prog, with variables z1, . . . ,zs, terminates for an environment δ0 such that:

(i) δ0(z1)= p1, . . . , δ0(zs)= ps, and (ii) δ0 satisfies pre, iff ∃y. rprog(p1, . . . , ps,y).
Thus, we have the following lemma.

Lemma 1 The predicate rprog defined by OpSem is a functional relation, that is, the following holds :

M(OpSem) |= ∀p1, . . . , ps,y1,y2. rprog(p1, . . . , ps,y1)∧ rprog(p1, . . . , ps,y2)→ y1=y2.

Moreover, a program prog terminates for an environment δ0 such that δ0(z1)= p1, . . . ,δ0(zs)= ps, if and

only if the following holds :

M(OpSem) |= pre(p1, . . . , ps)→∃y. rprog(p1, . . . , ps,y).

Example 1 (Fibonacci Numbers) Let us consider the following program fibonacci which returns as

value of the variable u the n-th Fibonacci number, for any n (≥ 0), having initialized u to 1 and v to 0.

0: while (n>0) { t=u; u=u+v; v=t; n=n-1 } f ibonacci

h: halt

The partial correctness of fibonacci is specified by the following Hoare triple (where we use the standard

Prolog syntax both for constraints and CLP programs):

{n=N, N>=0, u=1, v=0, t=0} fibonacci {fib(N,u)} (†)

where N is a parameter and the predicate fib is defined by the following set Specf ibonacci of clauses:

S1. fib(0,1). Specf ibonacci

S2. fib(1,1).

S3. fib(N3,F3) :- N1>=0, N2=N1+1, N3=N2+1, F3=F1+F2, fib(N1,F1), fib(N2,F2).

For reasons of conciseness, in the above specification (†) we have slightly deviated from Definition 1, and

in the precondition and postcondition we did not introduce the parameters which have constant values.

In particular, instead of writing ‘u=U, U=1’ and considering U as one of the arguments of fib, we have

simply written ‘u=1’. Analogously, for the variables v and t.

The relation r_fibonacci computed by the program fibonacci according to the operational seman-

tics, is defined by the following set OpSemfibonacci of clauses:

OpSemf ibonacci

R1. r_fibonacci(N,U) :- initConf(Cf0,N), reach(Cf0,Cfh), finalConf(Cfh,U).

R2. initConf(cf(LC,E),N) :- N>=0, U=1, V=0, T=0, firstComm(LC), env((n,N),E),

env((u,U),E), env((v,V),E), env((t,T),E).

R3. finalConf(cf(LC,E),U) :- haltComm(LC), env((u,U),E).
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where:

(i) initConf(cf(LC,E),N) holds iff (i.1) LC is the first labeled command with label 0 of the program

fibonacci (and for that labeled command the atom firstComm(LC) holds), and (i.2) E is the environ-

ment where the variables n, u, v, t are bound to the values N (>=0), 1, 0, and 0, respectively;

(ii) reach(Cf1,Cf2) holds iff the configuration Cf2 is reachable from the configuration Cf1 by a com-

putation sequence of program fibonacci;

(iii) finalConf(cf(LC,E),U) holds iff (iii.1) LC is the labeled command halt with label h of the

program fibonacci (and for that labeled command the atom haltComm(LC) holds), and (iii.2) E is the

environment where the variable u is bound to the value U, and

(iv) env((x,X),E) holds iff in the environment E the variable x is bound to the value of X.

3.2 Proving Partial Correctness via CLP

In this section we show how the problem of proving the validity of a functional Horn specification

{ϕ} prog {ψ} of partial correctness, as defined in Section 3.1, can be encoded by using CLP programs.

For reasons of simplicity we assume that no predicate depends on f in Spec, that is, Spec can be

partitioned into two sets of clauses, F and Aux, where F is the set of clauses with head predicate f and f

does not occur in Aux.

Theorem 2 (Partial Correctness) Let Fpc be the set of clauses derived from F as follows : for each

clause C∈F of the form f (X1, . . . ,Xs,Y )← B,

(1) the formula Q : Y 6=Z ∧ f (X1, . . . ,Xs,Z) ∧ B , where Z is a new variable, is derived from C,

(2) every occurrence of f in Q is replaced by rprog, hence deriving a formula E of the form :

Y 6=Z ∧ rprog(X1, . . . ,Xs,Z) ∧ B′, and

(3) the following two clauses are derived from E :

p1←Y >Z, rprog(X1, . . . ,Xs,Z), B′

p2←Y <Z, rprog(X1, . . . ,Xs,Z), B′

where p1 and p2 are two new predicate symbols.

Suppose that, for all clauses D in Fpc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head of D. Then

{ϕ} prog {ψ}.

Proof. See Appendix. �

3.3 Proving Total Correctness via CLP

Also the problem of proving the validity of a functional Horn specification [ϕ ] prog[ψ ] of total correct-

ness, as defined in Section 3.1, can be encoded by using CLP programs. For this task we consider the

class of the stratified CLP programs which is an extension of the class of CLP programs introduced in

Section 2. In this extended class we allow negative literals to occur in the body of a clause. For a stratified

program P, we denote by M(P) its unique perfect model [3].

Theorem 3 (Total Correctness) Let Ftc be the set of clauses derived from F as follows: for each clause

C∈F of the form f (X1, . . . ,Xs,Y )← B,

(1) the formula N : ¬f (X1, . . . ,Xs,Y )∧B is derived from C,

(2) every occurrence of f in N is replaced by rprog, hence deriving a formula G of the form :

¬rprog(X1, . . . ,Xs,Y )∧B′

(3) the following clause is derived from G :

p←¬rprog(X1, . . . ,Xs,Z), B′
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where p is a new predicate.

Suppose that, for all clauses D in Ftc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head of D. Then

[ϕ ] prog [ψ ].

Proof. See Appendix. �

4 Proving Partial Correctness by Transforming CLP Programs

In this section we outline a method for performing correctness proofs based on the transformation rules

and the Transform strategy presented in Section 2. For reasons of simplicity, we only deal with the

problem of proving partial correctness, which by using Theorem 2 can be encoded in CLP without the

use of negation. We leave it for future study the extension of our method to the problem of proving total

correctness.

Suppose that, as required by Theorem 2, we want to prove that M(OpSem∪Aux∪{D}) 6|= p. Our

method consists in applying various instances of the Transform strategy starting from the program

OpSem∪Aux∪{D} with the objective of deriving a new program T such that either (i) in T predicate p

is defined by the empty set of clauses, or (ii) in T there is a fact p←.

In Case (i) we have that M(T ) 6|= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) 6|= p. In Case

(ii) we have that M(T ) |= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) |= p. Clearly, due to the

undecidability of partial correctness, our method is incomplete, and we might derive a program T where

neither Case (i) nor Case (ii) holds.

In the rest of this section we illustrate our method by proving the partial correctness of the program

for computing the Fibonacci numbers presented in Section 1. In the next section we will propose some

ideas for the automation of the proof method.

In the Fibonacci example the set of clauses F is the whole Specf ibonacci and Aux is the empty set.

By following Points (1), (2), and (3) of Theorem 2, from the set Specfibonacci of clauses (see Exam-

ple 1) we generate the following six clauses:

D1. p1 :- F>1, r_fibonacci(0,F).

D2. p2 :- F<1, r_fibonacci(0,F).

D3. p3 :- F>1, r_fibonacci(1,F).

D4. p4 :- F<1, r_fibonacci(1,F).

D5. p5 :- N1>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r_fibonacci(N1,F1), r_fibonacci(N2,F2), r_fibonacci(N3,F3).

D6. p6 :- N1>=0, N2=N1+1, N3=N2+1, F3<F1+F2,

r_fibonacci(N1,F1), r_fibonacci(N2,F2), r_fibonacci(N3,F3).

In order to prove the partial correctness of program fibonacci it is enough to show that M(OpSemfibonacci∪
{DN}) 6|= pN, for N = 1, . . . ,6. In the sequel we will present the proof for N = 5, because the proofs for

N= 1, . . . ,4 are very simple, as the queries p1, . . . ,p4 finitely fail in a few resolution steps, and the proof

for N= 6 is similar to the one for N= 5.

A preliminary step of our proof method consists in specializing the clauses for the predicate

r_fibonacci to the specific definitions of (i) initConf, (ii) finalConf, and (iii) the predicates on

which reach depends. These definitions express, respectively, (i) the precondition of program fibonacci

(that is, n=N, N>=0, u=1, v=0, t=0), (ii) the final configuration computed by fibonacci, and (iii) the states

reached by the computation of fibonacci. The specialization of r_fibonacci is performed by applying

the Transform strategy with OpSemfibonacci as its input program and clause R1 (see Example 1) as its in-

put clause. For UNFOLDING and DEFINITION & FOLDING we use the procedures presented in [8]. This

specialization step produces the following three clauses:
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E1. r_fibonacci(N,F) :- N>=0, U=1, V=0, T=0, r(N,U,V,T, N1,F,V1,T1).

E2. r(N,U,V,T, N,U,V,T) :- N=<0.

E3. r(N,U,V,T, N2,U2,V2,T2) :- N>=1, N1=N-1, U1=U+V, V1=U, T1=U,

r(N1,U1,V1,T1, N2,U2,V2,T2).

where r is a new predicate symbol introduced by the Transform strategy. Since the effect of specialization

is to compile away all references to both the commands of program fibonacci and the interpreter of the

language (that is, the predicates tr), sometimes this first transformation is referred to as the Removal of

the Interpreter [27]. Note that in the clauses E1, E2, and E3, the predicate r corresponds to the while

loop of program fibonacci. The first four arguments of r are the initial values of the variables n, u, v, t,

and the last four arguments are the final values of those variables.

By Theorem 1, M(OpSemfibonacci ∪ {D5}) 6|= p5 if and only if M({E1,E2,E3,D5}) 6|= p5. Now

we prove that M({E1,E2,E3,D5}) 6|= p5 by applying again the Transform strategy with input program

{E1,E2,E3,D5} and input clause D5.

Initially InDefs consists of clause D5 only. The Transform strategy performs two iterations of the

while loop.

First Iteration.

UNFOLDING. We begin by unfolding clause D5 with respect to the three fib atoms in its body, and we

get the clause:

1. p5 :- N1>=0, U=1, V=0, T=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r(N1,U,V,T, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

DEFINITION & FOLDING. Then we introduce a new predicate gen defined by the following clause which

is a generalization of clause 1 (below we will discuss on the introduction of this definition clause):

2. gen(N1,U,V,T) :- N1>=0, U>=1, V>=0, T>=0, N2=N1+1, N3=N2+1, F3>F1+F2,

r(N1,U,V,T, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

Clause 2 is added to InDefs. Next we fold clause 1 by using clause 2 and we get:

1.f p5 :- N1>=0, U>=1, V=0, T=0, gen(N1,U,V,T).

Clause D5 is removed from the set InDefs. After this removal InDefs consists of clause 2 only.

Second Iteration.

UNFOLDING. We unfold clause 2 which defines the newly introduced predicate gen, with respect to the

leftmost r atom in its body, and we get:

3. gen(N1,U,V,T) :- N1=0, U>=1, V>=0, T>=0, F3>U+F2,

r(1,U,V,T, Nb,F2,Vb,Tb), r(2,U,V,T, Nc,F3,Vc,Tc).

4. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2,

N=N1-1, N2=N1+1, N3=N1+2, U1=U+V,

r(N,U1,U,U, Na,F1,Va,Ta), r(N2,U,V,T, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).

After unfolding a few times clause 3, we get a clause with an unsatisfiable body, and thus we delete

clause 3. Then, we unfold clause 4 with respect to the second r atom of its body and we get:

5. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2, U1=U+V, N3=N1+2, N=N1-1,

r(N,U1,U,U, Na,F1,Va,Ta), r(N1,U1,U,U, Nb,F2,Vb,Tb),

r(N3,U,V,T, Nc,F3,Vc,Tc).
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Next we unfold clause 5 with respect to the third r atom of its body and we get:

6. gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, F3>F1+F2, N=N1-1, N2=N1+1, U1=U+V,

r(N,U1,U,U, Na,F1,Va,Ta), r(N1,U1,U,U, Nb,F2,Vb,Tb),

r(N2,U1,U,U, Nc,F3,Vc,Tc).

DEFINITION & FOLDING. No new predicate has to be introduced for folding clause 6. Indeed, clause 6

can be folded using clause 2 (note that this folding is allowed because the constraint of the body of

clause 2 is implied by the constraint in the body of clause 6, modulo a suitable variable renaming). By

this folding step, we get:

6.f gen(N1,U,V,T) :- N1>=1, U>=1, V>=0, T>=0, N=N1-1, U1=U+V, gen(N,U1,U,U).

Since no new predicate has been introduced, we have that the set InDefs of clauses becomes empty, and

thus the Transform strategy exits the while loop. The program TransfP derived so far consists of the two

clauses 1.f and 6.f.

REMOVAL OF USELESS CLAUSES. No constrained fact belongs to TransfP. Hence, all predicates in

TransfP are useless and all clauses in TransfP are removed.

The Transform strategy terminates with output program TransfP = /0. Thus, M(TransfP) 6|= p5 and,

by Theorem 1, M({E1,E2,E3,D5}) 6|= p5.

As mentioned above, we can also prove M({E1,E2,E3,DN}) 6|= pN for N= 1,2,3,4,6. Thus, by Theo-

rem 2, the partial correctness specification {n = N, N>= 0, u= 1, v= 0, t= 0} fibonacci {fib(N,u)}
is valid.

5 Automating the Correctness Proofs

The proof of partial correctness of the Fibonacci program presented in the previous section has been

constructed in a semi-automatic way. Indeed, although the sequence of UNFOLDING and DEFINI-

TION & FOLDING transformations is according to the Transform strategy, the various steps within each

UNFOLDING and DEFINITION & FOLDING transformation have been performed by hand without fol-

lowing a specific algorithm.

In this section we propose a technique for constructing partial correctness proofs of programs in a

fully automatic way. In particular, we provide procedures for performing the UNFOLDING and DEFINI-

TION & FOLDING transformations during the various applications of the Transform strategy.

We will illustrate our automatic proof technique by using again the Fibonacci example. As we

will see the correctness proof constructed by our fully automatic technique is different from the semi-

automatic one. In particular, the automatic proof technique generates many more new predicate defi-

nitions than the semi-automatic derivation, where the ingenious introduction of predicate gen has been

made.

Suppose that, in order to prove a specification {ϕ} prog{ψ}, we use Theorem 2 and we want to show

that:

M(OpSem∪Aux∪{D}) 6|= p

where D is a clause which defines the predicate p, of the form:

D. p←Y >Z, rprog(X1, . . . ,Xs,Z), B′

Our proof technique is made out of the following three transformation steps: (A) Removal of the Inter-

preter, (B) Linearization, and (C) Iterated Specialization, each of which is an instance of the Transform

strategy with different UNFOLDING and DEFINITION & FOLDING procedures.
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5.1 Removal of the Interpreter

This step is a variant of the Removal of the Interpreter strategy presented in [8].

In this step a specialized definition for rprog is derived by transforming the CLP program OpSem into

a new CLP program OpSemRI where there will be no occurrences of the predicates initConf, finalConf,

reach, and tr. The predicate tr encodes the operational semantics of the imperative language, that is, the

interpreter of the language. The name of this first transformation step comes, indeed, from the fact that

in the derived program all occurrence of the interpreter tr have been removed.

The derivation of the specialized definition for rprog is performed by applying the Transform strategy

starting from clause R of program OpSem. The UNFOLDING and DEFINITION & FOLDING procedures

used in Transform are those defined in [8].

For instance, in the Fibonacci program, the inputs of the Transform strategy are OpSemfibonacci and

clause R1 of Example 1. The output is the set {E1,E2,E3} of clauses shown in Section 4.

5.2 Linearization

The body of clause D may have several atoms in its body. For instance, in our Fibonacci example the body

of clause D5 contains three atoms with predicate r_fibonacci. The second step of our proof technique

consists in transforming OpSemRI∪Aux∪{D} into a set OpSemLN of linear clauses, that is, clauses whose

body contains, besides the constraints, at most one atom. This Linearization transformation is needed

to prepare for the last step of our proof technique that consists in applying the Iterated Specialization

strategy proposed in [8] (see Section 5.3) because this strategy, indeed, requires a linear CLP program as

input.

The Linearization strategy is a particular instance of the Transform strategy where: (i) the inputs are

program OpSemRI ∪Aux∪{D} and clause D itself, and (ii) the procedures UNFOLDING and DEFINI-

TION & FOLDING are defined as follows.

UNFOLDING: From clause C derive a set U(C) of clauses by unfolding C with respect to every atom in

its body;

DEFINITION & FOLDING:

F(C) :=U(C);

for every clause E in F(C) of the form H← c, p1(t1), . . . , pk(tk), where t1, . . . , tk are tuples of terms,

do if a clause of the form newp(X1, . . . ,Xk)← p1(X1), . . . , pk(Xk) does not belong to Defs

then add newp(X1, . . . ,Xk)← p1(X1), . . . , pk(Xk) to Defs and to InDefs;

F(C) := (F(C)−{E})∪{H← c, newp(t1, . . . , tk)}
od

By Linearization we indicate the Transform strategy using the above defined UNFOLDING and DEFINI-

TION & FOLDING procedures. It is easy to see that if Aux is a linear program, then only a finite number

of new predicates can be generated by the Linearization strategy, and hence the following theorem holds.

Theorem 4 (Termination of the Linearization Strategy) Suppose that Aux is a set of linear clauses.

Then the Linearization strategy terminates for the input program OpSemRI∪Aux∪{D}, and the output

OpSemLN is a linear program.

In the Fibonacci example, by applying the Linearization strategy to the program made out of clauses

{E1,E2,E3,D5} and clause D5, we get the following linear program:

p5 :- A=B+2, C=B+1, D=1, E=0, F=0, G=1, H=0, I=0, J=1, K=0, L=0, B>=0, M>N+N1,

lin1(B,G,H,I,P,N1,Q,R,C,D,E,F,S,N,T,U,A,J,K,L,V,M,W,X).
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lin1(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H,I,J,K,L,M,N,N1,P) :- I=Q+1, K=R-J, A=<0,

E=<0, Q>=0, lin2(Q,R,J,J,M,N,N1,P).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,M,N,N1,P) :- Q=E-1, R=F+G, M=<0,

A=<0, E>=1, lin2(Q,R,F,F,I,J,K,L).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T) :- M=U+1, N1=V-N, W=E-1,

X=F+G, A=<0, E>=1, U>=0, lin3(W,X,F,F,I,J,K,L,U,V,N,N,Q,R,S,T).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L,M,N,N1,P,M,N,N1,P) :- Q=A-1, R=B+C, M=<0,

I=<0, A>=1, lin2(Q,R,B,B,E,F,G,H).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L,M,N,N1,P,Q,R,S,T) :- M=U+1, N1=V-N, W=A-1,

X=B+C, I=<0, A>=1, U>=0, lin3(W,X,B,B,E,F,G,H,U,V,N,N,Q,R,S,T).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,Q,R,S,T) :- U=I-1, V=J+K, W=A-1,

X=B+C, Q=<0, A>=1, I>=1, lin3(W,X,B,B,E,F,G,H,U,V,J,J,M,N,N1,P).

lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,U,V,W,X) :- Q=Y+1, S=Z-R, A1=I-1,

B1=J+K, C1=A-1, D1=B+C, A>=1, I>=1, Y>=0,

lin1(C1,D1,B,B,E,F,G,H,A1,B1,J,J,M,N,N1,P,Y,Z,R,R,U,V,W,X).

lin1(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H,I,J,K,L,I,J,K,L) :- I=<0, A=<0, E=<0.

lin2(A,B,C,D,A,B,C,D) :- A=<0.

lin2(A,B,C,D,E,F,G,H) :- A=I+1, C=J-B, I>=0, lin2(I,J,B,B,E,F,G,H).

lin3(A,B,C,D,A,B,C,D,E,F,G,H,E,F,G,H) :- E=<0, A=<0.

lin3(A,B,C,D,A,B,C,D,E,F,G,H,I,J,K,L) :- E=M+1, G=N-F, A=<0, M>=0,

lin2(M,N,F,F,I,J,K,L).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,I,J,K,L) :- M=A-1, N=B+C, I=<0, A>=1,

lin2(M,N,B,B,E,F,G,H).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P) :- I=Q+1, K=R-J, S=A-1, T=B+C, A>=1,

Q>=0, lin3(S,T,B,B,E,F,G,H,Q,R,J,J,M,N,N1,P).

where the predicates lin1, lin2, and lin3 are introduced during the Linearization strategy and have

the following definitions:

lin1(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P,Q,R,S,T,U,V,W,X) :- r(A,B,C,D,E,F,G,H),

r(I,J,K,L,M,N,N1,P), r(Q,R,S,T,U,V,W,X).

lin2(A,B,C,D,E,F,G,H) :- r(A,B,C,D,E,F,G,H).

lin3(A,B,C,D,E,F,G,H,I,J,K,L,M,N,N1,P) :- r(A,B,C,D,E,F,G,H), r(I,J,K,L,M,N,N1,P).

5.3 Iterated Specialization

In this third step, called the Iterated Specialization strategy, we perform a sequence of specialization

steps that take advantage of the constraints occurring in the program OpSemLN derived at the end of the

Linearization. (Note that so far, that is, during the Removal of Interpreter and the Linearization steps,

the constraints did not play any role.)

Each specialization step of the sequence of specializations of the Iterated Specialization strategy

produces a new CLP program with a specialized definition of predicate p. Let OpSemIS be the last

program of the sequence constructed so far. Two cases of particular interest may occur for OpSemIS:

either (i) the set of clauses defining p contains the fact p←, or (ii) the set of clauses defining p is empty.

In Case (i), M(OpSemIS) |= p and hence, by Theorem 1, M(OpSem∪Aux∪ {D}) |= p. In Case (ii),

M(OpSemIS) 6|= p and hence, by Theorem 1, M(OpSem∪Aux∪{D}) 6|= p.

In the case where neither (i) nor (ii) holds, that is, in OpSemIS the predicate p is defined by a non-

empty set of clauses not containing the fact p←, we cannot establish by a syntactic check whether or
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not M(OpSemIS) |= p holds. Then, similarly to what has been proposed in [8], we proceed by iterating

the specialization process, that is, we extend the sequence of programs constructed so far, by deriving

one more program with a more specialized definition of p, in the hope that in this new program either

Case (i) or Case (ii) holds. Obviously, due to undecidability limitations, it may be the case that, no matter

how much we extend the sequence of programs generated by specialization, we never get a derived

CLP program where either Case (i) or Case (ii) holds. However, as we have shown in [8], the Iterated

Specialization strategy works well in many practical cases.

In our Fibonacci example, we apply the Iterated Specialization strategy, which at the end of the

while loop derives the following CLP program (in this case the Iterated Specialization consists of one

specialization step only):

p5 :- A=B+2, C=B+1, D=1, E=0, F=0, G=1, H=0, I=0, J=1, K=0, L=0, B>=0, M>N+Z,

new1(B,G,H,I,P,Z,Q,R,C,D,E,F,S,N,T,U,A,J,K,L,V,M,W,X).

new1(A,B,C,C,D,E,F,G,H,B,C,C,I,J,K,L,M,B,C,C,N,Z,P,Q) :- A=M-2, H=M-1, Z>E+J,

B>=1, M>=2, M=R+1, S=B+C, T=H-1, U=B+C, V=A-1, W=B+C, A>=1, H>=1, R>=0,

new1(V,W,B,B,D,E,F,G,T,U,B,B,I,J,K,L,R,S,B,B,N,Z,P,Q).

Since in the above program there is no constrained fact, all predicates are useless and they are removed

by the final REMOVAL OF USELESS CLAUSES step. Hence Iterated Specialization terminates deriving

the empty program. Thus, we have proved that M(OpSemfibonacci ∪{D5}) 6|= p5. Similarly, we can prove

M(OpSemfibonacci ∪ {DN}) 6|= pN for N = 1,2,3,4,6, and hence the specification (†) of Example 1 in

Section 3.1 is valid.

We conclude this section by comparing: (i) the following definition of the predicate new1 introduced

in an automatic way by the Iterated Specialization strategy in the above correctness proof:

new1(A,B1,C1,C2,D,E,F,G,H,B2,C3,C4,I,J,K,L,M,B3,C5,C6,N,P,Q,R) :- A>=0, H=A+1,

M=H+1, P>E+J, B1>=1, B1=B2, B2=B3, C1>=0, C1=C2, C2=C3, C3=C4, C4=C5, C5=C6,

lin1(A,B1,C1,C2,D,E,F,G,H,B2,C3,C4,I,J,K,L,M,B3,C5,C6,N,P,Q,R).

and (ii) the definition of the predicate gen introduced in our semi-automatic proof presented in Section 4.

These definitions of new1 and gen both allow the correctness proof, but they have a significant difference

in that the number of arguments of new1 is much larger than the number of arguments of gen. This

difference is due to the fact that, when applying the Linearization strategy, the automatic procedure for

DEFINITION & FOLDING keeps track of all the variables occurring in the various calls to the predicate r

and keeps them distinct with the goal of performing the subsequent folding steps.

5.4 Experimental Results

We have implemented our verification method in the VeriMAP software model checker [9]. The verifier

consists of a module, based on the C Intermediate Language (CIL) [25], that translates a partial correct-

ness specification into a set of CLP clauses, and a module for CLP program transformation that performs

the three applications of the Transform strategy, according to the method presented in Sections 5.1, 5.2,

and 5.3.

We have performed an experimental evaluation of our method on a set of programs taken from the

literature. Table 1 summarize the results of our experiments that have been performed on an Intel Core

i5-2467M 1.60GHz processor with 4GB of memory under GNU/Linux OS.
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Program Specified Function
Proof Time

RI LN IS Total

fibonacci

fib(0,1).

fib(1,1).

fib(N3,F3):- N1>=0,N2=N1+1,N3=N2+1,F3=F1+F2,

fib(N1,F1), fib(N2,F2).

50 40 340 430

remainder
of integer

division

rem(X,Y,X):- X<Y.

rem(X,Y,0):- X=Y.

rem(X,Y,Z):- X>Y, X1=X-Y,rem(X1,Y,Z).

20 10 20 50

greatest
common
divisor

gcd(X,Y,Z):- X<Y, Y1=Y-X,gcd(X,Y1,Z).

gcd(X,Y,X):- X=Y.

gcd(X,Y,Z):- X>Y, X1=X-Y,gcd(X1,Y,Z).

30 20 80 130

McCarthy’s

91 function

mc91f(X,Z):- X =< 100, Z=91.

mc91f(X,Z):- X>=101,Z=X-10.
40 – 40 80

McCarthy’s

91 function

mc91(X,Z):- X>=101,Z=X-10.

mc91(X,Z):- X =< 100, X1=X+11,mc91(X1,K),mc91(K,Z).
40 40 69400 69480

integer

division

idiv(M,K,0):- M+1=<K.

idiv(M,K,Q1):- M>=K, M1=M-K,Q1=Q+1,idiv(M1,K,Q).
30 10 120 160

even-odd

multiplication

mult(J,0,0).

mult(J,N1,Y1):- N1=N+1,Y1=Y+J,N>0, mult(J,N,Y).
50 60 2720 2830

Table 1: Experimental results. The columns named RI, LN, IS, and Total show the times taken for

the Removal of the Interpreter, the Linearization, the Iterated Specialization, and the total proof time,

respectively. ‘–’ means that the step is not needed. Times are shown in milliseconds.

6 Conclusions

We have presented a method for proving partial correctness specifications of programs, given as Hoare

triples of the form: {ϕ} prog {ψ}, where the assertions ϕ and ψ are predicates defined by a set of pos-

sibly recursive Constraint Logic Programming (CLP) clauses. Our method is based on a transformation

strategy that uses unfold/fold rules, can be automated, and allows us to derive, starting from the given

correctness problem, a set of linear CLP clauses. Then, this derived set of clauses can be processed by

verifiers based on solvers for linear arithmetic constraints.

By using a preliminary implementation on our VeriMAP verification system [9], we have shown that

our method works on some verification problems. Although the verification problems we have considered

refer to quite simple specifications, to the best of our knowledge they cannot be solved by state-of-the-art

verifiers based on solvers for linear arithmetic (such as, among others, [1, 5, 8, 18, 15, 27, 28, 32]), as

the postconditions are recursively defined predicates, and not linear constraints. We also believe that

some of the examples (for instance, fibonacci and the doubly recursive specification mc91 of McCarthy’s

91 function) cannot be proved either by using techniques based on polynomial invariants [30, 31], as

the postconditions are not expressed as integer polynomials (and in the fibonacci example, not even

equivalent to a polynomial function).
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It should be mentioned that an alternative to fully automatic verification techniques is the use of

tools that construct correctness proofs based on assertions provided at various program points (see, for

instance, Dafny [20] and Why3 [13]). However, these tools leave to the user the task of introducing

suitable invariant assertions, which very often are the most ingenious steps in a correctness proof.

Our paper is a contribution to the field of program verification based on the transformation approach.

This approach has recently gained some popularity and several papers have been published (see, for

instance, [2, 8, 14, 19, 22, 23, 27]). In particular, we have demonstrated the power of CLP program

transformations as a means for: (i) translating correctness specifications into CLP programs, (ii) reduc-

ing the difficulty of the verification problems from non-linear recursive CLP programs to linear CLP

programs, and finally, (iii) solving the verification problem starting from linear recursive CLP programs.

As future work, we think of refining the transformation strategies we have proposed in this paper.

In particular, more work can be done for enhancing the automation of the Linearization strategy (see

Sections 4 and 5) as the structure of the CLP program resulting from this transformation affects the rest

of the verification process. Moreover, the results presented for total correctness in Section 3.3 show

the need for a transformation strategy that deal with CLP programs with negative literals. Having that

strategy at our disposal, we can then extend our method to perform total correctness proofs as well.
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Appendix

Proof of Theorem 2 (Partial Correctness).
Let domr(P1, . . . ,Ps) be ∃Zi. rprog(P1, . . . ,Ps,Y ) (the domain of rprog). We assume that domr is defined

in OpSem by the clause: domr(P1, . . . ,Ps) ← rprog(P1, . . . ,Ps,Y ). Let us denote by Spec♯ the set of

clauses obtained from Spec by replacing each clause f (X1, . . . ,Xs,Y )←B by the clause f (X1, . . . ,Xs,Y )←
domr(X1, . . . ,Xs),B. Then,

M(Spec♯∪OpSem) |= f (p1, . . . , ps,y) implies M(Spec) |= f (p1, . . . , ps,y) (†)

We have that, for all integers p1, . . . , ps,y,

M(Spec♯∪OpSem) |= f (p1, . . . , ps,y) iff M(OpSem) |= rprog(p1, . . . , ps,y) (‡)

To show (‡) we use the fact that the hypothesis of this theorem implies that every clause obtained from

Spec♯ by replacing f by rprog is true in M(OpSem∪Aux).

Let us now prove partial correctness.

If M(Spec) |= pre(p1, . . . , ps) and prog terminates, that is, M(OpSem) |= domr(p1, . . . , ps), then for

some y, M(OpSem) |= rprog(p1, . . . , ps,y). Thus, by (‡), M(Spec♯∪OpSem) |= f (p1, . . . , ps,y) and hence,

by (†), M(Spec) |= f (p1, . . . , ps,y). Thus, {ϕ} prog {ψ}. �

Proof of Theorem 3 (Total Correctness).
Let us denote by Spec′ the set of clauses obtained from Spec by replacing all occurrences of f by rprog.

Then, for all integers p1, . . . , ps,y,

M(Spec) |= f (p1, . . . , ps,y) iff M(Spec′) |= rprog(p1, . . . , ps,y) (*)

The hypothesis that, for all clauses D in Ftc, M(OpSem∪Aux∪{D}) 6|= p, where p is the head predicate

of D, and hence M(OpSem∪Aux) is a model of Spec′. Since, M(Spec′) is the least model of Spec′, we

have that

M(Spec′)⊆M(OpSem∪Aux)
Now we prove:

M(Spec) |= f (p1, . . . , ps,y) iff M(OpSem) |= rprog(p1, . . . , ps,y) (**)

Only If Part. Suppose that M(Spec) |= f (p1, . . . , ps,y). Then, by (*),

M(Spec′) |= rprog(p1, . . . , ps,y)
and hence

M(OpSem∪Aux) |= rprog(p1, . . . , ps,y)
Since rprog does not depend on predicates in Aux,

M(OpSem) |= rprog(p1, . . . , ps,z)

If Part. Suppose that

M(OpSem) |= rprog(p1, . . . , ps,y)
Then, by definition of rprog,

M(Spec) |= pre(p1, . . . , ps)
Thus, by Condition 4.2 of Definition 1, there exists z such that M(Spec) |= f (p1, . . . , ps,z). By the Only

If Part, M(OpSem) |= rprog(p1, . . . , ps,z) and by the functionality of rprog, z = y. Hence,

M(Spec) |= f (p1, . . . , ps,y)
Thus, we have proved (**).

Let us now prove total correctness. By definition of rprog in OpSem, if M(Spec) |= pre(p1, . . . , ps) holds

and prog terminates, then M(OpSem) |= rprog(p1, . . . , ps,y), and hence, by (**), M(Spec) |= f (p1, . . . , ps,y).
Thus {ϕ} prog {ψ}.
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Moreover, by (**), we have that, for all integers p1, . . . , ps,

M(OpSem) |= pre(p1, . . . , ps)→∃y. rprog(p1, . . . , ps,y)
and, by Lemma 1, prog terminates. Thus, [ϕ ] prog [ψ ]. �
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